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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ON A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM
E. TARAFDAR

Abstract: ). is a bounded domain with smooth boundary
3Q Tand L is a linear properly elliptic partial differential
operator (not necessarily self-adjoint) of order m withlsmooth
real coefficients on L | {Bj}. léjé-zm is a set of F dif-

ferential boundary operators which cover L and have smooth co-
efficients on 82 , A is L acting on functions satisfying the
boundary conditions:

Bju =0 on aa |, léjﬁén. g: Q> R—> R is a function.
The purgose of this paper is to seek a solution of A(u) =
= g(x,u) under conditions different from the known ones. It is
assumed that 0 is an eigenvalue of A,

Key words: Elliptic operator, boundary value problem.

Classification: Primary 47TH15
Secondary 47450, 34B15, 35J60

--------- - = = " - - - - - - - - - - - - - - - .- - - -

B

1. Introduction. Let fL be a bounded domain with smooth

boundary 3Q and L be a linear properly elliptic partial dif-
ferential operator of crder m with smooth real valued coeffi-
cients on L . Let {BJ} be a set of %n differential boundary
operators with real valued coefficients smooth on 3Q which
covers L ’(ror definitions and further descriptions of such
problems see [ 5] and 18)). Let A be the operator L acting on

* ‘nctions which satisfy the boundary conditions:

. - 1
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The operator A when considered as defined on Lﬂ(ﬂ,) is closable.
We may, therefore, regard A as a closed operator with domain
Ac Lz(ﬂ.). It is known that A is a Fredholm operator, i.e.,
R(A), the range space of A is closed in Lz(_(l) and both ll(A)‘L
and the null space N(A) are finite dimensional (see [8]).
Throughout the paper we will assume that N(A)#+{0}. Let g:

t L % R —> R be a function such that for each t€R the functi-
on x —>g(x,t) is measurable in £ and for each x ¢ £ (a.s.)
the function t —> g(x,t) is continuous in R. Assume that there
exists a function F(x)s L1(£) such that

(1.3) 1g(x,t)&f(x), x€e X ,teR

Further assume that there exist functions g.(x)e Ll(_ﬂ.) such
that

(1.3) tié‘w gix,t) = 5i,(x) a.e.,
Let T:R(A) —> N(4) be a linear mapping much that

(1.4) T(}_fbo 8,(x)z(x)dx +T(£€<o 8_(x)z(x)dx>0

for each nonzero ze R{A)™ , where T(z)Z 0 = fx e Q :(T2)(x)Z 0 .
Also let

(1,5) @plc) —> 0 as ¢ —>0

where

@yle) = (8up, L measure {x € L 2z(x) *0, “fzzx)"‘“ <ci.

Under the conditions (l1.1) to (1.5) Schechter [ 9] has proved
that there exists ug dom A such that

A(u) = g(x,u)

This type of problem has been considered first by Landesman and
Lazer [4] and then by Williams [10], Browder [1], Nirenberg ([6],

171), Schechter (9] and meny others. In [4] Landesman and Lazer
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have considered the Dirichlet problem where the above operator
A is self-adjoint second order with dimension of N(A) = 1 and
g(x,t) is of the form h(x) - g(t) and is continuous.

Assuming that _l;i:m gix,t) = g (x)¢ th.o.). N(A) is spannsd

t

by w with llwl 5 = 1 and a condition corresponding to (1.3),
L

Landesman and Lazer ({4], Theorem 5.2) have proved that there

exists uc D(A) satisfying A(u) = g(x,u) if

{1.6) [w“fo 8, (x)w(x)dx ‘w‘fo g‘(x)w(x)dx][w[o g_(x)w(x)dx +

+ w'£0 g*(x)v(x)dx]< 0

This result of Landesman and Lazer [4] has been extended by Wil-
liams [10] to the case where A is higher order selif-adjoint o-
perator and N(A) is of arbitrary finite dimension and by Brow-
der [1) to the case where A is arbitrary self-adjoint operator
and N(A) is of arbitrary finite dimension. Nirenberg [ 7] is the
first to deal with the case when A is non self-adjoint and N(A)
is of arbitrary finite dimension. The result of Niremberg [7]
involves assumptions expressed in terms of nonvanishing of de-
gree of a certain map when Ind A = dim N(A) - dim l(A)‘L = 0 and
the nontriviality of the stable homotopy class of a cc.:2in map
when Ind A>0, while that of Schechter [ 8] mentioned at the be-
ginning involves conditions (l.4) expressed in terms of inequa-

lities which are easy to verify.

Since all these results have grown out of the paper of Lan-
desman and Lazer [4]) it is of considerable interest to see if
the result of Schechter can be proved with condition analogous
to condition (1.6) of Landesman and Lazer, i.e. if condition

(1.4) can be replaced by
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(1.7) 8. (x)z(x)dx + 8_(x)z(x)dx g_(x)z(x)dx+
[T(£€>O * T(z{<0 ][TCZ/;>0

. 8,(x)z(x)dx|< 0
T(£5<0 * ]

for each nonzero z¢ R(A)‘L .

In this paper a little more than this has been achieved.
The condition (1.7) is indeed analogous to the condition (1.6),
for if A is self-adjoint, R(A)‘L = N(A) and T can therefore be
taken as the identity operator. We also note that in this case

the condition (1.5) is automatically satisfied.

Our approach is via a simple theorem of Krasnosel “skii [3]
on degree theory, the application of which seems to the best

of the author’s knowledge to be new.

3. A fixed point theorem. In this section we will prove
a fixed point theorem for which we need the following result,

due to Krasnosel skii L3), which we write as a lemma.

Lemma 3.1, Let X be a real Banach space and Dc X an open
bounded set symmetric with respect to the origin and contain-
ing it.

Let T:D~>X be a compact mapping (i.e. T is continuous and
T(D) is relatively compact in X) such that
(I - T)(x) & w(I-T){-x) for every € LO,1] ana every
xedb,
the boundary of D, where I is the identity on X. Then there e-

xists at least one x¢ D such that T(x) = x,

Theorem 2.1. Let X be a real Banach space and Z a finite

dimensional real Hilbert space. Let T:Z —> X, G:X — X and H:
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2X~—>Z be all compact mappings (i.e. mappings which are conti-
nuous and map a bounded set onto a relatively compact set).

Assume that

. ) le)lt _ 4 .
W e S A

and (ii) for large Hzl ,
{z,H(T(z) + G(u)) = 4 H(Ti-z) + G(-u)))+-0
for all u and e [0,1]1 where (.,.) denotes the inner product
in Z.
Then the mapping T:X=xZ —> X Z defined by
((u,2)) = (u*,2%) = (T(z) + G(u), z - H(T(z) + G(u)))

has a rixed point.

Proof. Clearly, X< Z is a real Banach space with the norm
fu,z)ll = ilull + lzl, ueX, z<¢Z and Tis a compact mapping
on Xx<Z,

By virtue of Lemma 2.1 it would suffice to show that there is
Dc X< Z a bound open set containing the origin and symmetric
with respect to the origin such that

(2.1) (I - T)(u,z) + @(I - T)(-u,-2)

for every we [0,1] and every (u,z) € 9D, I being the identi-
ty on XxZ,

Let R" be a pesitive real number such that condition (ii)
holds for |zl = R>R’. By assumption (i) there exists (3 with
0 £ 3 <1 and RZR  such that

Gt g @ hull for Wul>R.

There are also constants Kl- and l(2 such that

N T(z) | £ K; whenever |z =R
and NG(z) | £ Ky whenever |lull£&.
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Now let for some (u,z)c XxZ and some we¢ [0,1]
(1 - ?)(u.z) = (Il - ?)(-u,-z).
i.ce. (u,2) - (u¥,2%) = & (-u,~z) = wl(-u)*, (-2)%)
which yields
(2.2) (1 + @)u =u* - w(-u)* =T(z) + G(u) - w(T(-z) +
+ G(=u))
and (1 + (a)z = 2z¥ « w(-z)* =z - H(T(z) + G(u)) -
- @l-z = H(T(-z) + G(-u)), i.e, H(T(z) + G(u)) - «wH(T(-z) +
# G(-u)) = 0, which inr view of condition (ii) implies that
K
Yzl £ R, Let M = max T:IF' K, + Ka).
Now if Hull> R we have from (3.3)

w o w) lul € BTN + hGGl + w( NT(-2)1 +
+HG(=)h ISK, « plulle wk, + wpliull as NzW &R,

K
Thus l\u\{ﬁlflﬁ- & M.

when lull£ R we have again from (2.2)
A+ w)luls Ky + K3 ¢ @ik + Kyl ise. llu“éxl +
. laél.
Thus in either case lul & M. The constants R ana M are inde-
pendent of @ o Let ﬁ be any real number greater than R + M and
D = §{u,z) e Xx2: ll (u,z) | < R3. Clearly then (2.1) holds with
this D and the proof is complete.

3. Main results. In this section we prove the existence
of the solution of the nonlinear boundary value problem A{u) =

= ‘(’.u)o

Theorem 3.1. Let £-, L, Bj (lijé%n) and A be as in the
beginning of section 1, Also let g: O = R — R, F(x)e Ll(ﬂ-)
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satisfying (1.2) and 83(‘)5 Ll(.ﬂ.) satisfying (1.3) be as in
section 1,
Noting that A:dom Ac l.z(.(l)——-> Lz(.n.) is a Fredholm mapping
end N(A) # {0} by assumption (vide section 1) let T:R(A): —»
—> N(A) be a linear mapping. Assume that

(a) for each 0+zcR(A)' and each @e [0,1),

B1) Mplzo @) = S g x)z(xdax S g (x)z(x)dx -

- ("[T(i/;>o' g_(x)z(x)dx + T(?j_.)< 0 50(,)2(,‘)“] *0

(302) (D) Sor(c)ﬁ 0O asc—>0

where S°t(°) is as defined in section 1.

Then there exists uec dom A such that A(u) = g(x,u).

Bofore proving this theorem we note that (3.1) implies
vhat (ind AZ O for T satisfying (3.1) is injective. To see this
let z,¢€ N(T). Then l.r(zo.(w) = 0 for every < [ 0,1] contra-
dicting (3.1).

Proof. We will maintain the notation and follow more o-
less the same argument of (9], Let us assume that dim R(A)‘L =
=n and (z,235+..,2,) be an orthonormal basis for R(A) . Let
P be the projection of L3(2) onto R(A)L defined by

Z 1
P(h) = = (h,z,,hel ().

It follows that P maps L1(01) into L2 (), z,, k = 1,3,...0n
bsing smooth in 8 . From the linear theory of elliptic boun-
dary value problems it is known that there is a linear opera-
tor S:R(A) —>N(A)L such that S is the inverse of 4 restric-
ted to N(A)'l' , S(I - P) maps thﬂ) into LP(0) for some p>1
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and is compact (for details see [8] and [81). We will apply
Theorem 3.1 and to this end we take X = Lp(.O.). p>1 obtained
as above, Z = R(A)Y and define G:X—> X and H:X —> Z by
G(u) = S(I - P)g(x,u), ueX
and H(u) = Pg(x,u), ueX.
Obviously T, G and H are all compact mappings. It can be pro-

ved (see Schechter [8]) that
X . hGeu)ll
lim su ——LN-L =0
p= ll‘u,llevop [
and that there is a constant 6 such that

lG(u)ll £ 8 for all ue X.

We now verify the condition (ii) of Theorem 2.1, Let ueX,
0+zeZ, we [0,1] and € > O be given. Since by assumption

FeLl(5), there exists o > 0 such that

(3.3) fw gix)dx < /,,

for any W ¢ 1 with m(W) < O where m(A) denotes the measure
of AcQ . Let W, ={x « D:lGwx)|> %‘;’:—}. Then m(w1)<‘{ .
Again by (3.2) there is a positive integer N independent of z
such that m(l2)< %fwhero W, = {x e Q¢ Ky :)xx ' (%}. Also by
(1.3) and Egoroff Theorem there is a set W c £ with m(ls) <

<§‘and a positive constant J such that
(3.4) lgx,t) - g x)l < ¥ 10000,

holds for *t>J and x &€ O\ W,. Let L = %‘- f, &x)dx and set
3

W=, W.Clearly m(W) < d

Lastly let D =4x € © NW:i(T(z))(x)i<I z“m /LN and E =

= ON(buwW).
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We now consider the following:

| f_o_[g(x,u“‘) - walx,(-u)*] z(x)dx - ll.r(z.u)‘

Lig(x,u*) - g (x)} - wiglx,(-u)*) -

LY

T(z)>0
g_(x)3] z(x)\dx + [ |rigix,u¥) - g_{x)} -
T(z)<0

- @is(x, (-w*) - g (x)3] z2(x)|dx = 1, + I,

where (u)* has been defined in Theorem 2.1.

Now 1) = J [Liglx,u%) - g,(x)3 - wiglx,(-u)¥) -

- (x)}l z(x)|dx & [
& I Wn[1fz)>03 DAL (2)>0) Ent[r(z)>0]

By (3.3) we have

Wﬂt/m))mé 21+ @) lizl, [4'&) oy E(x)x) &4 Nz, £ =

=gzl
Also DnL‘&zbOJé ?J_l.i.ﬂ izl fl; ﬁ(x)dxél‘: Wzl !Q_‘E(x)dx

e§lzl, aslzx)i<lzl, /L onp.

We now take [zl Z LN + :-’5,-*3-). the right hand side being
independent of z, u and W -
Now on ENnLT(z)>0]

ezl
T(z) + G(u)ZT(z) - lG(u)l.—’.‘—nrf-o- - =
3

-z
and T{-z) + G(-u)£-T(z) + Ib(—u)'é——rr— FE- T

Hence by (3.4) we have

eq’Crcz»of II!EEITT ‘Mmﬁ'ﬁfﬂ hzl, ma) =& Nzl

Thus we have proved that 11<§ Nzl

Proceeding exactly as above and noting only that on En (T(z)<
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vzl
T(z) + G(u)&£T(z) + |G(u)l & -—mﬁ *%g'—" -dJd

”z"w 36
and Tl-z) + G(-u)Z -T(z) - |G(~u)l Z —pg= - 52 d

€
we can show that I %% hz "ao .

Hence, replacing z by tz, t>0, we obtain

(3.5) Vit,z,u, ) = | (gix,t(T(z)) + G(u)) - wg(x,~t(T(z)) +
+ G(-u)),z) - Mp(z,u) ) & € Nzl

whenever tZ LN(j + %g-)/ hzll, =X(e)/Hzl, and hence the left
hand side of (3.5) tends to zero uniformly in u, 4 and z pro-
vided Nzl and 1/0zl is bounded. V(t,z,u, &) being continu-
ous in the variable (z, &) for each t and closed bounded sets
in Zx10,11 being compact, it follows that My(z,«) is continu-
ous in (z, @) for z#0. Now since the set A = {{z,w): lizl =1
and me [0,1)% is compact and connected in Zx<[ 0,11, it fol-
lows that KT(A) is a closed bounded interval [a,bl, say. Again
by virtue of (3.1), O0¢[a,bl, Hence either (1) [a,b] consists
only of negative real numbers or (2) [a,b] consists only of po-
sitive real numbers. In case (1) we have lr(z,u)<%|lzﬂ for
all 0+zeZ and all we [ 0,11, Using € = -Lgl in (3.5) we ob-
tain that for sufficiently large fz ||,

8(x,Tiz) + Glu)) - wg(x,-T(z) + G(~u)),z)*0
for all u and we L0O,1).
In case (2) we have lr(z,p)>-§. iz for all O%zeZ and all
@e [0,1). Using e=§ in (3.5), we obtain that for suffici-
ently large Izl

(g(x,T(z) + G(u)) - mg(x,-T(z) + G(-u)),z)%0
for all u and we [0,11.

Thus in either case for sufficiently large lz |
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(3.6) (g(x,T(z) + G(u)) - wgix,~T(z) + G(-u)),z)40
for all u and ¢ [0,1].

Now let z = 4._%:4 Lz Then

(H{T(z) + G(u)) - (A,H(T(-z) + G(-u)),z)
o
(3.7) = (2, {elx,T(z) + G(u) - «g(x,T(-z) + G(-u)),z )z,

" M‘s

; r,cizi) = (g(x,T(z) + G(u)) - wg(x,T(-z) +

B
+ G(-ull,z)*0
for all u and 4 € [0,1] and for sufficiently large lzl .

Thus the condition (ii) of Theorem 2.1 is verified.

It is trivial to see that if (u,z) 1s the fixed point ob-
tained by Theorem 2.1, then ueD(A) and A(u) = g(x,u).

Thus the ’proof is complete.

Corollary 3.1. Let Q, L, B, (1£j£gm), &, T, g, & &,
be as in Theorem 3.1. Let the condition (b) of Theorem 3.1
hold. Further assume that the following holds:
for each O#%ze R(A)‘L

@s) [ S ez S g_(x)z(x)dx ]

[T({)>0 g_(x)z(x)dx + T(if)<0 g,(x)z(x)dx] < 0

Then there exists ucdom A such that A(u) = gdx,u).

Proof. The condition (3.8) implies the condition (a) of

Theorem 3.1 and hence the corollary is proved.

Corollary 3.2. Let &, L, Bj (zjcdm), &, T, g, & 8,
be as in Theorem 3.1. Let the condition (b) of Theorem 3.1

hold. Furthermore let either of the following conditions hold:
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(1) urowh0¢zeNAH
{x)dx | > 0;
[T(z'./;>0 8, (x)z{x)dx *T(if;<0 8. (x)z(x) x]
(ii) for each 0% ze R(A)L

0.
L., setmzimax v [ g (x)zbx)ax] <

Then there exists uec dom A such that A(u) = g(x,u).

Proof. Setting Q(z) = r f

0 g*(x)z(x)dx +‘r(£)<0 g_(x)z(x)dx

and noting that T is linear, it follows that for any ze¢ R(A)J’

- Q{(=z) =T(£>O g_(x)z(x)dx + T(Zf)<o 8, (x)z(x)dx.

Let us now assume that the condition (i) holds. Then for each
O+zeR(A) , Q(z)>0 and Q(-z)> 0 and hence Q(z) [ -Q(-z)J < 0
which is the condition (3.8) of Corollary 3.1. Similarly we can

prove the corollary under condition (ii),

Remark 3.1, The corollary 3.1 includes the result of

Schechter [ 8], We should also point out that the condition (3.8)
of Corollary 3.1 or more generally the condition (3.1) of Theo-
rem 3.1 implies that either condition (i) or condition (ii) of
Corollary 3.2 hodds. This follows from the continuity of

l.r(z. ) asserted in the proof of Theorem 3.1 and the fact that
the set 1(z, w): izl =1 and € [0,1)}is closed and compact
(see Theorem 3.1). Thus under condition 3.l the possible new

hypotheses are limited to either (i) or (11).

Remarks 3.2
1. The condition of (b) of Theorem 3.1 holds if A has the
unique continuation property, i.e. the only solution of A(u) =

= 0 which vanishes on a set of positive measure in X 1su=0
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(for proof of this result see Lemma 2 in [7] or (2], p. 160).

2. Nirenberg s remark in [9) that instead of assuming T

to be linear, it is sufficient to assume T to be continuous and

homogeneous and ind A to be Z ¢ is also valid in our case.

The author is grateful to the referee for valuable sugges-

tions.
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