Commentationes Mathematicae Universitatis Caroline

Alana Vencovská
Constructions of endomorphic universes and similarities

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 3, 557--577
Persistent URL: http://dml.cz/dmlcz/106176

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CONSTRUCTIONS OF ENDOMORPHIC UNIVERSES AND SIMILARITIES
 Alena VENCOVSKÁ

```
Abstract: In this paper we investigate properties of endomorphic universes and similarities in the alternative set theory. We describe conditions on similarities to be extendable to automorphisms. Further we show how specially located endomorphic universes A can be constructed for which there is a set d satisfying \(\mathbf{A}[d]=V\).
Key words: Alternative set theory, similarity, automorphism, endomorphic universe, fully revealed, defirable.
Classification: 03E70, 03H20
```

We shall briefly recall some notions from alternative set theory which we frequently use.

A function F is a similarity (see sec. 1, ch. 5, [V]) iff for each set formula $\varphi\left(z_{1}, \ldots, z_{n}\right)$ of the language $F L$ and for each $x_{1}, \ldots, x_{n} \in \operatorname{dom}(F)$ we have
$\varphi\left(x_{1}, \ldots, x_{n}\right) \equiv \varphi\left(F\left(x_{1}\right), \ldots, F\left(x_{n}\right)\right)$.
If F is a function and φ a formula of the language $F L_{\text {dom }}(F)$ then φ^{F} is the formula resulting from φ by replacing all parameters by their images in the function F.

If F and H are functions then $f \cup H$ is a similarity iff for each set formula $\varphi\left(z_{1}, \ldots, z_{n}\right)$ of the language $\mathcal{F L}_{\mathrm{dom}}(H)$ and for each $x_{1}, \ldots, x_{n} \in \operatorname{dom}(F)$ we have

$$
\varphi\left(x_{1}, \ldots, x_{n}\right) \equiv \varphi^{H}\left(F\left(x_{1}\right), \ldots, F\left(x_{n}\right)\right)
$$

A similarity whose domain equals V is called endomorphism. A similarity whose domain and range equal V is called automorphism. Classes X, Y are samilar $1 f f$ there is a simplarity fuch that $\operatorname{dom}(F)=X$ and $\operatorname{rng}(F)=Y$.

A class A is endomorphic universe iff it as similar to V. For a class A and a set d the class $\Lambda[d]$ is defined as $\{f(d) ; f \in A \& d \in \operatorname{dom}(f)\}$.

If A is an endomorphic universe and $d \in \cup \mathcal{U}$ then $A[d]$ is the smallest endomorpnic universe subclass of which is the class $A \cup\{d\}$. X is a $S d T-c l a s s, S d_{T}(X)$ ifithere is a set formuia $\varphi(z)$ of the language Fl_{T} such that $\mathrm{X}=\{\mathrm{x} ; \varphi(\mathrm{x})\}$.
$S d(X)$ is used instead of $S d_{V}(X)$.
${ }^{\sigma}{ }_{T}(X)$ and $\pi_{T}(X)$ will denote that there are count ably many Sdfeclasses such that X is thear union or intersection respectively. Again we omit writing V and speak about $\sigma-$ or $\pi-c l a s-$ scs. Fin (X) denotes that X as finite class.

A ciass X is revealed, Hev (X), iff for each countable $i \subseteq X$ there is a set u such that $X \subseteq u \subseteq X$.
X is fully revealed ifi for each normal formula $\varphi(z, Z)$ of the language fl the class $\{x ; \varphi(z, Z)\}$ is revealed. Each Sd-class is fully revealed.

It can be proved that if X is fully revealed then for each normal formula $\varphi(2, L)$ even of the language FL_{V} the class $\{x ; \varphi(x, X)\}$ as revealed (see $\quad 2,[j-V 1])$.

Each countaule descending sequence of non-empty revealed classes has non-empty intersection (see sec. 5, ch. 2, [V]). Thus if a revealed class X is a subclass of tine union of an
ascending sequence $\left\{X_{n} ; n \in F N\right\}$ of Sd-classes then $X \subseteq X_{n}$ for some $\mathrm{n} \in \mathrm{FN}$.

Def f_{x} denotes the class of all sets definable by a set formula of FL_{X}.

Through the whole paper, G denotes a one-one mapping of V onto N which is a Sdoclass. Such a mapping has been constructed in sec. 1, ch. 2, [V].

In a natural way, G induces a linear ordering on V which is referred to by saying G-smaller, G-greater. Each Sd_{T}-class has the G-first element and this element belongs to Def_{T}.

1. A class K is said to be closed on subsets if $r \in k$ and $r_{1} \subseteq r$ imply that $r_{1} \in R$.

Definition. Let R be a class closed on subsets. Let \mathcal{J} be a codable system of pairs $\langle Q, r\rangle$ such that $\langle Q, r\rangle \in \mathcal{T}$ implies that $r \in R \cap F i n$ and Q is a non-empty class. Suppose that for $r \in R \cap F i n$ and $r_{1} \subseteq r$ the inclusion $\mathcal{T}^{\prime \prime}\left\{r_{1}\right\} \subseteq \mathcal{T}^{\prime \prime \prime}\{r\}$ holds. Then \mathcal{T}^{\prime} is called a system over R.

Note that for $S \subseteq R \cap F i n, \mathcal{T}^{\prime \prime} S$ denotes the system of all Q such that there is $s \in \mathbb{S}$ with $\langle Q, s\rangle \in \mathcal{F}$. The system $\mathcal{J}^{\prime \prime}(K \cap F i n)$ is called the fiold of \mathcal{T} and denoted $\mathfrak{F}(\mathcal{J})$ 。

Definition. Let \mathcal{T} be a system over fi. A class $\mathbb{M} \subseteq U_{R}$ is satiate with \mathcal{T} on R iff $P_{F i n}(M) \subseteq R$ and for each decreasing sequence $\mathcal{K}=\left\{Q_{n} ; \mathbf{n} \in F N\right\} \subseteq \mathcal{S}^{\prime \prime} P_{P_{i n}}{ }^{\left(M_{1}\right)}$ the intersection $\cap \mathcal{K} \cap A_{1}$ is non-empty.

Specially, for satiate with \mathcal{T} on K we have $\mathbb{M} \cap Q \neq 0$ whenever there is $s \in P_{\text {Fin }}(\mathbb{L})$ with $\langle C, s\rangle \in \mathcal{T}$.

The following three special systems will be useful.
Suppose X is a class and K a non-empty class closed on subsets. Define the system J_{1} over $R:$
$\langle Q, r\rangle \in \mathcal{J}_{1}$ iff $r \in R \cap F i n$ and $C=Q_{\mathscr{S}}=\{x ; \varphi(x)\}$ for a set formula $\varphi(z)$ of the 1 anguage $\mathrm{FL}_{\mathrm{X} u}$ such that there is a set x satisfying $\varphi(x)$.
We shall show that if M is satiate with \mathcal{J}_{1} on R then M is an endomorphic universe and $X \subseteq M \subseteq \cup R$.
as $P_{\text {Fin }}(M) \subseteq H$, we have $N \subseteq U W$.
Let $x \in X$. Then $\{x\}=Q_{\varphi}$ for the set formula $\varphi(z)=(z=x)$ of the language FL_{X} and therefore $\langle\{x\}, 0\rangle \in \mathcal{J}_{1}$. It follows that $\{x\} \cap M \neq 0$ and $X \subseteq M$.

Let $\left\{\varphi_{n}(z) ; n \in F N\right\}$ be a sequence of set formulas of the language $F L_{N}$ such that $(\exists x)(\forall n) \varphi_{n}(x)$ holds. Defining $Q_{n}=$ $=\left\{x ;(\forall k \leqslant n) \varphi_{k}(x)\right\}$ and $\mathcal{K}=\left\{Q_{n} ; n \in F N\right\}$, we get a descending sequence $\mathcal{K} \subseteq \mathbb{J}_{1}$ " $P_{\text {Fin }}(\mathbb{K})$ for which the intersection $\cap \mathscr{K} \cap M$ must be non-empty. It follows that $(\exists x \in M)(\forall n) \varphi_{n}(x)$ holds. By the fourth part of the first theorem in [S-V 1], M is an endomorphic universe.

Let X, K be as above and let d be a set. The system \mathcal{J}_{2} contains all pairs belonging to \mathcal{T}_{1} and moreover all pars $\langle Q, r\rangle$ where $r \in R \cap F i n$ and $Q=Q_{w}=\{f ; f(d)=w\}$ with $w \in V$. As in the previous case we can show that a class bituate with \mathcal{T}_{2} on K is an endomorphac universe such that $X \subseteq M \subseteq U R$. For each $w \in V$ we have $\left\langle Q_{w}, 0\right\rangle \in \mathcal{J}_{2}$ and therefore $\| \cap Q_{w} \neq 0$. i.e. there is $f \in \mathbb{N}$ with $f(d)=w$. Consequently M(dI $=V$.

Let R be a non-empty class closed on subsets. Define the system \mathcal{J}_{3} over $R:\langle Q, r\rangle \in \mathcal{J}_{3}$ iff $r \in K \cap F i n$ and either
$Q=V \times\{w\}$ or $Q=\{w\} \times V$ where $w \in V$. Suppose that F is a similarity such that $r \in K$ implies that $\mathcal{F} \cup r$ is a similarity. We shall show that if M is satiate with \mathcal{J}_{3} on R then k is an automorphism and $\mathrm{N} \supseteq \mathrm{F}$.

For each finite $f \subseteq M$ the class $F \cup f$ is a similarity as $P_{F i n}(\mathbb{M}) \subseteq R$. Therefore $F \cup M$ is a similarity. For each $w \in V$ the classes $\{w\} \times V$ and $V \times\{w\}$ belong to $\mathcal{T}_{3} "\{0\}$ and therefore have non-empty intersections with bi, i.e. Lis an automorphism. The facts that $M \cup F$ is a similarity and dom(F) \subseteq dom(M) imply that $M \supseteq F$.

Note that the fields of $\mathcal{J}_{1}, \mathcal{J}_{2}, \mathcal{J}_{3}$ consist of Sd-classes i.e. of revealed classes only.

We shall investigate the conditions under which there exists a class satiate with a given system \mathcal{T}.

Definition. Let k be a class closed on subsets. Let $r \in R$. The class $\{z ; r \cup\{z\} \in R\}$ is called the supply of r in k and denoted $\mathrm{Sp}_{\mathrm{R}}(\mathrm{r})$.

Obviously, if $r \in \mathbb{R}$ and $r_{1} \subseteq r$ then $S_{p_{R}}\left(r_{1}\right) \geqslant S p_{\boldsymbol{u}}$ (r). If the class k is revealed and $r \in \mathbb{H}$ then $S p_{R}(r)$ is revealed, too. In order to provo $i t$, let us consider a sequence $\left\{z_{n} ; n \in F N\right\} \subseteq$
 set $\left\{r_{\alpha} ; \alpha \leq \alpha_{0}\right\} \subseteq \|$ such that $\alpha_{0} \notin F N$ and $r_{n}=r \cup\left\{z_{n}\right\}$ for each $n \in F N$. Let $\left\{z_{\alpha}: \alpha \leqslant \gamma_{0}\right\}$ be a set-prolongation of $\left\{z_{n} ; n \in\right.$ $\in F N\}$. There is $\beta_{0} \notin N N, \beta_{0} \leq \alpha_{0}, \gamma_{0}$ such that for earh $\alpha \leq \beta_{0}$ we have $r_{\alpha}=r u\left\{z_{\alpha}\right\}$. Therefore $\left\{z_{\alpha} ; \alpha \leq \beta_{0}\right\} \subseteq$ $\subseteq S P_{R}(r)$ and $S p_{R}(r)$ is revealed.

Defingtion. Let R be a class closed on subsets, \mathcal{J} a sys.
tom over R. \mathcal{T} is said to be available iff for each 〈Q,r〉 $\in \mathbb{T}$ the intersection $Q_{\cap} \operatorname{Sp}_{\mathrm{R}}(\mathrm{r})$ is non-empty.

Ncw our theorem can be stated.

Theorem. Let R be a revealed non-empty class closed on subsets. Let \mathcal{T}^{T} be an available system over R such that the field of \mathcal{F} contains revealed classes only. Then there is n class M satiate with I on R.

Proof. Let $u s$ begin with an observation.
If Wis a class such that $P_{F i n}(W) \subseteq R$ and if $Q \in \mathcal{T}^{\sim} P_{F i n}$ (${ }^{(W)}$ then for any $r \in P_{F_{i n}}(W)$ the intersection $Q \cap S_{P_{R}}(r)$ is non-empty. For if r_{0} an element of $P_{F_{i n}}(W)$ such that $\left\langle Q, r_{0}\right\rangle \in \mathcal{T}$ then for any $r \in P_{\text {Fin }}(W)$ we have $r \cup r_{0} \in P_{P_{\text {in }}}(W)$ and therefore $r \cup r_{0} \in$ $\in R \cap F i n$. It follows that $\left\langle Q, r \cup r_{0}\right\rangle \in \mathcal{T}$ and $Q \cap S_{p_{R}}\left(r \cup r_{0}\right)$ is a non-empty class. $\Delta s S_{p_{R}}(r) \supseteq S_{p_{R}}\left(r \cup r_{o}\right)$, the intersection QnSp $P_{R}(r)$ is non-empty, too

Let $\left\{\mathcal{K}_{\alpha} ; \propto \in \Omega\right\}$ be a sequence of countable descending sequences $\mathscr{X}=\left\{Q_{n} ; n \in F N\right\} \subseteq \mathscr{F}(\mathcal{T})$ such that each descending countable $\mathcal{K} \subseteq \mathcal{F}(\mathcal{T})$ occurs uncountably many times in $\left\{\mathcal{K}_{\propto} ; \propto \in \Omega\right\}$. We shall construct an ascending sequence $\left\{M_{\alpha} ; \propto \in \Omega\right\}$ considering successively the sequences \mathcal{K}_{α} for $\alpha \in \Omega$.
\mathbf{M}_{\propto}^{-}will denote the class $\cup\left\{M_{\gamma} ; \gamma \in \propto \cap \Omega\right\}$. Let $\beta \in \Omega$. Suppose the ascending sequence $\left\{\mathbf{M}_{\alpha} ; \alpha \in \beta \cap \Omega\right\}$ has been constructed so that for each $\alpha \in \beta \cap \Omega$ the following conditions holds:
\mathbf{M}_{α} is at most countable, $P_{F_{i n}}\left(\mathbf{N}_{\alpha}\right) \subseteq A$ and
(*) $\mathbf{M}_{\alpha} \cap \cap \mathcal{X}_{\alpha}$ is non-empty provided that $\mathbb{K}_{\alpha} \subseteq \mathcal{J}^{n} \boldsymbol{P}_{F_{i n}}\left(\mathbb{M}_{\infty}^{-}\right)$. Then M_{β}^{-}is at most countable and $P_{F i n}\left(M_{\beta}^{-}\right) \subseteq R$ since
$\mathbf{P}_{\mathbf{P i n}^{(}}\left(\boldsymbol{\mu}_{\beta}^{-}\right)=U\left\{\mathbf{P}_{\mathbf{F i n}_{\text {in }}}\left(\mathbf{M}_{\alpha}\right) ; \alpha \in \beta \cap \Omega\right\}$. If X_{β} 车 $\operatorname{TVP}_{\text {Fin }}\left(\boldsymbol{M}_{\beta}^{-}\right)$, we define $X_{\beta}=M_{\beta}^{-}$.
Suppose $\mathscr{K}_{\beta} \subseteq \mathcal{T}^{n P_{\text {Fin }}}\left(\mathcal{M}_{\beta}^{-}\right), \mathscr{K}_{\beta}=\left\{\mathbf{Q}_{\mathrm{n}} ; \mathrm{n} \in \mathbf{F N}\right\}$.
μ_{β}^{-}is either countable or finite. In each case we can order its elements to a sequence $\left\{x_{k} ; k \in \operatorname{FN}\right\}$ or $\left\{x_{k} ; k \leq k_{0}\right\}$ respectively. For each $k \in F N\left(k \leq k_{0}\right)$ the set $\left\{x_{1}, \ldots, x_{k}\right\} \in R$ as ${ }^{P}$ Pin $\left(\mu_{\beta}^{-}\right) \subseteq R$. Let us fiz k and consider the sequence $\left\{Q_{n} \cap S_{P_{R}}\left(\left\{x_{1}, \ldots, x_{k}\right\}\right) ; n \in F N\right\}$.
As H is revealed, the (lass $\operatorname{Sp}_{R}\left(\left\{x_{1}, \ldots, x_{k}\right\}\right)$ is reveeled. By the assumption on $\mathcal{F}(T)$ the classes Q_{n} are reverled, the above observation implies that $Q_{n} \cap S_{p_{R}}\left(\left\{x_{1}, \ldots, x_{k}\right\}^{\prime}\right)$ are notismpty classer. It follows that the considered sequence is a countable descending sequence of non-empty revealed classes and as such it has non-erapty revealed intersection which equole $\cap X_{\rho} \cap S_{P_{R}}\left(\left\{x_{1}, \ldots, x_{k}\right\}\right)$.
Therefore also the sequence $\left\{\cap \mathscr{K}_{\beta} \cap \operatorname{Sp}_{k}\left(\left\{x_{1} \ldots \ldots x_{k}\right\}\right) ; k \in F N\right\}$ (r_{E} the corresponding finite one) is a descending sequence of non-smpty revealed classes and has non-empty internection. Coose an element x from this intersection and define $M_{\beta}=$ $=$ M $_{\beta}^{-} \cup\{x\}$.

$$
\text { If } r \in P_{F_{i n}}\left(M_{\beta}\right) \text { then } r \subseteq\left\{x, x_{j}, \ldots x_{k}\right\} \text { for some } k \in F N \text {. }
$$

An $x \in \operatorname{SP}_{P_{R}}\left\{\left\{x_{1}, \ldots, x_{k}\right\}\right.$, we have $\left\{x_{1} x_{1}, \ldots, x_{k}\right\} \in R$ and thence $r \leqslant R$. Consequently $P_{\text {Fin }}\left(\mathcal{M}_{\beta}\right) \subseteq R$. We have defined X_{β} satisfying ($*$). Using the theorem on definition by transfinite recursion (cf. sec. 3, ch. 2, [V]) we can define an ascending sequence of classes M_{α} satisfying $(*)$ for all $\propto \in \Omega$. Put $\mathbf{y}=U\left\{\mathbf{u}_{\propto} ; \alpha \in \Omega\right\}$. M is satrate with \mathcal{T} on R: $\mathbf{P}_{\mathbf{P}_{2 n}}(M)=\cup\left\{\mathbf{P}_{\mathbf{F i n}^{\prime}}\left(\mathbf{M}_{\alpha}\right) ; \alpha \in \Omega\right\} \subseteq \mathrm{K}$ and for each countable des
cending sequence $\mathcal{K} \leqslant \mathcal{J}{ }^{*} P_{\text {Fin }}(\mathbb{M})$ there ie $\beta \in \Omega$ with $\mathcal{K} \subseteq \mathcal{T}{ }^{n} \mathbf{P}_{\mathbf{F i n}}{ }^{\left(M_{\beta}\right)}$) and $\alpha \in \Omega, \alpha>\beta$ with $\mathscr{K}_{\alpha}=\mathbb{K}$. By the construction, $\cap X_{\propto} \cap M$ is nen-empty, i.e. $\cap \mathcal{K} \cap$ ie non-empty.

We introduce the following concept.
Definition. A class X is σ-fully revealed iff there is an ascending sequence $\left\{X_{n} ; n \in P N\right\}$ of fully revealed classes such that $X=U\left\{X_{n} ; \mathbf{n} \in F N\right\}$.

It can easily be seen that a pair of classes $\langle X, Y\rangle$ (see [S-1] for the formal definition) is σ-fully revealed iff there are ascending soquences $\left\{X_{n} ; n \in F N\right\}$ and $\left\{Y_{n} ; n \in F N\right\}$ such that the pair $\left\langle X_{n}, X_{n}\right\rangle$ is fully revealed for each n and $X=U\left\{X_{n}\right.$; $n \in F N\}$ and $Y=U\left\{Y_{n} ; n \in F N\right\}$.

Each Sd-class and esch б-class obviously is σ-fully revealed.
2. Now we shall apply the theorem to constructions of ondomorphic universes with special properties.

Let X, Y be classes. We denote by $R(X, Y)$ the class $\left\{x ; \operatorname{De} f_{X \cup X} \cap Y=0\right\}$. x) The following assertions can easily be verified.
a) $R(X, Y)$ is closed on subsete.
b) $R(X, Y)$ is non-ewpty iff $D \circ f_{X} \cap Y=0$.
c) $U R(X, Y) \subseteq V-Y$

[^0]a) Ifr $r \in R(X, Y)$, then $\operatorname{Sp}_{R(X, Y)}(r) \geqslant \operatorname{Dof}_{X u r}{ }^{*}$
e) If X and X are the unions of ascending sequences $\left\{X_{n} ; n \in F K\right\}$ and $\left\{Y_{n} ; n \in F N\right\}$ respectivoly thon $R(X, Y)=$ $=\cap\left\{R\left(X_{n} \cdot Y_{n}\right) ; n \in F N\right\}$.

Wo shall show that
f) If the pair $\langle X, Y\rangle$ is $G-f u l l y$ revealed then $R(X, Y)$

```
ia revealed.
```

Let X and Y be the unions of ascending sequences $\left\{X_{n} ; n \in\right.$ E. $P\left\}\right.$ and $\left\{Y_{n} ; n \in F N\right\}$ of classes X_{n} and X_{n} respectively such that the paire $\left\langle X_{n} \cdot Y_{n}\right\rangle$ are fully revealed. By the definition of $R\left(X_{n}, Y_{n}\right)$, thiz clase is the intersection of all classes
$\left\{u ; 7\left(\exists x_{1}, \ldots, x_{k} \in X_{n} \cup u\right)\left(\exists y \in Y_{n}\right)((\exists!w) \psi(\vec{X}, w) \& \psi(\vec{x}, y))\right\}$ where $\psi\left(z_{1}, \ldots, z_{k}, z\right)$ is a set formula of the language $F L(\vec{x}$ abbreviatea x_{1}, \ldots, x_{k}). There are countably many of such classes as FL is countable, and each of them is revealed as the pair $\left\langle X_{n}, Y_{n}\right\rangle$ is fully revealed.

Using this observation and the assertion e) we seo that $R(X, Y)$ is an intersection of countably many revealed classea and therefore it is revealed, too.

The following theorom closely resembles a result from [Ve 1]. It is proved hero as a simple application of the first theorem.

Theoren. Let $\langle X, Y\rangle$ be a σ-fully revealed pair of classes such that $\operatorname{Def}_{X} \cap Y=0$. Then there is an endomorphic universe A with $\Lambda \cap Y=0$ and $\mathbb{Q} \supseteq$.

Proof. Put $R=R(X, Y)$. R is non-empty, closed on subsets and revealed. In the preceding section there was defined the
system \mathcal{F}_{1} over R. Let $\langle Q, r\rangle \in \mathcal{T}_{1}, Q=Q_{\varphi}$. By the theorem 1 in [ve 1] there is $x_{0} \in D s f_{X_{U}}$ such that $\varphi\left(x_{0}\right)$ holds. By the
 able. By the first theorem, there is a clase m satiate with \mathcal{J}_{1} on R. M is an ondomorphic universe and $X \subseteq M \subseteq U R$. By the assertion c), $U R \subseteq V-Y$, i.e. $M=A$ has the desired properties.

For certain purposes (cf. [S-Ve]) we neod a theorem analogous to the preceding one, claiming moreover that there exists a set d with $\Delta[d]=V$. It will be convenient to introduce the following definition.

Definition. Let $\psi(Z)$ be a property of classes, C and D classes. We say that C helps approximate ψ in classes \quad б-depending on $D, A p r(\Psi, C, D)$ iff for $A l l$ classes S, L and X we have
$\left(\psi(X) \& \sigma_{S}(L) \& X \subseteq L^{n} D\right) \Longrightarrow\left(\exists Y_{\in S d} C_{U S}\right)\left(X \subseteq Y \subseteq L^{n} D\right)$.
Leman. Let D be a σ_{C}-class. Then $\Delta p r(R e v, C, D)$.
Proof. Let X be a revealed class, L a σ_{S}-class for mome S and $X \subseteq L " D$. There are ascending sequences $\left\{L_{n} ; n \in F N\right\}$ and $\left\{D_{n} ; n \in \operatorname{FN}\right\}$ of $S_{S}{ }^{-c l a s s e s}$ and S_{c}-classes respectively such that $L=U\left\{L_{n} ; n \in F N\right\}$ and $D=U\left\{D_{n} ; n \in F N\right\}$. The class $L^{n} D$ is the union of the ascending sequence of $S_{S U C}{ }^{-c l a s s e s} L_{n}{ }^{n} D_{n}$. $\Delta s X$ is revealed and $X \subseteq L^{n} D_{\text {, }}$ there is $n \in F N$ such that $X \subseteq L_{n}{ }^{\prime \prime} D_{n}$. i.e. $Y=L_{n}{ }^{n} D_{n}$ is a $S d_{S U C}{ }^{-c l a s s}$ satisfying $X \subseteq Y \subseteq L^{\prime \prime} D_{\text {. }}$ Consequently, if D is a σ_{C}-class then $\operatorname{Apr}(S d, C, D)$ and Apr (π, C, D) hold as $\psi_{1}(Z) \Longrightarrow \psi_{2}(Z)$ implies $\operatorname{Apr}\left(\Psi_{1}, C, D\right) \Longrightarrow$ $\Rightarrow \operatorname{Apr}\left(\psi_{2}, C, D\right)$.

Let $X^{F N}$ denote the class $U\left\{X^{k} ; k \in P N\right\}$, i.e. the class of all ordered $k-t u p l e s$ of elements of $X, k \in F N$.

Theorem. Let $\langle X, Y\rangle$ be a Gofully revealed pair of classes and d a set such that $\left.D_{0} f_{X} \cap(Y \cup S d\}\right)=0$ and $d \in U D_{e} f_{X}$. Suppose $\operatorname{Apr}\left(S d, X \cup\{d\}, X^{F N} \times Y\right)$ holdz.

Then there $i \&$ an endomorphic universe a such that $A \supseteq x$, $A \cap Y=$ $=0 . d \& a$ and $A[d]=V$.

Proof. Put $R=R(X, Y \cup\{d\})$. i in non-smpty, closed on subsets and revealed as the pair $\langle X, T\rangle u\{d\}\rangle$ is $\sigma-f u l l y$ revealed. We shall show that the system \mathcal{J}_{2} over R is available. Let $\langle Q, r\rangle \in T_{2}$. For $Q=Q_{\varphi}$ we see exactly as in the previous theorem that $S p_{R}(r) \cap Q \neq 0$. Suppose that $Q=Q_{w}$ and $S P_{R}(r) \cap Q_{w}=$ $=0$, i.e. $Q_{W} E V-S p_{R}(r)$.
For each set formula $\psi\left(z_{1} \ldots \ldots, z_{k+2}\right)$ of the language FL_{r} define

$$
C_{\psi}=\left\{\left\langle x,\left\langle x_{1} \ldots \ldots, x_{k}\right\rangle, y\right\rangle ;(\exists \mid z) \psi(x, \vec{x}, z) \& \psi(x, \vec{x}, y)\right\}
$$

(\vec{x} abbreviates $x_{1} \ldots \ldots, x_{k}$). Recall that $\left\langle x_{,} y, z\right\rangle=\left\langle x_{0}\langle y, z\rangle\right\rangle$.
Define C as the union of all C_{ψ}.
Each C_{ψ} is a S_{r}-class. As r is finite, FLr is countable. It follows that C is a σ_{r}-class.
The class $V-S_{P_{R}}(r)$ is the union of all classes $C_{Y}{ }^{m}\left(X^{k} \times Y\right)$. and therefore $V-S_{P}(r)=C^{n}\left(X^{F N} \times I\right)$. We have

$$
S d\left(Q_{W}\right) \& G_{r}(C) \& Q_{w} \subseteq C^{n}\left(X^{P N} \times Y\right)
$$

By the property Apr $\left(S d, X \cup\{d\}, X^{P N} \times Y\right)$ there is a class $\begin{aligned} & \text { Wuch }\end{aligned}$
that $W_{\in S d} X_{U}\{d\} \cup r$ and $Q_{W} \subseteq \varpi \subseteq V-S_{P_{R}}(r)$.

Let $\oint\left(z_{1}, z_{2}\right)$ be the set formula of the language $\mathrm{FL}_{\mathrm{Xur}}$ such
that $(\exists 1 z) \oint(d, z) \&\left(d, w_{0}\right)$ nolds.
Let u be an olement of Dofy such that $d \in u$ and let f be tho
function with dom(f) $=u$ which assigns to oach $x \in u$ the Gofirat V satisfying $\oint(x, v)$ if such a set v oxists and 0 otherwise.
 the other hand $f(d)=\sigma_{0}$. i.e. $f \in \boldsymbol{\theta}_{\omega_{0}}$. This is a contradiction because $Q_{W_{0}} \subseteq W \subseteq V-S p_{n}(r)$. It follows that the gysten J_{2} is arailable.

The firgt theorem guarantees the existence of a class M satiate with \mathcal{J}_{2} on $R \cdot M=A$ hae all desired properties.

Corollary. Let X, Y be $\sigma_{U} X_{U} d^{2}-c l a s s e s, D_{e} f_{X} \cap Y=0$ and let d be an element of (UDef ${ }_{X}$) - Def ${ }_{X}$.
Then there is an ondomorphic universe $A, A \geq X, A \cap Y=0, d \& A$ and $L[d]=V$.

Proof. It suffices to show that $\operatorname{Apr}\left(S d, X u\{d\}, X^{F N} \times Y\right)$ holds. It follow by the lemmatated above as $X^{F N} \times Y$ is a $\sigma_{\mathrm{K}}^{\mathrm{K}}\{\mathrm{d}\}$-class whenever X and Y are such.
3. Now we ehall investigate how similarities can be prolonged.

Let us begin with set similarities. For a set similarity g there is naturally and uniquely determined function Ug such that the fact that Ug is a similarity is a necessary condition for g to be extendable to an automorphism. We shall show that this is also sufficient.

Definition. Let d bs a set. For $n \in F N$ we define by recurEion

$$
\bar{P}(0, d)=d \quad \bar{P}(n+1, d)=P(\bar{P}(n, d)) \cup \bar{P}(n, d)
$$

If $P(d) \supseteq d$ then $\widetilde{P}(n, d)=P^{n}(d)$ where the symbol P^{n} denotes
n-times iterated operation of power set.
For $m \leq n$ we have $\bar{P}(m, d) \subseteq \bar{P}(n, d)$.
If $x \in \bar{P}(n+1, d)$ then either $x \in \bar{P}(n, d)$ or $x \in d$. Therefore the following definition is correct.

Definition. Let g be a set function, dom(g) $=$ d. We de-
fine by recursion for $x \in \overline{\mathrm{P}}(\mathrm{n}, \mathrm{d}), n \in \mathrm{FN}$
$U g(x)=g(x)$ for $x \in d$.
$U g(x)=U g^{n} x$ for $x \in \bar{P}(n+1, d)-d$.

Thus U_{g} is a $\sigma^{-c l a s s, ~} \operatorname{dom}(U g)=U\{\bar{P}(n, d) ; n \in F N\}$ and $\mathrm{Ug} \upharpoonright \overline{\mathrm{P}}(\mathrm{n}, \mathrm{d})$ is a set for each n . If $\mathrm{x} \subseteq \mathrm{dom}_{\mathrm{d}}(\mathrm{Ug})$ then there is $n \in F N$ such that $x \subseteq \bar{P}(n, d)$ and therefore $x \in d o m(U g)$.

Similarly if $x_{1}, \ldots, x_{k} \in \operatorname{dom}(U g)$ then $\left\langle x_{1} \ldots \ldots, x_{k}\right\rangle \in \operatorname{dom}(U g)$.
Suppose there is an autormorphism $H \supseteq g$. Then $U g=H f \operatorname{dom}(U g)$ as for each set x we have $H(x)=H^{\prime \prime} x$ (cf. ch. 5, sec. 1, [V]). It follows that $U g$ is a similarity.

Lomma. Let $U g$ be a similarity. Then for each $x \subseteq d o m(U g)$ $\mathbf{U g}(x)=\mathbf{U g}{ }^{\boldsymbol{\prime}} \mathbf{x}$ 。

Proof. It holds by the definition for each $x \in d o m(U g)-d$, i.o. especialiy for each $\bar{P}(n, d)$, as $\bar{P}(n, d) \notin d$. Let $x \subseteq d o m(U g)$. $x \in d$. Let $n \in F N$ be such that $x \subseteq \bar{P}(n, d)$. $A s U_{g}$ is a similarity, we have
$U g(x) \subseteq U g(\bar{P}(n, d))=U g{ }^{\prime \prime} \bar{P}(n, d) \& z \in x \equiv U g(z) \in U g(x)$
These two facts imply that $\mathrm{Ug}(\mathrm{x})$ does equal to Ug"x.

It follows that if Ug is a similarity then rig (Ug) is the class $U\{\vec{P}(n, r n g(g)) ; n \in F N\}$ and $U\left(g^{-1}\right)=(U g)^{-1}$.

Lemma. Let f, g be set functions such that f is finite
and UgUI is a similarity. Let $y \in V$. Then there are y° and $y^{" 0}$ such that $\mathrm{Ug} \cup f \cup\left\{\left\langle\mathrm{y}^{\bullet}, \mathrm{y}\right\rangle\right\}$ and $\mathrm{Ug} \cup \mathrm{f} \cup\left\{\left\langle\left\langle\mathrm{y}, \mathrm{y}^{*}\right\rangle\right\}\right.$ are similarities.

Proof. Let $\left\{\varphi_{k}\left(z_{1}, \ldots, z_{m_{k}}\right) ; k \in F N\right\}$ be a sequence of all set formulas of the language $\mathrm{FL}_{\text {dom }}(f)$. Let us define $a_{k, n}=\left\{\left\langle 0, x_{2}, \ldots, x_{m_{k}}\right\rangle ; x_{2}, \ldots, x_{m_{k}} \in \bar{P}\left(n_{y} d\right) \& \varphi_{k}\left(y, x_{2}, \ldots, x_{m_{k}}\right)\right\}$. Then $a_{k, n} \subset d o m(U g)$ and therefore $a_{k, n} \in \operatorname{dom}(U g)$. For each $n_{0} \in F N$ the following holds:

$$
\begin{aligned}
& (\exists x)\left(\forall k, n \leq n_{0}\right)\left(\forall x_{2}, \ldots, x_{m_{k}} \in \bar{P}(n, d)_{n}\right) \\
& \left(\varphi_{k}\left(x_{0} x_{2}, \ldots, x_{m_{k}}\right) \equiv\left\langle 0, x_{2}, \ldots, x_{m_{k}}\right\rangle \in a_{k, n}\right)
\end{aligned}
$$

Namely, xzy satisfies the above formula. As UgUf is a similarity, we have

$$
(\exists x)\left(\forall k, n \in n_{0}\right)\left(\forall x_{2}, \ldots, x_{m_{k}} \in U_{g}(\bar{P}(n, d))\right.
$$

(*)

$$
\left(\varphi_{k}^{f}\left(x, x_{2} \ldots, x_{m_{k}}\right) \equiv\left\langle 0, x_{2}, \ldots, x_{m_{k}}\right\rangle \in U_{g}\left(\varepsilon_{k}, n\right)\right)
$$

Considering the facts that for $n, k \in P N$

$$
U_{g}(\bar{P}(n, d))=U_{g}{ }^{n} \bar{P}(n, d), U_{g}\left(a_{k, n}\right)=U_{g}{ }^{n} a_{k, n}, U g(0)=0
$$

and that for $x_{1}, \ldots, x_{m} \in \operatorname{dom}(U g)$
$\operatorname{Ug}\left(\left\langle x_{1} \ldots . . x_{m}\right\rangle\right)=\left\langle\operatorname{Ug}_{g}\left(x_{1}\right) \ldots . . \operatorname{Ug}\left(x_{m}\right)\right\rangle$
we can see that $(*)$ is equivalent to
$(\exists x)\left(\forall k, n \leq n_{0}\right)\left(\forall x_{2}, \ldots, x_{m_{k}} \in \bar{P}(n, d)\right)$
$\left(\varphi_{k}^{f}\left(x_{1} \operatorname{Ug}\left(x_{2}\right) \ldots, U_{g}\left(x_{m_{k}}\right)\right) \equiv\left\langle 0, x_{2}, \ldots, x_{m_{k}}\right\rangle \in a_{k, n}\right)$
By the axiom of prolongation there is $y^{\text {c satisfying }}$

$$
\begin{aligned}
& (\forall k, n \in F N)\left(\forall x_{2}, \ldots, x_{m_{k}} \in \bar{P}(n, d)\right) \\
& \left(\varphi_{k}^{f}\left(y^{0}, U g\left(x_{2}\right), \ldots, U_{g}\left(x_{m_{k}}\right)\right) \equiv\left\langle 0, x_{2}, \ldots, x_{m_{k}}\right\rangle \in a_{k, n}\right) .
\end{aligned}
$$

Wo shall show that $\left.\mathbf{U g} \cup f \cup \mathcal{f}\left\langle\mathrm{y}^{\prime}, \mathrm{y}\right\rangle\right\}$ is a similarity.

Denote $F=U_{g} \cup\left\{\left\langle y^{\prime}, y\right\rangle\right\}$. Let $\psi\left(z_{1}, \ldots, z_{m}\right)$ be a set formula of the language $\mathrm{Fl}_{\mathrm{dom}}(\mathrm{f})$. We must verify that for any $x_{1}, \ldots . . x_{m} \in \operatorname{dom}(F)$
$\psi\left(x_{1}, \ldots, x_{m}\right) \equiv \psi^{f}\left(F\left(x_{1}\right) \ldots, F\left(x_{m}\right)\right)$
holds. If there is not y among $x_{1} \ldots \ldots x_{m}$ then it is true because UgUfis a mimilarity. Otherwise we can suppose that $y=x_{1}$ and $x_{2}, \ldots, x_{m} \in d o m\left(U_{g}\right)$. T_{h} ere is $k \in F N$ such that $\Psi=\varphi_{k}$. Let $n \in P N$ be such that $x_{2}, \ldots, x_{n} \in \bar{P}(n, d)$. Then

$$
\psi\left(y, x_{2}, \ldots, x_{m}\right) \equiv \varphi_{k}\left(y, x_{2}, \ldots, x_{m}\right) \equiv\left\langle 0, x_{2}, \ldots, x_{m}\right\rangle \in a_{k, n} \equiv
$$

$$
\equiv \varphi_{k}^{f}\left(y^{\prime}, U g\left(x_{2}\right), \ldots U_{g}\left(x_{m}\right)\right) \equiv \psi^{f}\left(y^{\prime}, U g\left(x_{2}\right), \ldots, U g\left(x_{m}\right)\right)
$$

which we have claimed.
As UgUfis a similarity, also its inverse, $(U g)^{-1} \cup f^{-1}=$ $=U\left(g^{-1}\right) U f^{-1}$ is a similarity. By the above method y^{\cdots} can be found such that $U\left(g^{-1}\right) \cup f^{-1} \cup\left\{\left\langle y^{\cdots}, y\right\rangle\right\}$ is a similarity. Therefore its inverse, $U g \cup f u\left\{\left\langle y, y^{\prime \prime}\right\rangle\right\}$ is a similarity.

Let F be a function. $\operatorname{Define} R(F)=f f ; F \cup f$ is a similarity\}. Obviousl $y R(F)$ is closed on subsets and it is non-empty iff F is a similarity.

Suppose F is a σ-fully revealed class, i.e, the union of an ascending sequence of fully revealed classes $\left\{F_{n} ; n \in P N\right\}$. Then $R(F)$ is revealed because it is the intersection of all classes
$\left\{f ;\left(\forall x_{1}, \ldots, x_{k} \in \operatorname{dom}\left(F_{n} \cup f\right)\right)\left(\psi\left(x_{1}, \ldots, x_{k}\right) \equiv\right.\right.$

$$
\left.\left.\equiv \psi\left(\left(F_{n} \cup f\right)\left(x_{1}\right) \ldots,\left(F_{n} \cup f\right)\left(x_{k}\right)\right)\right)\right\}
$$

where $n \in F N$ and $\psi\left(z_{1}, \ldots, z_{k}\right)$ is a set formula of the language FL.

Theorem. A set similarity g can be prolonged to an automorphism iff the function $U g$ is a similarity.

Proof. One part of the theorem has been already mentioned. Suppose that $U g$ is a similarity. Put $R=R(U g)$.

R is non-ompty, closed on subsets and revealed as Ug is a 5 class. The system \mathfrak{J}_{3} defined in the first section is availsblo over R by the previous lemma. The first theorem guaranteos the existence of a clase matiate with \mathfrak{F}_{3} on R. M is the desired automorphism, $M \supseteq \mathrm{Ug}_{\mathrm{g}} \supseteq \mathrm{g}$ 。

Let us make one simple observation about similarities.
Definition. Let F be a similarity. We denote by DF the class of all pairs $\left\langle x^{\prime}, x\right\rangle$ such that there is a set formula $\varphi(z)$ of the language $\mathrm{FL}_{\text {dom }}(F)$ for which $(\exists!z) \varphi(z) \& \varphi(x): \varphi^{F}\left(x^{\prime}\right)$ holds.

Theorom. Let F be similarity. Then $\operatorname{dom}(D F)=D o f_{\text {dom }}(F)$ and $D F$ is the unique similarity extending F to a similarity with the domain equal to $\operatorname{Def} \mathrm{dom}_{\mathrm{dom}} \mathrm{F}^{\text {• }}$

The proof is easy. Note that if $\operatorname{dom}(F)=r n g(F)$ then dom(DF) $=$ rng(DF) and analogously for inclusions.

To prove our next theorem concerning prolongations of similarities to autoworphisms we need classes defined as follows (recall that $\mathrm{FN}^{(-)}$denotes the class of all finite integers).

Let F be a function. $R^{\boldsymbol{\omega}}(F)$ is the class of all functions f for which there exists a sequence $\left\{f_{j} ; j \in \operatorname{FN}(-)\right\}$ such that

1) $f_{0}=f_{0}$
2) $\operatorname{dom}\left(f_{j+1}\right)=\operatorname{rng}\left(f_{j}\right)$ for all $j \in F N^{(-)}$.
3) $F \cup \cup\left\{f_{j} ; j \in F N^{(-)}\right\}$is a similarity. Obviously, $R^{\omega}(F)$ is closed on subsets and is non-empty iff F is a similarity (then $\{\langle 0,0\rangle\} \in R^{\omega}(F)$).

Suppose F is a ©-fully revealed clase, i.e. the union of an ascending sequonce of fully revealed classes $\left\{F_{n} ; n \in P K\right\}$. We shall show that then $R^{\boldsymbol{\omega}}(F)$ is a revealed class.

Let $\left\{\varphi_{k}\left(z_{1} \ldots, z_{m_{k}}\right) ; k \in P N\right\}$ be a sequence of all set formulas of the language FL.

Define $C_{\alpha, n}$ as the class of all functions f for which there is a set sequence $\left\{\boldsymbol{f}_{\llcorner } ;-\alpha \leq\llcorner\leq \propto\}\right.$ such that

1) $f_{0}=1$.
2) $\operatorname{dom} f_{l=1}=\operatorname{rng}\left(f_{l}\right)$ for all \llcorner with $-\alpha \leq ᄂ<\alpha$,
3) setting $E=F_{\mathbf{n}} \cup \cup\left\{\boldsymbol{f}_{\downarrow} ;-\alpha \leq \downarrow \leq \propto\right\}$
the following holds:

$$
\begin{aligned}
(\forall k \leqslant n)\left(\forall x_{1}, \ldots, x_{m_{k}}\right. & \in \operatorname{dom}(E))\left(\varphi_{k}\left(x_{1}, \ldots, x_{m_{k}}\right) \equiv\right. \\
& \left.\equiv \varphi_{k}\left(E\left(x_{1}\right) \ldots, \ldots\left(x_{m_{k}}\right)\right)\right)
\end{aligned}
$$

We claim that $\mathbf{R}^{\omega}(F)=\cap\left\{C_{n, n} ; n \in P N\right\}$.
Obviously $\mathrm{R}^{\omega}(\mathrm{F}) \subseteq \cap\left\{\mathrm{C}_{\mathrm{n}, \mathrm{n}} ; \mathrm{n} \in \mathrm{FN}\right\}$.
Let $f \in \cap\left\{C_{n, n} ; n \in P N\right\}$. Let D_{n} be the class of all $\left\{\mathbf{f}_{k} ;-\infty=\right.$ $\leq \mathbb{L} \leq \propto\}$ satisfying the three conditions from the definition of $C_{\alpha, n}$ and such that $\alpha \geq n$.
The classes D_{n} are non-empty as $f \in C_{n, n}$ for each $n \in F N$, revealed because they are definable by a noralal formula with the only class parameter F_{n}, and they form a descending sequence. Therefore their intersection is non-empty.

Let $\left\{f_{\alpha} ;-\infty \leq L \leq \propto\right\}$ be an element of this intersection. Then $\propto \notin P N$ and $F \cup \cup\left\{f_{j} ; j \in P N^{(-i} \xi\right.$ is a similarity. Thence $f \in R^{\alpha}(F)$ which proves the claim.

The classes $C_{n, n}$ are definable by a normal formula of the language FL with the only class parameter F_{n} and as such they are revealed. It follows that $R^{\omega}(F)$ is revealed.

Theorem. Let F be aimilarity and a-fully revealed

 class. Suppose that dom(F) $=$ rng (F) and $\Delta p r\left(\pi, d o m(F), P_{F i n}(F)\right)$ hold. Then there is an automorphian $\tilde{\boldsymbol{F}}, \tilde{F} \supseteq \mathbf{F}$.Proof. Put $R=R^{\boldsymbol{\omega}}(F)$. R is a non-empty revealed clase closed on subsets. We shall show that the system \mathcal{J}_{3} defined in the first section is available over R. Then by the first theorem there is a class matiate with \mathcal{F}_{3} on R which implies that M is an automorphiam and $M \supseteq F$, i.e. $M=F$ has the desired properties.

Suppose on the contrary that thero is a finite $f \in \mathbb{R}$ and a set $w \in V$ such that - let us say - $\forall x\{w\} \subseteq V-S P_{R}(f)$. Let $\left\{\varphi_{k}\left(z_{1} \ldots \ldots z_{m_{k}}\right) ; k \in F H\right\}$ be a sequence of all set formulas of the language FL. Let $\left\{f_{j} ; j \in \mathcal{F N}^{(-)_{\}}}\right.$be a sequence satisfying the three conditions from the definition of $R^{\omega}(F)$.
Denote $H=U\left\{f_{j} ; j \in \mathcal{F N}^{(-)}\right\}$.
Let S be the class of all set sequences $z=\left\{s_{l} ;-\propto \leq L \leq \propto\right\}$.
Call α the length of $s . \quad$ Set $\widetilde{\varepsilon}=\left\{\left\langle\varepsilon_{\iota+1} \cdot \in_{\iota}\right\rangle ;-\alpha \leq L<\alpha\right\}$.
Define C_{n} as the class of all pairs $\langle s, g\rangle$ such that $\in S$ and
ting $H_{n}=g \cup \tilde{s} \cup \cup\left\{f_{j} ;-n \leq j \leq n\right\}$ the following holds:
$7(\forall k \leqslant n)\left(\forall x_{1}, \ldots, x_{m_{k}} \in \operatorname{dom}\left(H_{n}\right)\right)$
$\left(\varphi_{k}\left(x_{1}, \ldots, x_{m_{k}}\right) \equiv \varphi_{k}\left(H_{n}\left(x_{1}\right) \ldots, H_{n}\left(x_{m_{k}}\right)\right)\right.$.
Each class C_{n} is definable by aset formula of the language
$\mathrm{FL}_{\left\{f_{j} ;-n \leq j \leq n\right\}}$ As the f_{j} are finite functions and $f_{j} \subseteq \operatorname{dom}(H) \times \operatorname{dom}(H)$.
we have $\left\{f_{j} ;-n \leq j \leq n\right\} \in \operatorname{Def}{ }_{d o m}(H)$ and therefore C_{n} is a
Sd $_{\text {dom }}(h)^{-c l a s s}$ for each n.
Let $C=U\left\{C_{n} ; \mathbf{n} \in F N\right\}$ 。C is a $\sigma_{d o m(H)}$-class and the class C" $P_{\text {Pin }}(F)$ consists of all $s \in S$ such that $P \cup \widetilde{B} \cup H$ is not a similarity.

For $V \in \nabla$ let $S_{n}(\nabla)$ be the class of those sequences f from S for which $m_{0}=v$ and whose length is greater or equal to n and $S(v)=\cap\left\{S_{n}(v) ; n \in F Y\right\}$ 。
We claim that $S(w)$ is a subclass of $C{ }^{\prime \prime} P_{\text {Fin }}(F)$. Suppose on the contrary that there is $a \in S(w)-C{ }^{n} P_{\text {Fin }}(F)$. Then $\hat{f}=f u\left\{\left\langle s_{1}, s_{0}\right\rangle\right\}$ is an element of $A^{\omega}(F)$ as can be seen by considering the sequence of functions $\hat{f}_{n}=f_{n} \cup\left\{\left\langle s_{n+1}, s_{n}\right\rangle\right\}$ for $n \in F Y^{(-)}$: $\hat{\mathbf{f}}_{0}=\hat{f}_{0} \operatorname{dom}\left(\hat{f}_{n+1}\right)=\operatorname{rng}\left(\hat{f}_{n}\right)$ for all $n \in \mathcal{F N}^{(-)}$and $P \cup \cup\left\{\hat{f}_{n} ; n \in\right.$
 It means that $\left\langle s_{1}, z_{0}\right\rangle \in S_{p_{R}}(f)$. But $s_{0}=w$ and we havo assumed that $\nabla \times\{w\} \subseteq V-S_{p_{\mathbf{R}}}(f)$. Our claim is justified. Thus we have $\boldsymbol{\pi}(S(w)) \& \sigma_{d o m(H)}(C) \& S(w) \subseteq C{ }^{n} P_{\text {Pin }}(F)$.

By our assumption, $\operatorname{Apr}\left(\pi, \operatorname{dom}(F), P_{F i n}(F)\right)$ holds. Therefore there is a $S_{\text {dom }}(H) \cup d_{o m}(F)^{-c l a s e} Y\left(i . e . S_{d o m}(P \cup H)^{-c l a s s}\right)$ sueh that $S(w) \subseteq Y \subseteq C^{n} P_{F i n}(F)$. The class $S(w)$ is the intersection of the descending sequence of Sd-classes $S_{n}(w)$; therefore the desconding sequence $\left\{S_{n}(w)-\mathbb{X} ; \boldsymbol{n} \in \mathrm{FN}\right\}$ of $\mathrm{Sd}-\mathrm{classes}$ has ompty intersection. Consequently there is $n \in F N$ such that $S_{n}(w)$ - I is empty. i.e. $S_{n}(w) \subseteq Y_{\text {. }}$

Let W_{0} be the G-first set v such that $S_{n}(v)=Y$. Then w_{0} is an element of $\operatorname{Def}_{\mathrm{dom}}(\mathrm{P} \cup \mathrm{H})$. The function $P \cup H$ is a similarity and $\operatorname{dom}(F \cup H)=r n g(F \cup H)$; therefore also $D(F \cup H)$ is a similarity and $\operatorname{dom}(D(F \cup H))=\operatorname{rng}(D(F \cup H))=D_{0} f_{d o m}(F \cup H) \cdot$ Consider the sequence $s=\left\{(D(F \cup H))^{j}\left(w_{0}\right) ;-n \leq j \leq n\right\}$. Obviously selonge to $S_{n}\left(W_{0}\right)$ but not to $C{ }^{\prime \prime} P_{P_{i n}}(F)$ as $F \cup \tilde{E} \cup H$ is a subclass of $D(F \cup H)$ and therefore a similarity. This is a contradiction as $S_{n}\left(w_{0}\right) \subseteq$

The theorem is proved.

Corollary. Let F be $E_{\text {dom }}(F)$-clase and a mimilarity, $\operatorname{dom}(F)=r \operatorname{lng}(P)$. Then F can be prolonged to an artomorphism.

Proof. It auffices to show that $A p r\left(\pi, d o m(P), P_{\text {Fin }}(F)\right)$ holds. Obviousl y $P_{F i n}(F)$ is a $\sigma_{\text {dom }}(F)$-elass as F if suct and a previous lema guarantees what is needed.

For example, F can be a similarity of the form Id $\mathrm{f} u$ $U\{\langle u, u\rangle\} \cup H$, where u is a set and H is countable clase are tiafying dom $(H)=r n g(H)$.

If we replace in the above theorem the asamption don(F)= $=\mathrm{rng}(\mathrm{F})$ by dom $(F) \geq \mathrm{rng}(F)$. we can get an endomorphisa extending F. Without the assumption $\operatorname{Apr}\left(\pi, \operatorname{dom}(F), P_{F i n}(F)\right)$ we can oxtend F to a mimilarity \tilde{F} with $\operatorname{dom}(\tilde{F})=\operatorname{rng}(\tilde{\mathbf{F}})=A$, where A is an ondomorphic universe.

References

[v] P. VOPENKA: Mathematics in the alternative set theory. Teubner-Texte, Leipzig 1979.
[S-V 1] A. SOCHOR and P. VOPĚNKA: Endomorphic universes and their standard extensions, Comment. Math. Univ. Carolinae 20(1979), 605-629.
[S 1] A. SOCHOR: Motamathematics in the alternative set theory, Comment. Math. Univ. Carolinae 20(1979). 697-721.
[Ve 1] Ad VENCOVSKÁ: A method for constructing aome endomorphic universes, Comment. Math. Univ. Carolinae 20 (1979). 655-668.
[S-Ve] A. SOCHOR and A. VENCOVSKÁ: Indiscernibles in the alternative set theory, Comment. Math. Univ. Carolinae 22(1981). 785-798.

Matematicko-fyzikalní fakulta
Universita Karlova
Sokoloveka 83, 18600 Praha 8
Czechoslovakia
(Oblatum 3.3. 1982)

[^0]: x) In [Ve 1] there is introduced the notion of the reserve of X with respect to Y. $\operatorname{Rsv}(X, Y)=\left\{z ; \operatorname{Def}_{X \cup\{ }\{ \} \in \mathcal{Y}=0\right\}$. Thus $S_{P_{R}(X, Y)}(r)=\operatorname{Rsv}(X \cup r, Y)$ for $r \in R$.

