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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

23,3 (1982) 

ON A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM 
E. TARAFDAR 

Abstract: .XL is a bounded domain with smooth boundary 
3XL and L is a linear properly elliptic partial differential 
operator (not necessarily self-adjoint) of order m with-smooth 
real coefficients on J-- „ {B A 9 l^j^im is a set of «a dif­
ferential boundary operators which cover L and have smooth co­
efficients on QSl • A is L acting on functions satisfying the 
boundary conditions: 

B,u « 0 on 8IL f l£j£|su g: & x R —> R is a function. 

The purpose of this paper is to seek a solution of A(u) = 
-= g(x,u) under conditions different from the known ones* It is 
assumed that 0 is an eigenvalue of A* 

Key words: Elliptic operator, boundary value problem* 

Classification: Primary 47H15 

Secondary 47A50, 34B15, 35J60 

1* Introduction* Let -ft- be a bounded domain with smooth 

boundary d-d and L be a linear properly elliptic partial dif­

ferential operator of order m with smooth real valued coeffi­

cients on H • Let iB J be a set of im differential boundary 

operators with real valued coefficients smooth on 3-0- which 

covers L (for definitions and further descriptions of such 

problems see £ $3 and 183),* Let A be the operator L acting on 

' 'notions which satisfy the boundary conditions: 

*:..') Bjtt » 0 on da *4£j.4§a 
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The operator A when considered as defined on L (A) is closable. 

We Bay, therefore, regard A as a closed operator with doBain 

A c L (II). It is known that A is a Fred ho In operator, i.e., 

2 I 

R(A), the range space of A is closed in L (il) and both R(A)~^ 

and the null space N(A) are finite dimensional (see £81). 

Throughout the paper we will assuBe that N(A)4»*0l. Let g: 

*£-.?< R —> R be a function such that for each t€R the functi­

on x —>g(x,t) is aeasurable in -O- and for each x til (a.e.) 

the function t—>g(x,t) is continuous in R. ASSUBO that there 

exists a function g(x)cL (il) such that 

d.a) lgU»t)lBJfU)» * € & >t&u 

Further assuBe that there exist functions g+(x) € L (IX) such 

that 

(1.3) , liB g(x,t) « g+(x) a.e* 
X --*"£ CO —• 

Let T:R(A)J* —*• N(A) be a l inear sapping such that 

U . 4 ) / g fx)z(x)dx • /* g j x ) z ( x ) d x ^ 0 
TU)>0 * T<z)<0 

for each nonzero zcRiA) » where T(z) 5 0 - h e i - } ( t z ) ( x ) ? 0 . 

Also l e t 

(1.5) §oT<c)—>0 as c —>0 

where 

<j)T(c) %J*«PAVL ««asure i% s SI sz(x) 4 0 , * ^ f f i } ( x ) l <ci» 

Under the conditions (1*1) to (1*5) Schechter [9J has proved 

that there e x i s t s u e d o a i such that 

A<u) * g<x,u) 

This type of problem, has been considered first by Landesaan and 

Lazer 143 and then by Williams C103, Browder tl3, Nirenberg ([63* 

171), Schechter 193 and aany others. In [4] Landesman and Lazer 
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haTe conaidered the Dirichlet problem where the above operator 

A is self-adjoint second order with dimension of N(A) « 1 and 

g(x,t) ia of the forn h(x) - g(t) and ia continuous. 

Assuming that , liai g(xft) » g.(x)c L
2 ( H ) , N(A) ia apanaed 

t~s-±oo -
by w with II wU 9 -= 1 and a condition oorreaponding to (1.2)» 

La(£U 
Landeeman and Lazer (143, Theorem 5*2) haTs proved that there 
exiata ucD(A) satisfying A(u) * g(x,u) if 

^•6) f f gjx)w(x)dx • / gjx)w(x)d*1[ / g <x)w<x)dx • 
lw>0 * *<0 -"•wV-> 

• / g^(x)w(x)dm]-<:0 

This result of Landeaaan and Lazer 14] has been extended by Wil­

liams I10] to the caae where A ia higher order aeif-adjoint o~ 

perator and N(A) ia of arbitrary finite dimension and by Brow 

dor [1] to the caae where A ia arbitrary self-adjoint operator 

and N(A) ia of arbitrary finite dimenaion. Nirenberg IT] ia the 

first to deal with the case when A ia non self-ad joint and II (A) 

ia of arbitrary finite dimension* The result of Nirenberg E73 

inTOlTea aasumptions expressed in terms of nonTaniahing of de­

gree of a certain map when Ind A * dim N(A) - dim ft(A) * 0 and 

the nontriTiality of the stable homotopy claas of a ce ain map 

when Ind A > 0 t while that of Schechter tft] mentioned at the be-

ginning inTOlves conditions (1*4) expressed in terms of inequa­

lities which are easy to verify. 

Since all theae results have grown out of the paper of Lan-

deaman and Lazer [4] it ia of considerable interest to see if 

the result of Schechter can be proved with condition analogous 

to condition (1*6) of Landeaman and Lazer, i.e. if condition 

(1.4) can be replaced by 
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(1.7) r f gjx)z(x)dx * f g_(x)z(x)d*]f / g_(x)z(x)dx+ 
lTCi)>Q TC&*0 JlTu)>0 

• f gjx)z(x)dx]< 0 
ni)<o J 

for each nonzero zcB(A) . 

In thia paper a little mora than this has been achieTed. 

The condition (1.7) ia indeed analogous to the condition (1.6), 

for if A ia self-adjoint, R(A)^ « N(A) and T can therefore be 

taken aa the identity operator. We also note that in this case 

the condition (1.5) is automatically satisfied. 

Our approach is Tia a simple theorem of Krasnosel'skii i3l 

on degree theory, the application of which seams to the best 

of the author's knowledge to be new* 

2. A fixed point theorem. In this section wa will prove 

a fixed point theorem for which we need the following result, 

due to Krasnosel'akii 13], which wa write as a lemma* 

Lemma 3.1* Let X be a real Banach space and Dc X an open 

bounded sat symmetric with respect to the origin and contain­

ing it* 

Let T:D -->-> X be a compact mapping (i.e. T is continuous and 

T(D) ia relatively compact in X) such that 

(I - T)(x)4= <u,(I-T)(-x) for every ^ e 10,13 and every 

x & 3D, 

the boundary of D, where I is the identity on X. Then there e-

xists at least one x€D such that T(x) = x* 

Theorem 2.1* Let X be a real Banach space and Z a finite 

dimensional real Hilbert space. Let T:Z—> X, G:X—> X and H: 
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sX •—*» Z be all compact mappings (i.o, mappings which are conti­

nuous and map a bounded set onto a relatively compact set). 

Assume that 

(i) lim sup % i ^ « $< 1 
\\w\\-+co ^u«l l 

and (ii) for large It z II t 

(z,H(T(z) + G(u)) - ( l i H ( T k ) • G(-u)))4^0 

for all u and ^ e [0,13 where (»,«) denotes the inner product 

in Z. 

Then the mapping f:X>^Z -> X Z defined by 

$((u,z)) = (u*tz*) * (T(z) + G(u), z - H(T(z) • G(u))) 

has a fixed point* 

Proof* Clearly, X.x Z is a real Banach space with the norm 

It (u,z)ll * Hull • II z II , u e X , z c Z and T is a compact mapping 

on X?cZ« 

By virtue of Lemma 2.1 it would suffice to show that there is 

D c X x Z a bound open set containing the origin and symmetric 

with respect to the origin such that 

(2.1) (I - T)(u,z) 4= ̂ ( 1 - T)(-u,-z) 

for every M, e L0#ll and every (u,zj 6 9D, I being the* identi­

ty on X x Z , 

Let R be a positive real number such that condition (ii) 

holds for || z II = R > R # . By assumption (i) there exists /3 with 

0 --= (3 < 1 and RZR* such that 

U Gili) || £ (3 II u II for II u II > R . 

There are also constants K, and K~ such that 

II T(z) II £ Kx whenever II z l| is R 

and II G(z) l| £ Kg whenever |l u II £ R. 
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Now let for some (u,z)s X x Z and some p.e i 0,1 J 

(I - T)(u,z) ** (tUl - $)(-u,-z), 

i.e. (u,z) - (u*,z*) * rx(-u.-z) - <u,((-u)*. (-z)*) 

which yields 

(2.2) (1 • <t* )u * tt* - <u,(-u)* * T(z) • G(u) - ru,(T(-z) • 

• G(-u)) 

and (1 • (u)z -* z* - <tc(-z)* * z - H(T(z) + G(u)) -

- <u.(-z - H(T(-z) • G(-u))t i.e. H(T(z) • G(u)) - (aH(T(-z) • 

• G(-u)) * 0. which in view of condition ( i i ) implies that 

K, 
H z II £ R. Let M = max j-jf* Kx • * a ) . 

Now i f U I I > R w« have from (2.2) 

u • <a) llu » £ I T(z)H • ilG(u)ll • <u,( HT(-z)ll • 

• AG(-II)H )^KX • /dlluli • ^ ^ • ^/ i l luft as l \ z » £ R . 

K. 
Thus i u U r - T T ^ M . 

Wh*»n l u t l £ R we have again from (2.2) 

(1 •<(*,) llu II k %x •Kg • ^(Kx • K2i# i . e . II u II £ %t • 

• K2£M. 

Thus in either case Hut 4m M. The constants R ana M are inde-

pendent of t̂ • Let R be any real number greater than R • E and 

D * {<u,z)€XxZ: !!(utz)i!< Rl. Clearly then (2.1) holds with 

this D and the proof is complete. 

3. Main results. In this section we prove the existence 

of the solution of the nonlinear boundary value problem A(u) = 

* g(x,u). 

Theorem 3.1. Let fir, L> B, (l^j^jm) and A be as in the 

beginning of section 1. Also let g: -C- * R — • H, £(x)£ LX(Sl) 
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sat is fy ing (1.2) and g+.(x) e hl(Sl) sat is fying (1.3) bs as in 

section 1 . 

Noting that A:don Ach2iSl)—> L 2 ( I l ) i s a Fredholn napping 

and N(A> * i 0} by assunption (vide section 1) l e t T:R(A)-L—y 

—>K(A) bs a l inear napping. Assume that 

(a) for each O^zcRU)-** and each f i e £ 0 , 1 1 , 

(3.1) ^(z.p.) » T c / ^ o g ^ x ) z < x ) d * + r ( / ^ 0 g_<x)z(x)dx -

• c*>l f *„<x>z(x)dx * f g <x)z(x)dx] # 0 r L T ( i ) > 0 TCx)-<0 • J 

(3.2) (b) f t < c ) - > 0 as c - ^ 0 

where (p-(c) is as defined in section 1. 

Then there exists u€ don A such that A(u) -= g(x,u). 

Bofore proving this theorem we note that (3.1) implies 

tnat \ind A£ 0 for T satisfying (3.1) is injective. To see this 

let z QeN(T). Then M~{ZQ9 {U,} * 0 for every fte I 0,13 contra­

dicting (3.1). 

Proof. We will naintain the notation and follow nors o** 

l*ss the sane argument of £93. Let us assume that dim R(A) * 

-* n and {z^z^,.. »»zn> bs an orthonormal basis forR(A)^- • Let 

P bs the projection of L (Si) onto R(A)-*" defined by 

P(h) --JJS^ <h,zk,heL
x(il). 

It follows that P naps hX(Sl) into L ^ d l ) , zk, k * 1,2,... fn 

bsing snooth in H * Fron the linear theory of elliptic boun­

dary value problems it is known that there is a linear opera­

tor S:R(A) —>-N(A)-L such that S is the inverse of A restric­

ted to N(A) 1 , S U - P) maps LX(Xl ) into LP(J1) for sons p>l 
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and i s compact (for de ta i l s see 181 and C9l) , We wil l apply 

Theorem 2.1 and to th i s end we take X * Lp(fX). p > l obtained 

as above, Z » H(A)1 and define G:X—»X and H:X—>Z by 

G(u) *- S(I - P )g(x .u) . ueX 

and H(u) =Pg(x # u) ; u e X . 

Obviously T» G and H are a l l compact mappings* It can be pro­

ved (see Schechter 19]) that 

% . i t . s u p JLgiallL = o 
nxtii-->co Hair 

and that there is a constant £ such that 

I! G(u)li £ $ for all ue X. 

We now verify the condition ( i i ) of Theorem 2 . 1 . Let ueX. 

0 4-zeZ, (u,£ £0,11 and 6 > 0 be given. Since by assumption 

get {Sl)§ there e x i s t s cT •>• 0 such that 

<3.3) fw g ( x ) d x ^ % 4 

for any W c XX with m(W)< of where m(A) denotes the measure 

of A c XX . Let Wx * -fx c XX :.G(u)(x)l > ~|r-jf- Then m(Wx)<^ . 

Again by (3.2) there i s a posit ive integer N independent of z 

such that m(W2) < ~ where W2 = { x e XX : I i l j (* | f f i t < | ? . Also by 

(1*3) and Egoroff Theorem there i s a set W„ c iX with m(W«) < 

< J and a posit ive constant J such that 

t3-4> .«<*..> - g ± ( x ) ! < g / 1 2 m ( I i ; 

holds for ± t > J and x s fi.\ W,. Let L = ~ / g.x)dx and set 
•5 o XL 

3 
W - ^ ^ Wt« Clearly m(W) < cT. 

Lastly let D * 4.x e -? \ W: i(T(z))(x)i < B z 11̂  A N and E * 

« XXMDuW). 
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We now consider the following: 

| J a [ g ( x , u ^ ) - ^ g U . i - u ) * . ] z(x)dx - E j U . u ) ! 

* f JL4g<xtu*) - g + (x)} - ^ - l g ( x , ( - u ) ^ ) -
~ T ^ z ) > 0 ' 
~ g (x)H z(x) |dx • / | U g ( x , u * ) - g Ml - * 

Tcz)< 0 

- <cU g(x , ( -u)*) - g+(x)>3 z(x)(dx * IJL • I 2 , 

where (u)* has been defined in Theorem 2.1* 

Now I , -- I J [ { g ( x , u * ) - g J x ) J - <u,{gU,<-u)*) -
-• T(.z)>0 "*" v 

- g (x)13 z ( x ) | d x £ f + f + f 
WnEfCz)>0J DntTCz)>01 EnCTfz)>0J 

By (3*3) we have 

Wл 

f«-A 
A l l % n l 4 ) > 0 ^ M i ^ , U I 1 - ^ g i x ) d x ^ l l z l U ^ g ( x ) d x 

a? f It * l b M I Z(X) I < II Z li^/L on D. 

We now take 11x11^2: LN(J -> -gr-)# the right hand side being 

independent of z, u and (U, • 

Now on EnLT(z);>Oj 

T(z) * G(u)>T(z) - \QU)\2-nr22. - 2-f̂ £ J 

- H z 'L i* 

and Ti-z) • G(-u)^-T(z) • iG(-u))*- yj°° 4 ~r-£- J. 

Hence by (3.4) we have 

eJrc^ol^TsirTn^T^nn] I x k - l - D - f «*«*• 
Thus we have proved that lj< § U z ̂  • 

Proceeding exactly as above and noting only that on En (T(z)-c 
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....1.1 
T(z) •> G(u)éT(z) • ÍG(u)l é * i r • ^ l ПГ á - J 

and T(-z) + G(-u)£-T(z) - ІG(-ц) |^ цy^ - ^ г - £ J 

— II K 1L 

00 
we can show that - U - f '** 

Hence, replacing z by t z , t > 0 , we obtain 

(3.5) V ( t , z t u t ( u ) » I (g (x t t (T(z ) ) • G(u)) - ^ | ( x r t ( I ( z ) ) • 

• G(-u)) t z) - M f(z tu)l £ e U l l ^ 

whenever tr LN(j • 3£-)/ U z 11̂  = K ( e ) / « z 11̂  and hence the left 

hand side of (3.5) tends to zero uniformly in u, (^ and z pro­

vided \\ z II and 1/ H z II is bounded. V(t,z,u,<<x) being continu­

ous in the variable (z,<u,) for each t and closed bounded sets 

in ZxtO.13 being compact, it follows that M - U , ^ ) is continu­

ous in (zt<u) for z4-0. Now since the set A « -C(ztft): II zll * 1 

and (U,€. I 0,13^ is compact and connected in ZxE0 t13 t it fol­

lows that M-(A) is a closed bounded interval ta,b-l, say. Again 

by virtue of (3.1), O^Ca.bl. Hence either (1) £atb3 consists 

only of negative real numbers or (2) [a,b3 consists only ef po­

sitive real numbers. In case (1) we have MT(z,u)<-r III for 

all 04-zeZ and all tue I 0,11. Using £ = -~-|i in (3.5) we ob­

tain that for sufficiently large H z H, 

gixtT(z) • G(u)) - (ug(xt-T(z) • G(-u)),z)4=0 

for all u and <u,£ 10,11. 

In case (2) we have M T < z , ^ ) > ^ lizll for a l l 04-zeZ and a l l 

(ue 10,13* Using e s £ in (3 .5 ) , we obtain that for s u f f i c i ­

ently large \\ z II 

(g(x tT(z) * G(u)) - <ag(x t-T(z) • G(-u)) tz) + 0 

for a l l u and (*,€ L0 ,11 . 

Thus in e i ther case for suf f ic ient ly large II z 11 
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( 3 . 6 ) ( g ( x t T ( z ) • G(u)) - <u,g<x.-T<z) •»- G(-u)) tz)=4^0 

for a l l u and ue £ 0 , 1 ] . 

Now l e t z » . 2- . oCiZ, • Then 

(HCTU) • G(u)) - ( tcH(T ( -z) • G ( - u ) ) t z ) 

(3*7) = ( , T<A ( g ( x t T ( z ) + G(u) - ^ g ( x t T ( ~ z ) + G ( - u ) ) t z-^z^ 

<TL 

. 2 , o C j Z ^ ( g ( x t T ( z ) • G(u)) - < t tg (x t T ( - z ) • 

• G ( - u M , z ) =^0 

for all u and vu e 10,11 and for sufficiently large II z il . 

Thus the condition (ii) of Theorem 2.1 is verified. 

It is trivial to see that if (utz) is the fixed point ob­

tained by Theorem 2*lt then u c D U ) and A(u) - g(xtu). 

Thus the proof is complete. 

Corollary 3.1. Let XL t Lt B^ (I £ j6 jm), A, Tt gt gt g ± 

be as in Theorem 3.1. Let the condition (b) of Theorem 3.1 

hold. Further assume that the following holds: 

for each 0 4 z e R(k)1 

(3.8) f / g (x)z(x)dx • / n g (x)z(x)dx] 
LTC-O^0 + TCx)< 0 °-

[ / g (x)z(x)dx + f n g^(x)z(x)dxl < 0 
TCz.>>0 T(z)< 0 °+ J 

Then there exists u e dom A such that A(u) = g(xtu). 

Proof. The condition (3.8) implies the condition (a) of 

Theorem 3.1 and hence the corollary is proved. 

Corollary 3.2. Let Si , Lt B^ (l^j^^m), At Tt gt gt g± 

be as in Theorem 3.1. Let the condition (b) of Theorem 3.1 

hold. Furthermore let either of the following conditions hold: 
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(i) for each O ^ z t R ( A ) 1 

[ / g.(x)z(x)dx • f g_(x)z(x)dx]> 0; 

(ii) for each O^-zeRU)- 1 

I / gj*)z(x)dx • f A g_(x)z(x)dx]< 0. 
T(z:)>0 * T(x)<:0 * J 

Then there exists u e dona A such that A(u) = g(x,u). 

Proof. Setting Q(z) * / g<|r(x)z(x)dx + / g_(x)z(x)dx 

and noting that T is linear, it follows that for any zeRiA) 1 

" Qi'Z>
 " T C £ » 0 «-<-,-<-,d* *TCiLo «•><-)-<-)--• 

Let us now assume that the condition (i) holds. Then for each 

0 4 = z e R U ) X , Q(z)>0 and Q(-z)>0 and hence Q(z) f. -Q(-z)J «c 0 

which is the condition (3.8) of Corollary 3.1. Similarly we can 

prove the corollary under condition (ii). 

Remark 3.1. The corollary 3.1 includes the result of 

Schechter £9J. We should also point out that the condition (3.8) 

of Corollary 3.1 or more generally the condition (3.1) of Theo­

rem 3.1 implies that either condition (i) or condition (ii) of 

Corollary 3.2 holds. This follows from the continuity of 

Uj(z$ (u) asserted in the proof of Theorem 3.1 and the fact that 

the set \(zp(u): ll z tl = 1 and (U e [ O.lty is closed and compact 

(see Theorem 3.1). Thus under condition 3.1 the possible new 

hypotheses are limited to either (i) or ( n ) . 

Remarks 3.2 

1. The condition of (b) of Theorem 3.1 holds if A has the 

unique continuation property, i.e. the only solution of A(u) =-

= 0 which vanishes on a set of positive measure in IL is u = 0 
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(for proof of this result see Lemma 2 in 173 or 12], p. 160)* 

2. Nirenberg s remark in t9l that instead of assuming T 

to be linear, it is sufficient to assume T to be continuous and 

homogeneous and ind A to be 2 0 is also valid in our case. 

The author is grateful to the referee for valuable sugges­

tions. 
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