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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,3 (1982)

CONSTRUCTIONS OF ENDOMORPHIC UNIVERSES AND
SIMILARITIES
Alena VENCOVSKA

Abstract: In this paper we investigate properties of en-
domorphic universes and similarities in the alternative set
theory. We describe conditions on similarities to be extendab-
le to automorphisms. Further we show how specially located en-
domorphic universes A can be constructed for which there is a
set d satisfying Ald) =V,

Key words: Alternative set theory, similarity, automor-
phism, endomorphic universe, fully revealed, defirable.

Classification: O3E70, O3H20
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We shall briefly recall some notions from alternative set
theory which we frequently use.
A function F is a similarity (see sec. 1, ch. 5, [V]) iff for
each set formula ‘f‘zl""'zn) of the language FL and for each
XpreeerX € dom(F) we have

‘f‘xl""'xn) = ?(F(xl),...,l-‘(xn)).
If F is a function and g a formula of the language FLdom(F)
then (yF is the formula resulting from @ by replacing all pa-
rameters by their images in the function F.
If F and ll are functions then FUuH is a similarity iff for each
set formula Cf(zl,...,zn) of the language FLdom(H) and for each

XjreeesX € dom(F) we have



Gixypennnx) = @F (), oen,Flx, D)

A similarity whose domain equals V is called endomorphism. A
similarity whose domain and range equal V is called autowmorp-
hism. Classes X, Y are similar 1ff there is a similarity F such
that dom(f) = X and rng(F) = Y,

A class A is endomorphic universe iff i1t 1s saimilar to V., For

a class A and a set d the class Ald] is defined as

§f(d);fec A & de dom(f)}.

1f A 1s an endomorphic universe and d € U A then Al{d) is the
smallest endoworpnic universe subclass of which is the cless
Auidl. X 1s a SdT-class, Sdr(x) 1fl there 1s a set formula

@ (z) of the language FL; such that X =4 x;?(x)}.

Sd(X) is used instead of SdV(X).

e Ttx) and JYT(X) will denote that there are countably many
SdT-classes such that X is their union or intersxeciion respec-
tively. Again we omit writing V and speak about &~ or Jr-clas-
scs. Fin(X) denotes that X 1s a finite class.

A class X 1s revealed, lev(X), iff for each countable Y& X the-
re 18 a set u such that Ye ucX,

X 1s fully revealed 1ff for each norwal formula g\Z,Z) of the
language FL the class {x; q(z.l)} is revealed. Each Sd-class
is fully revealed.

It can be proved that if X is fully revealed then for each nor-
mal formula (y(z,L) even of the language FLV the class
ix; @ (x,X/t 1s revealed (see 2, [ 5-V 1]).

Each countanle descending sequence of non-empty revealed clas-
ses has non-ewpty i1ntersection (see sec. 5, ch. 2, [ V]).

Thus 1f a revealed class X is a subclass of the union of an
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ascending sequence {Xn;ne FN{ of Sd-classes then XS Xn for so-
me né& FN.

Derx denotes the class of all sets definable by a set formula
of FLX.

Through the whole paper, G denotes a one-one mapping of V onto
N which is a Sdo-class. Such a mapping has been constructed in
sec. 1, ch. 2, [ V],

In a natural way, G induces a linear ordering on V which is re-

ferred to by saying G-smaller, G~greater. Each SdT—class has

the G-first element and this element belongs to DefT.

1. A class R is said to be closed on subsets if re R and

rle r imply that r,€ R,

Definition. Let R be a class closed on subsets. Let J
he a codable system of pairs (Q,r” such that <Q,r>€ J implies
that re Rn Fin and Q is a non-empty class. Suppose that for
re ROFin and r & r the inclusion T4 rli < 8”5 r} holds.
Then 7 is called a system over R.

Note that for S€ Rn Fin, 7" S denotes the system of all Q
such that there is se S with ¢(Q,s8> ¢ J.

The system G/ (RN Fin) is called the field of J and denoted
F(3) .

Definition. Let J be a system over K. 4 class Ms UR
is satiate with 7 on R iff PFin(M)E Rk and for each decreasing
sequence X =1Q,ine FN3 e 37 PFin““) the intersection NX N A
is non-empty,

Specially, for M satiate with J° on K we have M~ Q40

whenever there is s e PFin“‘) with <Q,s> e T,
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The following three special systems will be useful.

Suppose X is a class and R a non-empty class closed on
subsets. Define the system 3"1 over R:
<Q,r> e J| iff re RNFin and € = Qp =1x; ¢ (x)} for a set for-
mula @(z) of the language FLy . such that there is a set x
satisfying @ (x).
We shall show that if M is satiate with T, on R then M is an
endomorphic universe and X< K & UR.
As PFin(l)E R, we have Mc U k.
Let xe X. Then {x} = Q, for the set formula g(z) = (z=x) of
the language Fiy and therefore <{xt,0> e 3'1. It follows that
{x}n M&£0 and Xc M.
Let -‘lcgn(z);ne FN} be a sequence of set formulas of the langu-
age FL, such that (3x)(Vn) g (x) holds. Defining Q; =
= {x;(Vk<n) qk(x)} and ¥ = {Qn;ne FN?, we get a descending
sequence X ¢ 5‘1 "PFin(l) for which the intersection NX n M
must be non-empty. It follows that (IxeM)(V¥n) q:n(x) holds.
By the fourth part of the first theorem in [S-V 1), M is an

endomorphic universe.

Let X, R be as above and let d be a set. The system ’JJ.‘,
contains all pairs belonging to ’S’l and moreover all paars
{Q,r? where r¢ RNFin and Q = Q, ={f;f(d) = w} with we V.

As in the previous case we can show that a class ) satiate
with '3"2 on R is an endomorphic universe such that X X € UR.
For each we V we have <Q_,0> € 3'2 and therefore MnQ +0,

i.e. there is fc N with f(d) = w. Consequently Mdid] =V,

Let R be a non-empty class closed on subsets. Define the

system 3'3 over R:<Q,r> € J'; iff re RAFin and either
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Q = Vxiwt or Q ={w}=V where we V., Suppose that F is a si-
milarity such that re¢ R implies that Fur is a similarity. We
shall show that if M is satiate with .’fs on R then h is an
automorphism and N2 F,.

For each finite f< M the class FUf is a similarity as
PFin(M)Q R. Therefore Fu M is a similarity. For each we V the
classes 4wl=<V and V<{w?} belong to TS"{ 0} and therefore
have non-eupty intersections with ), i.e. M is an autowmorphism,
The facts that MUF is a similarity and dow(F)c dom(M) imply
that M2 F,

Note that the fields of T',, T,, 7', consist of Sd-clas-
ses i.e. of revealed classes only.
We shall investigate the conditions under which there ex-

ists a class satiate with a given system 7 .

Definition. Let K be a class closed on subsets. Let re kR,
The class {z;ruizie R§ is called the supply of r in & and de-
noted Spn(r).

Obviously, if re R aud r S r then SpR(rl)?Sp“(r). 1f the
class R 1s revealed and re it then Spn(r) is revealed, too. 1n
order to provs it, let us consider a sequence izn;ne FN} €
ESp"(r). As it is revealed and {ruizn};nel’N}ER, there is a

set {r ;o & eooigll such that o/ ¢ FN and r_ = ru{zni for

n
each ne FN. Let {zoc: o« = yo} be a set-prolongation of {zn;n €
€ FN}. There is (.50 4 FN, B = %yr ¥, such that for each
A& 3, we have ry =ru iz, } . Therefore {z; o £ Bod €

€ Spylr) and Spp(r) is revealed.

Definition. Let R be a class closed on subsets, J & Sys-
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tem over R, 7 is said to be available iff for each <Q,r>e T

the intersection Gn Sps(r) is non-empty.
Ncw our theorem can be stated.

Theorem. Let R be a revealed non-empty class closed on
subsets. Let J° be an available system over R such that the
field of ¥ contains revealed classes only. Then there is =

class M satiate with J on R,

Proof, Let us begin with an observatiovn.

If W is a class such that Pg, (W)SR and if Q@ ¢ TPy, (W)
then for any re PFin") the intersecticn Qf\SpR(r) is non-em-~
pty. For if r  an element of Ppin(#) such that {Q,r > ¢ I then
for any re PFin“) we have rur € PFin") and therefore rur c
€ ROFin. It follows that {Q,rur > € T and QnSpgirur ) is
a non-empty class, As SpR(r)E]Spﬁ(ru ro). the intersection

an Spn(r) is non-empty, too.

Let 1X ;o € f1} be a sequence of countable descending
sequences X ={Qn;nsFN§ € ¥ (7) such that each descending
countable X £ % (J) occurs uncountably many times in
{3606 ; X € 0% ., We shall construct an ascending sequence
AL PR £L} considering successively the sequences ¥ _ for
&% € SL .

l; will denote.the class U“la.; yeoxn Ny .

Let 3 € fL . Suppose the ascending sequence ‘“‘oc ;X €3N n3
has been constructed so that for each < € 3 n £L the follow-
ing conditions holds:
(x) M is at most countable, PFiqm“ )< R and

M, N NX_ is non-empty provided that ¥ < T *Pp, (M ).

Then IFS is at most countable and PFinmf-&)gn since
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P M7,) = Ui{Pp, (M )i €pn D3,

Fin" 13
1t Xp ¢ rx“"l’,?m(n;3 ), we define M; = My
Suppose xﬁ c G“"PFin(l'h )o Kp=4Q,ine FNS .
HFj is either countable or finite. ln each case we can srder
its elements to a sequence {x, ;ke& FN% or ixy ;k“4 k3 respecti-
vely. For each ke FN (k< kc) the setfxl,...,xk§ c B as
?Finm?% )& R. Let us fix k and consider the sequence
1Q,n Spﬁ(fxl.....xkl);nsFN§ .
As R is revesaled, the class'SpRHx].....xk&) is revezled. By
the assumption on & (7T ) the classes Q, aie revcaled, The
above observation implies that @,n SpR({xl,....xkg) 8re Ditie
smpty classes, It follows that the considered sequence is a
couptable descending sequence of non-emply revealed classer
and as such it has non-empty revealed intersection which equele

NXon Spa({xl..“.xkz )e
Therefore also the sequence -V\ff(’lgm Spﬂ({xl,....xk“;ks FN?
{~r the corresponding finite cne) is a descending sequence of
non-smpty revealed classes and has non-empty interwection,
Cuoose an element x from this intersection and define Mg =
= )(?BU {x%.

If re PFin‘lB’ then ré{x,xl,...,xkl for some k € FN,
As xeSpR({xl.....xk“g), we have {x,X),...,x,} ¢ R and thence
rsR. Copsequently Pp, (Mp )S R. Yo have defined Mz satisfy-
ing (X ). Using the theorem on definition by transfinite recur-
sion (cf. sec. 3, ch. 2, [V]) we can define an ascending se-
quence of classes M_, satisfying (%) for all e € JL.
Fut X = U{M_ ;o € 0} . M is satrate with T on R:

Pan(M) = U PFianC); o € N} c R and for each countable des



cending sequence X s :]""Pl,in(ll) there is 3 = L with
’:}Cgfr"P“n(Iﬁ)andaoeﬂ,oo>{3 with %X, = X .
By the construction, NX_  ~ N is non-empty, i.e. NH n N is

non-empty.
We introduce the following concept.

Definition. A clags X is &-fully revealed iff there is an
ascending sequance {xn;ne FN3 of fully revealed classes such

that X = U{X ;ne FN3S .

It can easily be seen that a pair of classes <X,Y> (see
[S-1) for the formal definition) is & -fully revealed iff the-
re are ascending sequences {Xn;ns FN}? and {Yn;neFN} such that
the pair < Xn.Yn> is fully revealed for each n and X = U{ b
neFN{ and Y = U-{Yn;neFNi .

Each Sd-class and each €&-class obviously is & -fully re-

vealed.

2. Now we shall apply the theorem to constructions of

endomorphic universes with special properties,

Let X, Y be classes. We denote by R(X,Y) the class
-\x;Derxuan =0}, x) The following assertions can easily be
verified.

a) R(X,Y) is closed on subsets,

b) R{(X,Y) is non-empty iff DetxﬂY = 0,

c) UR(KX,Y)eV-Y

- ————————---

x) In [Ve 1] there is introduced the notion of the reserve of
X with respect to Y, Rav(X,Y) = {z;Defy (. ;NY = 0%, Thus

SpR(x,y)") = Rsv(Xur,Y) for reR.
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4) If re&R(X,Y), then Spﬂ‘x.”(r)a Defy ..

o) If X and Y are the unions of ascending sequences
{xn;neFﬁi and {Y ;ne FN% respectively thenm R(X,Y) =
= n{n(xn.rn);ncrw} .

We shail show that

t) If the pair<X,Y?> is ©-fully revealed then R(X,Y)
is revealed.

Let X and Y be the unions of ascending sequences {xn;n €
€ PR and 'iYn;ne FN} of classes Xn and Yn respectively such
that the pairs <xn,Yn7 are fully revealed. By the definition
of R(Xn.Yn). this class is the intersection of all classes

fu; T3 x 00, x e X 0u)(Iy e DI w) v @X,w) & y(Z,y) )
where W(zl.....zk.z) is a set formula of the language FL (X
abbreviates xl,....xk). There are countably many of such clas-
ses as FL is countable, and each of them is revealed as the
pair < Xn.Yn> is fully revealed.

Using this observation and the assertion e) we sec that
R(X,Y) is an intersection of countably many revealed classes

and therefore it is revealed , too.

The following theorem closely resembles a result from
[Ve 11. It is proved here as a simple application of the first

theorem.

Theorem. Let {X,Y> be a 6-fully revealed pair of clas-

ses such that Detan = 0. Then there is an endomorphic univer-

se A with ANY = 0 and A2X.

Proof. Put R = R(X,Y). R is non-empty, closed on subsets

and revealed. In the preceding section there was defined the
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system g“l over R. Let ¢ Q,r” € 9’1. Q@ = Q; . By the theorem
1 in (Ve 1) there is x < Dsfy . such that @(x ) holds. By the
assertion d) it follows that Spg(r)n@+0, i.e. 7', is aveil-
able. By the first theorem, there is a class N satiate with
0, on R, M is an endomorphic universe and X< M < UR. By the

assertion c), URSV-Y, i.e. M = A has the desired properties.

For certain purposes (cf. [ S-Ve]l) we need a theorem ana-
logoaus to the preceding one, claiming moreover that there ex-
ists a set d with Ald] = V,

It will be convenient to introduce the following definition.

Definition. Let +(Z) be a property of classes, C and D

classes. We say that C helps approximate  in classes &-de-
pending on D, Apr(v,C,D) iff for 3ll classes S, L and X we
have

(¥ (X) & 65(L) & XSL"D) => (3 Ye Sdg o) (XEYSLD),

Lomma. Let D be a S.-class. Then Apr(Rev,C,D).

Proof. Let X be a revealed class, L a 6g-class for some
S and X< L"D. There are ascending sequences {Ln;ne FN! and
iD,;ne FN} of Sdg-classes and Sdo-classes respectively such that
L = U{L ;nc FN} and D = U{D ;neFNi. The class L"D is the
union of the ascending sequence of SdsUc—classes Ln"Dn. As X is
revealed and XS L"D, there is nc¢ FN 8uch that X_C:Ln"Dn. i.0.
Y = Ln"Dn is a SdSuc-clans satisfying XS Yc L"D.

Consequently, if D is a & -class then Apr(sd,C,D) and
Apr (or,C,D) hold as v;(Z) => w,(z) implies ‘P"‘Wl-con) =
=> Apr{y,.C,D).
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FN

Let X' denote the class U{xk;ke FN%, i.e. the class of

all ordered k-tuples of elements of X, k € FN.

Theorem. Let <X,Y” be a S-fully revealed pair of clas~

ses and d a set suck that Dafxr\(fu{cﬂ.) = 0 and d € UDef
£F¥

x.
Suppose Apr(Sd,Xuidl, »Y) nolds.
Then there iz an endomorphic universe A such that A2X, ANY =

=0, dé& A and ALd) =V,

Proof. Put R = R(X,Yuidl). R ia non-empty, closed on
subsets and revealed as the pair <X,Y>u{fdi> is 6-fully reve-
aled. We shall show that the system ‘7‘3 over R is available.
Let {Q,r> ¢ 6“2. For Q = Qg, we see exactly as in the previous
theorem that Spa(r)r\ Q#0. Suppose that Q = Q, and Spn(r)nqw =
=0, i.e, Q'E.V - Spa(r)-

For each set formula "r(zl""'zkﬂ) of the language FL define

Cy = x, Kxypeneexp,y> 5(31 z2)y(x,%,2) & v (x, %,y
(¥ abbreviates ‘1"""1;)' Recall that {x,y,z” = <{x, {y,z>)-
Define C as the union of all C’V .

Each cq, is a Sdr-clnss. As r is finite, ﬂ.r is countable. It
follows that C is a & -class.

The class V - Spp(r) is the union of all classes Cw“(xkx 1),
and therefore V - Spn(r) = Cc" (XFN*!). We have

sdlo,) & 6.(C) & q e c"(x"M ),

By the property Apr(Sd.XuSd}.ln‘x Y) there is a class W such
that We Sdy <1, r and Q'E wev - Spn(r).

Let w, be the G-first v satisfying Q.= W. Then w,€ D“qu{diur'
Let s(zl,zz) be the set formula of the language FLy . such
that (3t z)§ (d,z) &§(d,w;) holds.

Let u be an olement of Defy such that de u and let f be the
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function with dom{f) = u which assigns to sach x€u the G-first
v satisfying g(x.v) if such a set v exists and O otherwise.
Then fe Defy  and therefore f¢ Spn(r) as Spn(r)_?Defxur. On
the other hand f(d) = w_, i.e. re,u' « This is a contradiction
o
because Q, S WSV - Spy(r). It follows that the system T, is
o

available.

The first theorem guaraptees the existence of a class M

satiate with 'T2 on R M = A has all desired properties.

Corollary. Let X, Y be Gkuid}-classea. DefynY = 0 and
let d be an element of (LIDetx) - Detx.
Then there is an endomorphic universe A, A2X, AnY =0, d& A

and Aldl = v,

Proof. It suffices to show that Apr(Sd,Xn;id},Xan-Y)

holds., It follows by the lemma stated above as IFNx Y is a

sxu{d}'°1." whenever X and Y are such.

3. Now we shall investigate how similarities can be pro-
longed.

Let us begin with set similarities. For a set similarity
& there is naturally and uniquely determined function Ug such
that the fact that Ug is a similarity is a necessary condition
for g to be extendable to an automorphism. We shall show that
this is also sufficient.

Definition. Let d be a set. For nc FN we define by recur-
sion

P(0,d) = 4 P(n+l,d) = P(P(n,d))v P(n,d)
If P(d)2d then P(n,d) = P®(d) where the symbol P" denotes
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n-times iterated operation of power set.
For m<n we have P(m,d) < P(n,d).
If x¢ P(n+l,d) then either xc P(n,d) or x¢ d. Therefore the fol-

lowing definition is correct.

Definition. Let g be a set function, dom(g) = d. We de-
fine by recursion for x¢ P(n,d), n€FN

Ug(x) = g(x) for xed,

Ug(x) = Ug"x for xe P(n+l,d) - d.

Thus Ug is a €-class, dom(Ug) = U{F(n,d);ne FN¢ and
ug }P(n,d) is a set for each n. If x Sdom(Ug) then there is
neFN such that xSP(n,d) and therefore x € dom{Ug).

Similarly if X;,e..,x,6 dom(Ug) then (xl.....xk>e dom(Ug).

Suppose there is an autormorphism H>g. Then Ug = H dom(Ug)
as for each set x we have H(x) = H"x (¢cf. ch. 5, sec. 1, [V]),

It follows that Ug is a similarity.

Lemma. Let Ug be a similarity. Then for each xc dom(Ug)
Ug(x) = Ug"x.

Proof., It holds by the definition for each x ¢ dom(Ug) - d,
i.e. especially for each P(n,d), as P(n,d) ¢ d. Let x Sdom(Ug),
xed, Let ne FN be such that xcP(n,d). As Ug is a similarity,
we have

Ug(x)< Ug(P(n,d)) = Ug"P(n,d) & z¢c x = Ug(z) e Ug(x)
These two facts imply that Ug(x) does equal to Ug"x.

It follows that if Ug is a similarity then rng(Ug) is the
class US P(n,rng(g));neFN} and U(g~l) = (ug)~t.

Lemma. Let f, g be set function= such that f is finite
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and Uguf is a similarity. Let y€ V. Then there are y and y ~
such that Ugufu{<y’,y>} and Ugutu{<{y,y >} are similari-
ties.

Proof. Let ¢, (z;,...,z, );k€ FN} be a sequence of all
k

set formulas of the language FL Let us define

dom(f)*

%.n ={<o,x2.....x-k> : xa.....x-ke P(n,d)& cyk(y.xz.n-.xnk)i-
Then ®%.,n< dom(Ug) and therefore 8 n€ dom(Ug).
For each noeFN the following holds:

(3!)(Vk.n5n°)(an.....x-ki F(n.d)n)
‘?k("‘z"""-k) = <0,x2,....x_k) € ‘k,n)

Namely, x=y satisfies the above formula, As Ugv f is a simila-
rity, we have

(Ix)(Vk,n& ny ) an.....xmké Ug(P(n,d))

(x) P
(gk(x,xa....,xnk)E(O.xa,....x-k> e Ug(tk’n)) .

Considering the facts that for n,k € FN

Ug(P(n,d)) = Ug"F(n,d),Ug(ay ,) = Ug"a, ., Ug(0) =0
and that for XisesesX € dom{(Ug)

Ug((xl.....x-7) x(Ug(xl).....Us(x_D
we can see that (% ) is equivalent to

(3x)YknLn,) (Vg oonxy € F(n,d))

£ -=
(qk(x.ﬂs(xz).....llg(xmk)) = <°o‘200--ox-k> € ak.n)

By the axiom of prolongation there is y  satisfying
(V k,n e FN) (Vxﬂ,...,x ¢ P(n,d))
By

(?{(y'.ﬂg(xs)....,Ug(x.k))z—(o.xz....,x Yca ).

my k,n
We shall show that Uguf u{<{y’,y>} is a similarity.
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Denote F = Ugu-((y'.’>§ * Let Y(z)0000,2,) be a set formu-
la of the language FLj,,(r)« We must verify that for any
XysesesX € dom(F)

wixgeenxg) = ¥R, o Fixy))
holds. If there is not y among XjeeeeoX, then it is true be-
cause Ugu f is a similarity, Otherwise we can suppose that
y=x;, and Xg,...,x € dom(Ug), There is k € FN such that y= ¢,.
Let neFN be such that x,,...,x € P(n,d). Then

my(y.xa.....x-) = 91;""2"""‘.’ —3—<0.x2.....xl> €an=
=@ £y  Uglxg), e, Ug(xy)) = ¥v1(y",Uglxg), ..., Ug(xy))
which we have claimed.
As Uguvf is a similarity, also its inverse, (Ug)'lu 1=
= U(g'l) vrl 45 a similarity. By the above method y ° can be
found such that U(g"l)u£~lu € ¢y"",y>} is a similarity. The-

refore its inverse, Ugu tu {<{y,y ">} is a similarity.

Let F be a function., Define R(F) = {£;Fu f is a similari-
tyt. Obviously R(F) is closed on subsets and it is non-empty
ift F is a similarity.

Suppose F is a 6-fully revealed class, i.e, the union of an
ascending sequence of fully revealed classes -an;neFN}. Then
R(F) is revealed because it is the intersection of all classes
if; ( Vxl....,xks dom (F v f))(w‘(xl.....xk) =
= y((F v f)(xl)..... (Fnu f)(xk)))§

where ne FN and qr(zl.....zk) is a set formula of the language

FL.

Theorem. A set similarity g can be prolonged to an auto-

morphism iff the function Ug is a similarity.
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Proof. One part of the theorem has been already msntioned.
Suppose that Ug is a similarity. Put R = R(Ug).
R is non-empty, closed on subsets and revealed as Ug is a 6 -
class. The system 3'3 defined in the first section is availsb-
le over R by the previous lemma. The first theorem guarantess
the existence of a class M satiate with Ts on R. M is the de-

sired automorphism, M2Ug=2g.
Let us make one simple observation about similarities.

Definition. Let F be a similarity. We denote by DF the class
of all pairs {x',x) such that there is a set formula @{z) of
the language FLy . ) for which (31 z)p(z) & g(x) & ?F(x')
holds.

Theorem, Let F be a similarity. Then dom(DF) = Dot u(F)
and DF is the unique similarity extending F to a similarity

with the domain equal to D“dom(?)‘

The proof is easy. Note that if dom(F) = rng(F) then

dom(DF) = rng(DF) and analogously for inclusions.

To prove our next theorem concerning prolongationsof simi-
larities to automorphisms we need classes defined as follows
(recall that FN'~) denotes the class of all finite integers).

Let F be a function. R¥ (F) is the class of all functions
f for which there exists a sequence &.fj;jel'N")} such that

1) £, =1,

2) don(tj‘l) = rng(tj) for all je FN"),

3) FoUdf;:3em™)} 1o a similarity.

Obviously, R“ (F) is closed on subsets and is non-empty iff F

is a similarity (them 4<0,0>3 ¢ R “(F)).
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Suppose F is a €&-fully revealed class, i.e. the union of an
ascending sequence of fully revealed classes {Fn;ne FNi . We
shall show that then R (F) is a revealed class.

Let {r-yk(zl..... k);kel’lﬁ be a sequence of all set formulas

L™
of the language FL.
Define cd‘ n 8% the class of all functions £ for which there is
»
a sot sequence i{f ; - o £ L = i such that
1 £, =1,

2) dom rng(f ) for all L with - =L <,

Y

3) setting E = FnuU{t‘,; - £ L £
the following holds:

(Vkén)(v’xl,....x.ke do-(B))(qk(xl.....xnk) =

= g:k(B(xl).....E(xnk))).

We claim that R¥(F) = N {C, ,;n€FN§,
Obviously R¥(F) & N { Cp, i€ FN%.
Let e N4 Cn.n:nel?lﬂ. Let D, be the class of all {f, ; =oc =
4t £ X3} satisfying the three conditions from the definition
of CO“,! and such that o¢ = n.
The classes D’l are non-empty as f¢ Cn,n for each ne FN, reveal-
ed because they are definable by a normal formula with the only
class parameter Fn' and they form a descending sequence. There-
fore their intersection is non-empty.
Let {f ; ~oc <L 4o} be an element of this intersection. Then
& FN and F u U{I‘j;jel?!";i is a similarity. Thence f& RP(F)
which proves the clain.
The classes Cn'n are definable by a normal formula of the langu-
age FL with the only class parameter Fn and as such they are re-

vealed. It follows that R “(F) is revealed.
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Theorem. Let F be a similarity and a &-fully revealed
class, Suppose that dom(F) = rng(F) and Apr(or,dom(F),Pp. (F))

hold. Then there is an automorphism ?, 73 F.

Proof. Put R = R(F). B is & non-empty revealed class clo-
sed on subsets. We shall show that the system Ta defined in
the first section is available over R. Then by the first theorem
there is a class M satiate with ’5’3 on R which implies that M is
an sutomorphism and M2 F, i.e. M = F has the desired properties.

Suppose on the contrary that there is a finite fe R and a
set weV such that - let us say - VxiwicVv - Spa(t). Let
{qk(zl.....z-k);ks FN3 be a sequence of all set formulas of the
language FL. Let {IJ;JGFN(')i be a sequence satisfying the three
conditions from the definition of R“(F).
Denote H = U{IJ;JeFN(-)}.
Let S be the class of all set sequences 8 = ‘{l": e £L £ xf.
Call ¢ the length of 8. Set ¥ ={<{s ,,,8>; -L&L< 3.
Define C_ as the class of all pairs <s,8> such that s€S and

ting H = gus o U {rj; -n4£j%n% the following holds:
AV k< n)(Vxl,...,xmke don(Hn))
(?k(xl....,x-k) = ?k(Hn(\xl)....,Hn(xnk))).

Each class cn is definable by a set formula of the language
n‘{fj;-néjém"“ﬁ‘e £; are finite functions and fJ.Edol(H)K dom(H),
we have 'ifj: -n éjén}eDetdon(H) and therefore C_ is a
Sdom(n)=Class for each n.
Let ¢ = U § C,ine FN}. Cis a & ~class and the class

dom(H)
L] .
C"Ppin(F) consists of all s€S such that FuBUH is not a simi-

1..‘1".
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For ve V let S (v) be the class of those sequences s from S for
which s, =V and whose length is greater or equal to n and

S(v) =NL&S (v);neFNL.

We claim that S(w) is a subclass of C"PFin(F)‘ Suppose on the
contrary that there is a€ S(w) - C"Pp, (F). Then T =tui< 5,.8%
is an element of R“(F) as can be seen by considering the sequen-
ce of functions ?n = rnu{<-m1.sn>} tor ne Fxt-);

?o =f, do-(’f\nd) = rng(?n) tor all nepN'") and FoU $ ?n;n 3

e P 1a a subclass of FUHUT and therefore a similarity.

It means that (ll.l°>€spx(f). But 8_ = w and we have assumed

°
that Vx{wlicvV - Spn(t). Our claim is justified. Thus we have

F(S(wW) & &40 01 (C) & S(MEC*Py (F) .

By our assumption, Apr(sr.dom(l?).l’rin(l?)) holds. Therefore the-
re is a Sd, (i) dom(F) 1288 Y (i.e. Sd om(Fuli)~C1288) such

that S(w)s Yo C.PFin(F)' The class S(w) is the intersection of
the descending sequence of Sd-classes S (w); therefore the des-
cending sequence IS (w) - Y;ne FN} of Sd-classes has empty in-
tersection. Consequently there is n&e FN such that sn(w) - Y is

empty. i.e. S (w)c Y.

Let w, be the G-first set v such that S (v)< Y. Then w, is
an element of D"tdom(FuH)' The function FUH is a similarity and
dom(Fu H) = rng(FUH); therefore also D(FUH) is a similarity
and dom(D(FU H)) = rng.(D(Fu H)) = Defyom(Ful)+ Consider the se-
quence s = { (D(Fu H))J(wo); -n4j4nl, Obviously s belongs to
S,(w,) but not to C"Pp, (F) as FuSUH is a subclass of D(FUH)
and therefore a similarity. This is a contradiction as Sn(wo)G

L]
cYEC I’Fin(l’).

The theorem is proved.
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Corollary. Let F be a sdo.‘p)-cllll and a similarity,

dom(F) = rng(F). Then F can be prolonged to an sutomorphism.

Proof. It suffices to show that Apr( ar,dom(F),Pp; ., (F))
holds. Obviously Py, (F) is a S dom(r)-cless as F is sush emd

a provious lemma guarantees what is needed.

For example, F can be a similarity of the form Id P u v
U {<{u,ud} UH, where u is a set and H is countable class sa-

tisfying dom(H) = rng(H).

If we replace in the above theorem the assumption dom(F)=
= rng(F) by dom(F)2 rng(F), we can get an endomorphisa extend-
ing F. Without the assumption Apr(:r.do-(l?).l’l,u(l')) we can ex-
tend F to a similarity ¥ with doa(F) = rng(F) = 4, where A is

an endomorphic universe.
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