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COMMENTATIQNES MATHEMATICAE UN!VERSITATIS CAROLINAE 

23,3 (1982) 

CONSTRUCTIONS OF ENDOMORPHIC UNIVERSES AND 
SIMILARITIES 

Alena VENCOVSKA 

Abstract: In this paper we investigate properties of en-
domorphic universes and similarities in the alternative set 
theory. We describe conditions on similarities to be extendab
le to automorphisms. Further we show how specially located en-
doniorphic universes A can be constructed for which there is a 
set d satisfying Aid! » V. 

Key words: Alternative set theory, similarity, automor
phism, endomorphic universe, fully revealed, definable. 

Classification: 03E70, 03H20 

We shall briefly recall some notions from alternative set 

theory which we frequently use. 

A function F is a similarity (see sec. 1, ch. 5, L Vj) iff for 

each set formula LP(Z,,...,Z) of the language FL and £or each 

x,,...,x e dom(F) we have 
i n 

Cf Ux,...,xn) s- 9(F(xx),...,F(xn)). 

If F is a function and q> a formula of the language ^--Yiom/F) 
F 

then cy is the formula resulting from <f by replacing all pa
rameters by their images in the function F. 

If F and H are functions then Fu H is a similarity iff for each 

set formula Cp(z,,...,z) of the language -̂--riouj/u* anc- *or each 

xx,...tx edom(F) we have 
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9(XjL,...,xn) ̂ 9 H ( F ( X l ) , .••,rcxft)). 

A similarity whose domain equals V is called endomorphisiru A 

similarity whose domain and range equal V is called automorp

hism. Classes X, Y are similar iff there is a similarity F such 

that dom(F) =- X and rng(F) = Y. 

A class A is endomorphic universe iff it is similar to V. For 

a class A and a set d the class A[d] is defined as 

|f(d);f€ A & d€ dom(f)}. 

If A is an endomorphic universe and d <= U A then Aid J is the 

smallest endomorphic universe subclass of winch is the class 

Auldl. X is a Sd--class, Sd-(X) iff there is a set formula 

cp(z) of the language FL- such that X s 4 x; cp (x)3 • 

Sd(X) is used instead of Sdy(X). 

^-(X) and Jf-AX) will denote that there are count ably many 

Sd~-classes such that X is their union or intersection respec

tively. Again we omit writing V and speak about S - or 7t -clas

ses. Fm(X) denotes that X is a finite class. 

A class X is revealed, iiev(X), iff for each countable Y£X the

re is a set u such that Yc u£X, 

X is fully revealed iff for each normal formula gMz,Z) of the 

language FL the class \ \ ; qp(z,Z)i is revealed. Each Sd-class 

is fully revealed. 

It can be proved that if X is fully revealed then for each nor

mal formula cip(z,Z) even of the language FLy the class 

ix; q> 4xf X A is revealed (see i 2, t «>-V 13). 

Each countaole descending sequence of non-empty revealed clas

ses has non-empty intersection (see sec. 5, ch. 2, CVl). 

Thus if a revealed class X is a subclass of the union of an 
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ascending sequence -fXn;n€ FN? of Sd-cXasses then X£X for so

me n e FN. 

Def« denotes the class of all sets definable by a set formula 

of FLX. 

Through the whole paper, G denotes a one-one mapping of V onto 

N which is a Sd -class• Such a mapping has been constructed in 

sec. 1, ch. 2, I VI. 

In a natural w^y, G induces a linear ordering on V which is re

ferred to by saying G-smaller, G-greater. Each Sd~-ciass has 

the G-first element and this element belongs to DefT. 

1. A class R is said to be closed on subsets if re H and 

r,£ r imply that rjCJU 

Definition. Let R be a class closed on subsets. Let T 

be a codable system of pairs <TQ,r̂  such that <Q,r>e T implies 

that re Rn Fin and Q is a non-empty class. Suppose that for 

re RnFin and rx£ r the inclusion <f"{ r ^ s T" \ r] holds. 

Then T is called a system over R. 

Note that for S£ ttn Fin, JT*" S denotes the system of all Q 

such that there is 8€ S with <Q,s > € (T. 

The system Cf'Ui^Fin) is called the field of T and denoted 

7(T) . 

D e f i n i t i o n . Let T be a sys tem over R. A c l a s s UQUR 

i s s a t i a t e w i t h T on R i f f P p . U O G R and for each d e c r e a s i n g 

sequence 3C = i Q ;n e FN I £ T" P.,. <k) the i n t e r s e c t i o n fiCfC r\ h n r i n 

i s non-empty . 

S p e c i a l l y , for U s a t i a t e w i t h T on R we have iir.Q-4-0 

whenever t h e r e i s s e Pp, (i.) w i t h <C,s> e CT. 
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The following three special systems will be useful. 

Suppose X is a class and R a non-empty class closed on 

subsets. Define the system J^ over R: 

<Q„r> € Xl iff re Rn Fin and C * Q^ = i *; ? U ) J for a set for

mula g>(z) of the language FL X u r such that there is a set x 

satisfying cplx). 

We shall show that if M is satiate with T^ on R then M is an 

endomorphic universe and X S M ^ O R . 

As P F i n(M)SR, we have UsUH. 

Let xeX. Then i%\ « Q^ for the set formula <y(z) = (z=-x) of 

the language FLX and therefore <{xi?,0> e T^m It follows that 

{xln M4*0 and XQM. 

Let 4<J (z);neFN} be a sequence of set formulas of the langu

age FL^ such that (3 x) ( V n) cpn(x) holds. Defining QQ -

= $x; (V k^ n) q^ix)} and X = *Q n;n€FN}, we get a descending 

sequence % £. £*. "^Fin^-^ *or which the intersection 0 3C n M 

must be non-empty. It follows that (3 x e M) ( V n) <J? (x) holds. 

By the fourth part of the first theorem in LS-Y 1}» M is an 

endomorphic universe. 

Let X, R be as above and let d be a set. The system T\ 

contains all pairs belonging to 'T*. and moreover all pairs 

<Q,r> where r€ RnFin and Q ~ Qm -=-if;f(d) = wj with w£ V. 

As in the previous case wo can show that a class M satiate 

with T\ on ** *s an endomorphic universe such that XS-Mi-UR. 

For each w e V we have <QW,0> 6 T ~ and therefore M n O 4=0, 

i.e. there is fell with fid) = w. Consequently Mid] = V. 

Let R be a non-empty class closed on subsets. Define the 

system T^ over R:<Q,r> e T^ iff reRoFin and either 
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0. = ¥x4wi or Q ss-Cwlx.? where w€V. Suppose that F is a si

milarity such that rcK implies that Fur is a similarity. We 

shall show that if M is satiate with *T\ on H then k is an 

automorphism and U2F. 

For each finite f & U the class F u f is a similarity as 

P«. (U)S It. Therefore Fu M is a similarity. For each weV the 

classes IwlxV and VT<-CW1 belong to f 3
H •( 0j and therefore 

have non-empty intersections with k, i.e. M is an automorphism. 

The facts that M w F is a similarity and doaUF)c dom(M) imply 

that M 2 F . 

Note that the fields of T,, 'f„» &\ consist of Sd-clas-

ses i.e. of revealed classes only. 

We shall investigate the conditions under which there ex

ists a class satiate with a given system £T. 

Definition. Let K be a class closed on subsets. Let re ii. 

The class 4z;ru izie Kf is called the supply of r in K and de

noted Sp„(r). 

Obviously, if re U and r.S r then S p j A r , )«? Sp^lr). If the 

class H is revealed and re U then S p . A r ) is revealed, too. In 

order to prove it, let us consider a sequence \z ;n«sFNl £ 

&Spfi(r)» As H is revealed and |r u 4 zn) ;n e FNlS Ht there is a 

set ir,;ou 4* o o j c a such that oC^ $ FN and r„ - ro4z„f for 

each ncFN. Let kz^ oG * y } be a set-prolongation of -C-̂ E;n 6. 

eFNf. There is fhQ 4 FN, /30 *-* <̂ 0» T 0 -»uch that for each 

0u 4m A we have r^ =- ru ^z^J • Therefore -i-^; oc ̂  pQl c 

9SpK(r) and SpR(r) is revealed. 

Definition. Let B be a class dosed on subsets, T a sys-
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to* over R* V i s said to be ava i iab ie i f f for each <Q#r> e (f 

the i n t e r s e c t i o n UnSpgCr) i s non-empty* 

Mew our theorem can be s tated« 

Theorem* Let ft be a revealed non-empty c l a s s closed on 

subsets* Let T be an ava i iab ie system over R such tha t the 

f ie ld of T contains revealed c l a s ses only* Then there i s n 

c l a s s M s a t i a t e with "f on B* 

Proof* Let us begin with an observation* 

I f W i s a c l a s s such tha t Ppin<W)S R and i f Q e fm*tinl*) 

then for any r e P p i n C ) ^he i n t e r s ec t i on QASp«{r) i s non-em

pty* For i f r an element of % i n (W) such tha t <Q,r0> e T then 

for any re Pp i r |Cf) we have r u rQ€ P p j ^ * ) and therefore r u r ^ e 

e R n f i n . I t follows tha t ^Q t r u r 0 > £ £T and Qn S p R i r u r Q ) i s 

a non-empty class* As Sp«Cr)5SpgCru r Q ) . the i n t e r s ec t i on 

QnSp«4r) i s non-empty• too , 

Let "l^oc* oc £ H j be a sequence of countable descending 

sequences % «-CU ;n € FNj s. $ ((f) such that each descending 

countable % £• 5 ((f) occurs uncountably many times in 

4 % ^ ; oC £ SLl * We sha l l const ruct an ascending sequence 

4M . ; at €. £L\ considering successively the sequences ^C^ for 

oC £ XL • 

M^ w i l l denote the c l a s s U CM ; <y € cc A XL i . 

Let f3 6 XL • Suppose the ascending sequence -IM^ ;oC e ft n XI1 

has been constructed so tha t for each cc e ft n XL the follow

ing condi t ions holds : 

M^ i s at most countable, Pf in(M06 ^ s B ^ 

M^ A AJC^ i s non-empty provided tha t 'X^ & ^ " P p i n ^ o s *• 

Then Ml i s at most countable and Ppint-i/i)-*R since 
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I f X^ifc ^ M p F i n ( M A ** W e d e f i n e M £ * M/3 * 

Suppose tfps CTMPFin(M^ ) # 0 ^ = - 4 Q n ; n e F H ? • 

MJ3 i s e i t h e r countable or f i n i t e . In each case we can order 

i t s e l ements t o a sequence i x ^ j k e F H l or Ax^;k^kQl r e s p e c t i 

v e l y . For each k € FH (k^ kQ) the set 4 Xj , . . . ff x^x € B as 

Pp. (M"^)&H. Let us f i x k arid cons ider the sequence 

4 Q f | n S p K ( i x J t . . . t x k U j n £ F H ] . 

As K i s r e v e a l e d , the c l a s s S p p ( 4 x , , * . • t x ^ j } i s r e v e a l e d . By 

the assumption en & ( (7 ) the c l a s s e s Un ase r€ne?*iled* Ihe 

above o b s e r v a t i o n i m p l i e s t h a t Q n Spf>(4*i * * *«»xijy ) fare non

empty c l a s s e s t . I t f o l l o w s that the cons idered sequence i s a 

countable descending sequence of non-empty revea led clashes* 

and as such i t has non-empty revea led i n t e r s e c t i o n which equ*l i 

I \ %a n S p | | d x , , . *. »%i^ ) • 

Therefore a l s o the sequence -lODC^r* Sp-» (£* |»»*»»x k ^ ) ;k e FH \ 

{^t the corresponding f i n i t e one) i s a descending sequence of 

non-empty r evea l ed c l a s s e s and has non-empty i n t e r s e c t i o n . 

Choose an element x from t h i s i n t e r s e c t i o n and def ine M^ * 

* k~ u 4 x.\ . 

I f r c p j ? i K ** A > t h e n r £ - t x , X j t . . . t x k \ for some k 6 FN. 

As x € Sp R (^x , t . . . t x . ^ jt we have 4 x , X j t . . . t x ^ € R and thence 

r s R , Consequently p p i n ^ A > - R * * e aave def ined M^ s a t i s f y 

ing (% ) . Using the theorem on d e f i n i t i o n by t r a n s f m i t e r e c u r 

s i o n ( c f . s e c . 3 t c h . 2 , CV3) we can de f ine an ascending s e 

quence of c l a s s e s M^ s a t i s f y i n g ( * ) for a l l od £ XL . 

Put M * U \ u^ ; at € SX} . M i s s a t i a t e with T on R: 

PFm*W* s L "̂  PF *Mo6>» oC 6 i l k B and for each countable dea 
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cending sequence % s. 3~"I*Fil|<M) there ii /3 e il with 

3C s ^ H pFin < MA ) ̂ d oo c ii . 06 > /3 with ^ * 3C . 

By the construction, f.30^ n II is non-empty, i.e. HOC n M is 

non-empty. 

We introduce the following concept. 

Definition.A class X is ^-fully revealed iff there is an 

ascending sequence ^X ;ne FNi of fully revealed classes such 

that X = LM Xn;ns FNi . 

It can easily be seen that a pair of classes <X»Y> (see 

tS-13 for the formal definition) is 6 -fully revealed iff the

re are ascending sequences 4X ;neFN} and -CYn;n&FNl such that 

the pair < X n»
Y
n^ is fully revealed for each n and X * Vi X ; 

n£ FNj and Y * U-i Yn;neFN* • 

Each Sd-class and each £-class obviously is e'-fully re

vealed. 

2. Now we shall apply the theorem to constructions of 

endoffiorphic universes with special properties. 

Let X, Y be classes, fe denote by R(X,Y) the class 

Ax;Def« n Y * Oj. ' The following assertions can easily be 

verified. 

a) R(X,Y) is closed on subsets. 

b) R(X,Y) is non-empty iff Def^^Y * 0. 

c) UR(XfY)QV-Y 

x) In LVe 13 there is introduced the notion of the reserve of 
X with respect to Yt «sv(X,Y) = *

z-D6jfXu*z ln Y s °*# T h u* 
SpR(X Y ) * r ) ^ R s v ^ u r t Y ) for reH. 
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d) If rfiR(XfY). then S p R ^ v ) (r)3 D©-tXur* 

e) If X and Y are the unions of ascending sequences 

^Xn;neFKl and 4YR;n6 FHl respectively then R(X,Y) * 

* nU(X a,T a);iicFH! . 

We shall show that 

f) If the pair<X#Y> is £~fully revealed then R(X,Y) 

is revealed. 

Let X and Y be the unions of ascending sequences iX ;n £ 

€ FHi and -£Y ineFNl of classes XM and Y„ respectively such n n n r * 

that the pairs < X *Y > are fully revealed. By the definition 

of B(X »Y ), this class is the intersection of all classes 

-U; 1 ( 3 x x x k 6 X n u u ) ( 3 y 6 Y 1 1 J ( C 3 ! w) Y<?,w) & f<*.y))3 

where if(su,...,z.tz) is a set formula of the language FL (x̂  

abbreviates x,,..,^^. There are count ably many of such clas

ses as FL is countable, and each of them is revealed as the 

pair < XntYn> is fully revealed* 

Using this observation and the assertion e) we see that 

R(X,Y) is an intersection of countably many revealed classes 

and therefore it is revealed , too. 

The following theorem closely resembles a result from 

[V© 13* It is proved here as a simple application of the first 

theorem. 

Theorem. Let <X,,Y> be a C-fully revealed pair of clas

ses such that Def^AY » 0. Then there is an endomorphic univer

se A with A o Y * 0 and A5X. 

Proof. Put R » R(X,Y). R is non-empty, closed on subsets 

and revealed. In the preceding section there was defined the 

565 -



system Tt oTer R. U t < Q,r > e * V 0 * ** • BT *h« theorem 

1 in CVe 13 there is xQ* DsfXur «ttch that 9<x0) holds. By the 

assertion d) it follows that SpB(r)nQ + 0, i.e. $^ is •rail-

able. By the first theorem, there is a class M satiate with 

3J
1 on R. M is an endomorphic universe and X£ll £OR. By the 

assertion c), UB£V-Y, i.e. M = A has the desired properties* 

For certain purposes (cf* CS-Ve3) we need a theorem ana

logous to the preceding one, claiming moreover that there ex

ists a set d with Aid] * V. 

It will be convenient to introduce the following definition* 

Definition. Let y(Z) be a property of classes, C and D 

classes. We say that C helps approximate Y i n classes ^-de

pending on D, Apr<Tf#C,D) iff for all classes S, L and X we 

have 

(Y(X) * 6 s < L ) * X9L"D)==> (3 Y^Sd CuS
) <*fi*s-*"D>* 

Lemma. Let D be a 6c-class. Then Apr(Rev,C,D). 

Proof* Let X be a revealed class, L a tfg-class for some 

S and X£ L"D* There are ascending sequences U ;ne FNi and 

4D ;n6 FNi of Sdg-classes and Sdc-classes respectively such that 

L • U-iLn;n€FN^ and D * lMD n;neFNS. The class L"D is the 

union of the ascending sequence of SdguC-classes --n"
n
n« As X is 

revealed and X£ L"D, there is n € FN such that X &Ln"D # i.e. 

Y * Ln"Dn is a SdSuC-class satisfying X S Y £ L
H D . 

Consequently, if D is a 0c-class then Apr(Sd,C,D) and 

Apr (tf,C,D) hold as i^U) =--> ifa(Z) implies Apr ( iflvC,D) *=> 

-=^ Apr(^2,C,D). 
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Let Xy,f denote the c l a s s U I %U;k€ Flf f i . e . the ©lass of 

a l l ordered k- tup las of elements of Xf hePK* 

Theorem, Lot < l f f > bo a -o-fully revealed pair of c l a s 

ses and d a se t such that Dof-» (\{fuM\) * 0 and 4 e U D§i.« 

Suppose AprCSd#Xu-td"lfX
Fll^f) ho lds . 

Then there i s an endomorphic uniTerse A such tha t A^X f A n f « 

= 0 f d # A and Atdl * ? . 

Proof* Put 1 * i (X f f u - td l ) . tt l a non-emptyt closed on 

subseia and reTealod as the pair <X ff >u-fdi> i s €f-fully reTo-

aled. We s h a l l show tha t the system J~ o v o r R i s a v a i l a b l e . 

Lot <Qfr> € CT^. For Q » <!& we see exact ly as in the preTious 

theorem tha t SpRCr)n H4=0. Suppose tha t Q « Q^ and S p g C r i n ^ * 

* 0 f i . e . Hw&f - Sp^Cr). 

For each se t formula f (z l f . • • •££ .#£) °* *&• language FL rdefine 

C.̂  * K x , < x 1 # . . . f x l f > f y > ; ( 3 l z)f{%9t9%) & f Cx»x*»y)| 

Ci*" abbreTiates x 1 § • • • , J I ^ ) . Recall tha t ^ x f y f £ > • <af <y fx>>» 

Define C as the union of a l l C^ * 

Each C^ i s a S d r - e l a s s . As r i s f i n i t e f FLr i s countable . I t 

follows tha t C i s a €?r~cla8s» 

The c l a s s V - Sp^ir) i s the union of a i l c l a s ses C^ "(X x . f ) f 

FN 
and therefore V - Sp^Cr) * C*CX ?«%f). We haYO 

sdCow) & e r co & l ^cC-CX^f ) . 
FK 

By the property AprCSdfX u l d l f X ^ f ) there i s a c l a s s W such 

tha t ^ « S d I w ^ d | u r and a f £ i i r f - s % ^ r ) # 

Let wQ be the CS-firsi T sa t i s fy ing a f £ f . Then i 0 £ ®*£%u4A\ur* 

Let %^i»%2^ **• the se t formula of the language W-xwr
 mm* 

tha t C3 i s t ) |Cd f E) * f CdfwQ) ho lds . 

Let u be an element of Defg such tha t d e u and l e t f be the 
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function with doa(f) « u which assigns to each xeu the G-firat 

T satisfying ^ < X § T ) if such a set v exists and 0 otherwise. 

Then f c Def^ and therefore f€Sp--Ar) as SpR(r)r
>Def- . On 

the other hand t(d) « w , i.e. f£ O • This is a contradiction 
^o 

because Q f £ W £ f - Sp^ir). It follows that the systea T g ** 

aTailable. 

The first theorem guarantees the existence of a class M 

satiate with 7^ on R. M « A has all desired properties. 

Corollary. U t X, Y be ^^^-classes, Defxr.Y » 0 and 

let d be an element of (UDef«) - Det 0 

Then there is an endonorphic uniTerse A, A?X, An Y * 0, d 4 A 

and AU3 = V. 

Proof. It suffices to show that Apr(Sd,X uid] ,XFllx Y) 

holds. It follows by the lemma stated above as X > < Y is a 

6'Xur<ji-class wheneTer X and Y are such. 

3. Now we shall inTestigate how similarities can be pro

longed • 

Let us begin with set similarities. For a set similarity 

g there is naturally and uniquely determined function Ug such 

that the fact that Ug is a similarity is a necessary condition 

for g to be extendable to an automorphism. We shall show that 

this is also sufficient. 

Definition. Let d be a set. For neFN we define by recur

sion 

P(0,d) = d P(n+l,d) • P(P(n,d))u P(n,d) 

If P(d)?d then P(n,d) * pn(d) where the symbol Pn denotes 
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n-tines iterated operation of power set. 

For m^ n we have F(m,d)£ P(n,d). 

If X€P(n+l,d) then either xsP(n,d) or xcd. Therefore the fol

lowing definition is correct. 

Definition. Let g be a set function, dom(g) = d. We de

fine by recursion for *€P(n,d), neFN 

Ug(x) * g(x) for xed f 

Ug(x) « Ug"x for xcP(n+l,4) - d. 

Thus Ug is a 6
1-class, dom(Ug) = U i P(n,d) ;n€ FN? and 

Ug p Hn,d) is a set for each n. If x£dom(Ug) then there is 

neFN such that x£P(n,d) and therefore x€dom(Ug). 

Similarly if x^,...,xks dom(Ug) then <x1#...,xk> 6 dom(Ug). 

Suppose there is an automorphism H?g. Then Ug = Hrdom(Ug) 

as for each set x we have H(x) *- HMx (cf. ch. 5, sec. 1, tVD). 

It follows that Ug is a similarity. 

Lemma. Let Ug be a similarity. Then for each xcdon(Ug) 

Ug(x) =- Ug"x. 

Proof. It holds by the definition for each xcdom(Ug) - d, 

i.e. especially for each P(n,d), as P(n,d) 4 <-• Let x9dom(Ug), 

xed, Let neFN be such that x£P(n,d). As Ug is a similarity, 

we have 

Ug(x)£ Ug(P(n,d)) » UgMP(n,d) & zc x s Ug(zU Ug(x) 

Tnese two facts imply that Ug(x) does equal to Ug
Nx. 

It follows that if Ug is a similarity then rng(Ug) is the 

class UK P(n,rng(g));n<*FN$ and U(g~X) == (Ug)"1. 

Lemma. Let f, g be set functions such that f is finite 
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and Uguf i s a s imilarity . Let y € V . then there are y and y " 

such that Uguf u$<y* fy >J and Ugu f u •(< yfy">3[ are s imi lar i 

t i e s . 

Proof. Let $ $ k^l* • • • • zm * ' k € FN^ b e a 8 6 < - u e n c e 0Jf a i l 

set formulas of the language P"-̂ <,.»(£)• L e t us define 

a k n * ^ < 0 f x 2 f . . . f x i i > ; x 2 f . . . f X a l € F(n.,d)& opk(y»x2f . . . . x ^ )}. 

Then m^ n£dom(Ug) and therefore a^ Qc dom(Ug). 

Por each nQeFN the following holds: 

( 3 x ) ( V k f n . ^ n 0 ) ( V x 2 f . . . f x - | € P(n f d) n ) 

( c f k ( x f x 2 f . . . , x a | k ) S - < o , x 2 xm> e ak # n) 

Namely, x«-y satisfies the above formula. As Uguf is a simila

rity, we have 

(Ji)(tfk,na0)(Via xB & Ug(P(n.d)) 
(>K) * 

(9^(xfx2f...fxB ) s <0fx2#...fXB > e Ug(«^n)) . 

Considering the facts that for nfkePM 

Ug(P(n,d)) « UgwP(n fd),Ug(ak#n) * &*"»k>n» ^g(O) * 0 

and that for x , , . . .9xme dom(Ug) 

U g « x l f . . . f x | i » « < U g ( x 1 ) f . . . f U g ( x i | ) > 

we can see that (* ) i s equivalent to 

( 3 x ) ( V k f n - * n 0 ) ( V x 2 , . . . , x m € P(n fd)) 

( 9 j [ ( X f Ug(x 2 ) f . . . f Ug(x I I l ) ) ^ < 0 f x 2 f . . . , x a | k > € ak > n) 

By the axiom of prolongation there is y satisfying 

(Vk.nePH) (Vxot...tx cP(nfd)) 
k 

We shall show that DgufuUy'.j)^ is a Binilarity. 
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Denote F « Ug u i< j',7>$ • Let Y(*i»•••t-tm) be a set formu

la of the language *l*&om{t)% W e "us,t verify that for any 

xA ^edoiiF) 

Y(x x x.) s Yf(-?(x1),.-..F(x|B)) 

holds. If there is not y among xlt...txB then it is true be

cause Uguf is a similarity. Otherwise we can suppose that 

y-x.j. and Xgt •• • . x ^ dom(Ug). Tnere is kcFN such that if* 9>k. 

Let n€ FN be such that x2»•.*,*m£ F(ntd). Then 

Yd.*^*--.**) = 9k(y,xa,...,x1) -s<otxat...txB> € a k n s 

H-?9>£(y',ug(x2) tig(xB)) & Yr(y',ug(x2) ug(xB)) 

which we have claimed* 

As Uguf is a similarity* also its inverse, (Ug)" u f « 

s U(g )uf~x is a similarity. By the above method y " can be 

found such that U(g )u f" u i < y" ty >} is a similarity* The

refore its inverse, Ugu f u-C< yty
##>} is a similarity. 

Let F be a function. Define R(F) * -£f ;Fu f is a similari

ty!;. Obviously R(F) is closed on subsets and it is non-empty 

iff F is a similarity* 

Suppose F is a ^-fully revealed class, i.e. the union of an 

ascending sequence of fully revealed classes {F jneFNj. Then 

R(F) is revealed because it is the intersection of all classes 

^f;(Vx1,...txkedom(Fnuf))(y(xlt..,,xk) ~ 

sif((Fnuf)ix1) (Fnuf)(xk)))J 

where ne FN and i^z,,... ,z. ) is a set formula of the language 

FL. 

Theorem. A set similarity g can be prolonged to an auto

morphism iff the function Ug is a similarity. 
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Proof* One part of the theorem has been already mentioned* 

Suppose that Ug is a similarity* Put R » R(Ug). 

R is non-empty, closed on subsets and revealed as Ug is a S'-

class* The system if, defined in the first section is availab

le over R by the previous lemma* The first theorem guarantees 

the existence of a class M satiate with T~ on ft. M is the de

sired automorphism. MSUg^g. 

Let us make one simple observation about similarities* 

Definition* Let F be a similarity, fe denote by DF the class 

of all pairs <x ,x> such that there is a set formula g?(x) of 

the language M*doa(p) 'or which (3 1 z)<$> (z) & 9 (x) & <J>
F(x') 

holds* 

Theorem* Let F be a similarity* Then dom(DF) * b*?A0miv\ 

and DF is the unique similarity extending F to a similarity 

with the domain equal to V**AQm(tf\* 

The proof is easy* Note that if dom(F) « rng(F) then 

dom(DF) = rng(DF) and analogously for inclusions* 

To prove our next theorem concerning prolongations of simi

larities to automorphisms we need classes defined as follows 

(recall that FN*""' denotes the class of all finite integers)* 

Let F be a function* R (F) is the class of all functions 

f for which there exists a sequence 4f-;je FN*"'J such that 

1) f0 » f. 

2) dom(fj^1) » rng(fj) for a l l j € F N * ~ \ 

3) F u U { f j ; i . sFN i ~ , $ i s a similarity* 

Obviously, R°* (F) is closed on subsets and is non-empty iff F 

is a similarity (then U O > 0 > } c R
Q ( F ) ) , 

- 572 



3) setting B - ř - u l i U ^ j -oc -ž L á o C ? 

Suppose P is a ef-fully revealed class» i.e. the union of an 

ascending sequence of fully revealed classes {F ;neFNf • We 

shall show that then R^(F) is a revealed class 

Let {(p^isi****** );keFNi be a sequence of all set formulas 

of the language PL. 

Define C M as the class of all functions f for which there is ot»n 

• set sequence itL; - 06 & L -= ocl such that 

1) t 0 - f* 

2) dom f l j r l « rng(f^) for a l l t with - cc & L < 06 , 

the following holds: 

( V k - 4 n ) ( V x 1 » . . . » x j i 6 * • • ( £ ) ) ( 9 k ( x 1 # . . . t , x i B ) s ? 

3? 9k<EU 1 ) . .» . .E(x | B ) ) ) . 

We claim that R*>(F) «- O < Cn#|l»n eFHf # 

Obviously a a > ( F ) c n U n R;n€ FN $. 

Let f € n 4 C n n;n€PN^. Let D E be the class of all it% ; - oC ̂  

^ t --S ocl satisfying the three conditions from the definition 

of C ^ and such that oC r n* 
©c»* 

The classes D n are non-empty as t c CR for each ncFN» reveal

ed because they are definable by a normal formula with the only 

class parameter P » and they form a descending sequence. There

fore their intersection is non-empty* 

Let it.; - 06 =£ L ^ac\ be an element of this intersection* Then 

oC 4 FN and F u U-t f .; j e FN*~;i is a similarity. Thence fcR^(F) 

which proves the clai^u 

The classes C are definable by a normal formula of the langu-
n»n 

age PL with the only class parameter Pn and as such they are re

vealed. It follows that R^(F) is revealed. 
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Theorem. Let F be a similarity and a C-fully revealed 

class. Suppose that dom(F) » rng(F) and Apr( ?rfdom(F)#PFil|(F)) 

hold. Then there ia an automorphism F, Fj?F. 

Proof. Put R • R a >(F). B is a non-empty revealed class clo

sed on subsets. We shall show that the system .TL defined in 

the first section is available over R. Then by the first theorem 

there is a class M satiate with 3"g on R which implies that M is 

an automorphism and Mr* F, i.e. M * F has the desired properties. 

Suppose on the contrary that there is a finite fe R and a 

set w c ? such that - let us say - Ix^wJsv - SpR(f). Let 

-\9>. (x,,....* );kcFN^ be a sequence of all set formulas of the 

language FL. Let it*;je FN1"'* be a sequence satisfying the three 

conditions from the definition of R^(F ) . 

Denote H * U i ty, j e FN*"*} . 

Let S be the class of all set sequences s *{•<,; -<£ - t - ^ ̂  * 

Call oc the length of s. Set if *-f < a^ 1 #« u> ; -oC A t < ocl. 

Define C Q as the class of all pairs <^s,g> such that icS and 

ting H n « gus uUity, -n-^j-^nJ the following holds: 

K V k ^ n J i V i p . . . ^ e dom(Hn)) 

< <fk<*l x « k
} ** ** ( H« Ui> H n ( x m k

) ) K 

Each c l a s s CQ i s definable by a s e t formula of the language 

F L*f . j -n- f j - rhT^^ f5 a r a f i n i t * functions and f . £ dom(H)* dom(H), 

we have \ty, -n -£j-£ n H ->e*d0B|(H) and therefo re Cn i s a 

S d dom(h)" c i l 1 8 8 f o r 6 a c h n # 

Let C * U * C n ;neFN*. C i s a C d o a ( H ) . c i t t 8 s and the c l a s s 
C*PFin*F* C 0 n » i s t 8 °* * u 8 € S s«ch that F u s u H i s not a s imi
l a r i t y . 
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For T C V 1st S Q ( T ) be the class of those sequences s from S for 

which s 0 « T and whose length is greater or equal to n and 

S(T) «n<S n(T);n£FH}. 

We cliim that S(w) is a subclass of CHPFi (F). Suppose on the 

contrary that there is acS(w) - C"PFin(F). *-*«*- *
 s £u{< al§mQ>l 

is an element of R^F) as can be seen by considering the sequen

ce of functions fQ « ̂ n u ̂  ̂  8n*ltSn^^ *or n £ F H J 

f0 -* t, dom(?n+1) « rng(?n) for all ncFH*"* and F u U i $n;n € 

c FK ] is a subclass of F u H u s and therefore a similarity* 

It means that <si»s0>€SpR(f )• But s0 * w and we haTe assumed 

that ?*{*}£ V - SpR(f). Our claim is justified. Thus we haws 

*(&<*)) * * dom(H)
( C ) &S<w)^C"PFin(F) . 

By our assumption, Apr(##dom(F)»PFin(F)) holds. Therefore the

re is a Sdd0M(H)ud01l(Frcliiss T (i.e. Sd d M 1 < F u H rclas8) such 

that S(w)£ TfiCP F i n(F). The class S(w) is the intersection of 

the descending sequence of Sd-classes S (w); therefore the des

cending sequence *Sn(w) - Y;n€FN$ of Sd-classes has empty in

tersection. Consequently there is ne FN such that S (w) - T is 
n 

empty, i . e . S n (w)£T. 

Let wA be the G-first set v such that S J v l i Y , Then w i s o n o 

an element of D*f
d0B|/|?uH)* T n o function Full i s a s imi lar i ty and 

dom(FuH) = rng(FuH); therefore also D(FUH) i s a s imi lar i ty 

and dom(D(FuH)) * rng(D(FuH)) =- ^w^^^sv/H)* C o n s i d « r t n e • • -

quence s * -t (D(Fu H))J(wQ); -n-&j-&nl« Obviously s belongs to 

SQ(w0) but not to C"PFin(F) aa F u s u H i s a subclass of D(FuH) 

and therefore a s imi lar i ty . This i s a contradiction as S (w )£-

The theorem i s proTed. 

575 -



Corollary. Let P be a 6 d o i ( p ) . c U l l ^ m u±mii*ritj. 

dom(P) » rng(F). Then P can be prolongs to ̂  ^tcorphiem. 

Proof. It .uffice. to .how that Apr( ar,dom(P).Prt||(P)) 

hold.. Obviously PFi|1(P) i« a ^dof|(r)-cia.« a. P i. sue* «e* 

a previous lemma guarantees what is needed. 

For example, P can be a similarity of the form Id r it u 

^ i < u,u>! ̂  H, where u is a set and H is countable class sa

tisfying dom(H) <* rng(H). 

If we replace in the above theorem the assumption dom(F)» 

= rng(P) by dom(F)2 rng(F), we can get an endomorphi.m extend

ing F. Without the assumption Apr (jr ,dom(F) ,PFin(F)) we can ex

tend P to a similarity F with dom(P) « rng(P) * A, where A is 

an endomorphic universe. 
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