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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,3 (1982) 

A NOTE ON ISOMORPHIC VARIETIES 
Jaroslav JEŽEK 

Abstract; We shall characterize all the pairs (A » V ) of 
similarity types such that the variety of all A-algebras is 
isomorphic (as a category) to some variety of P-algebras. 

Key words: Algebra, variety. 

Classification: 08C05 

McKenzie 113 proved that for any finite type A , the va

riety of all A -algebras is isomorphic to a variety of (2,1)-

algebras (algebras with one binary and one unary operation); 

he asks if the variety ot all (2,1)-algebras is isomorphic to 

some variety of (2)-algebras (i.e. groupoids). The aim of the 

present paper is to give a negative answer to this question 

and, more generally, to characterize all the pairs (A9V) of 

types such that the variety of all A -algebras is isomorphic 

to some variety of P-algebras. 

By a type we mean a set of operation symbols; every ope

ration symbol F is associated with a non-negative integer, de

noted by n« and called the arity of F. Let A be a type. A A -

algebra A is determined by a non-empty set (the underlying set 

of A, denoted also by A) and by an assignment of an n-y-ary ope

ration on the set A to any symbol F €. A ; this operation will 
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be denoted by F.. 

Let V, W be two varieties and X I—» X* be a functor from 

the category V into the category W. Following [lUf we say that 

Xi—>X* is an isomorphic functor from V to W if every algebra 

from W is isomorphic to A* for some Ac V, and if X I—> X* indu

ces a bijection of hom(A„B) onto hom(A*fB*) for every A,Be V. 

(It is easy to see that if A,B€ V then A---- B iff A**-* B*.) We 

say that two varieties V, W are isomorphic if there exists aa 

isomorphic functor from V to W. 

Lemma 1. Let V, W be two varieties and X I—> K* be an iso

morphic functor from V to W. Then: 

(1) If A & V then A is one-element iff A* is one-element* 

(2) If oc is a V-morphism then oc is injective iff oc* is in-

jective. 

(3) If cc is a V-morphism then cC is surjective iff oc* is sur-

jective. 

Proof. A is one-element iff for any B£ V there is exactly 

one morphism in hom(B,A). oC is injective iff it is a monomor-

phism. oc is surjective iff the following is true for all V-

morphisms (h , T *• if oC - ffi and if y is injective then X 

is an isomorphism. 

Lemma 2. Let V, W be two varieties and X t~-> X* be an iso

morphic functor from V to W. Let k>l be an integer; let P b© 

a V-free algebra of rank k and suppose that P* is a W-free al

gebra of rank 1; let x,,...,x, be free generators of P and let 

x be a free generator of P* • For every a€V we can define a 

one-to-one mapping c of A* onto A in this way: if a 6 A* then 

c^(a) as (oc (XJL ),..., oC (x^)) where oC is the unique morphism 
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from hom(P,A) with «C*(x) -- a. I f ft e hom(A,B) in V, a e A * 

and t A ( a ) » ( o 1 # . . . , a k ) then Lg( /3*(a)) « (|3 ( a ^ . . . , / 3 ( a ^ ) . 

Proof. Evidently, it is possible to define a mapping c 

.it k k 

of A* into A as above* Conversely, define a mapping ae.of A 

into A* as follows: if a1,*..,ak6 A , put -aeA%alf...,ak) « 

-= oC*(x) where oc is the unique morphism from hom(P,A) with 

oC(x1) » a1,..., cc(xk) « ak. Evidently, the mappings ae^ <-A 

and L . de. are both identical, so that i. is bijective and 

9€. is its inverse* Let ft e hom(A,B), aeA* and i.(a) * 

»= (a1,...,ak). There is a unique cc e hom(P,A), with oc*(x) * 

= a; we have a1 « oc (x,),...,ak = oC(xk). Now ftoc e hom(P,B)9 

( fioc )* (x) « /3*U) and so tfi(p*(a)) = (/3oc (xJL,...,/3oc(xk))« 

« (/i(a1)....,/B(ak)). 

Let V, W be two varieties. By an equivalence between V, W 

we mean an isomorphic functor from Y to W commuting with the 

underlying set functors. (Then this functor induces a bisecti

on between Y, W.) 

Lemma 3. Let V, W be two varieties and X H^ X* be an iso

morphic functor from Y to W. Let P be a V-free algebra of rank 

X and suppose that P* is a W-free algebra of rank X, too. Then 

Y, W are equivalent. 

Proof. It follows easily from Lemma 2. 

Corollary. Let V, W be two varieties of idempotent algeb-

bras. If V, W are isomorphic then they are equivalent. 

Proof. It follows from Lemma 3 and assertion (1) of Lem

ma 1. 
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L a — 4. Lat A , P be two types, let V be the variety 

»f all A -algebras and let W be some variety ot P-algebras; 

Lat X »-> X* be an isomorphic functor from V to W. Then there 

are an integer kZ" 1 and an algebra PeV such that P is a V-free 

algebra of rank k and P* is a W-free algebra of rank 1. 

Proof. Evidently, there is an algebra P e V such that P* 

is a W-free algebra of rank 1* Let us call an algebra Ac W 

•-projective in W if for any surjective morphism cc in W and 

any morphism ft e hon(A,B), where B is the end of cc , there ex

ists a morphism 7 in I with ft * ocy • Every W-free algebra 

is s-projective in W. Hence P* is s-projective in W and so P 

is s-projective in V. However, in V every s-projective algebra 

is Y-free (as it is easy to see). Hence P is V-free of rank k 

for some cardinal number k. Suppose k=0. Then for every a £ V, 

hom(P,A) contains exactly one morphism; but then hon(P*,B) con

tains exactly one morphism for every BeW, which is evidently 

impossible. Hence kiTl. Suppose that k is infinite. Then P is 

the coproduct (in V) of CJ copies of P, so that P* is the co-

product (in W) of co copies of P* ; thus P* is a W-free algebra 

of rank o> . However, this is impossible. 

In the following Lemmas 5,6,7,8,9 and 10 let A , P be two 

types, let V be the variety of all A -algebras and W be some 

variety of P-algebras; let X 1—>X* be an isomorphic functor 

from V to W; let k£" 1 be an integer 1 Pe V be an algebra such 

that P is a V-free algebra of rank p* ia a W-free algebra 

o£ rank 1. We shall fix rree generators x,,...^^ of P and a 

free generator x of P* • For every A £ V defi* as in Lemma 2; 

write u instead of u.. Pu aer, let us f a JO algebra Q 
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with an infinite countable set of free generators 4 x • .; 1 -£. 
*» J 

-£!<:&>, i^j^kf. The free generators x, . of Q will be cal-
1 , j 

led variables and the elements of Q - terms. Define morphisms 

dC.:P—> Q by ^ ( x * ) ~ x± i* * n e n Q i s a coproduct (in V) of 

CO copies of P, with canonical morphisms oc. (l.£i«-c co)m 

Consequently, Q* i s a coproduct (in W) of co copies of P*,with 

canonical morphisms oC*̂  • Put y^ • oC* (x); then Q* i s a W-free 

algebra with free generators y ^ y ^ , . . * and we have t ( y A ) * 

=- (x, , x. . ) . For every F e P denote by ( F 1 1 3 , . . . t F t k 3 ) 

the k-tuple u ( P Q | e ( y l f . . ^ y I l ) ) . 

F 

Lemma 5. Let l££l,2,...^ and let acQ* be an element be

longing to the subalgebra of Q* generated by jyi;ie 13. Put 

t(a) * (a,,...,ak). Then every variable contained in some of 

the terms a-»...,a^ belongs to 4 x. . ;iel, l . - - j - £ k ? . 

Proof. There is an endomorphism £ of Q such that 

e*<yi) * J± -tor all i€ I and e* (yi) - y±+t for all i^I. We 

have e* (a) -» a and so e (a,) * a,,..., £(ak) = afe by Lemma 2; 

hence e (z) & z. for any variable z contained in some of the 
terms a1,...,alr. We have e (x. .) = x.^, . for all i, j such 

x * x,j I+A»J 
that i<£I; hence e (x. .) « x. . implies iel. i, j I,j 

Lemma 6. If F contains a nullary symbol then /l contains 

a nullary symbol. 

Proof. It follows from Lemma 5. 

Lemma 7. Let M be a subset of Q such that every variable 

belongs to M, the terms F i U ,..., FCk3 belong to M for any sjm-

bol F e P and e(M)£ M for any endomorphism e of Q mapping 

all variables into M. Then M=Q. 
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Proof. Denote by D the set of all ueQ* *« c h tn»* ** 

L (u) « (u19...,uk) then ult...,uk6 M. Since L(yA) * (x^ 1*.» 

...,x. k ) and M contains all variables, we have K ?i»f2» • ••*-* -)• 

Let us prove that D is a subalgebra of Q* • Let Fe P and d-,,... 

...,d c D. Put • « *Q*(d1,».«,d ), ttd^ • (di/i>*»»
difK^ •

n d 

t,(*) « (•1,...,«k); we have d̂, , c M. Denote by e the endomor-

phiam of Q with e*(yx) « d1,...f e* (y ) » d and €*(yj.) • 

• ŷ ^ for i.> n?. By Lemma 2 we have e (x̂ ^ j) - ̂  j -for i** np 

and e(xt j) • it , for i>n F. !• hav» e*(FQ3r(y1 y^ )) » 

* FQ*Cd1##..#d ) - • and so e (FCl1 ) » ex,..., e ( P
U 3 ) » e k. 

By the properties of M, 4 e., ...,ekl S M and so ee D. We have pro

ved that D is a subalgebra of Q* containing the generators and 

so D * Q* • Hence for every u c Q * we have U ( U ) G M ; but then 

M«<t. 

Lemma 8. Let F e P be unary; let at Q* be such that 

u(F#|9.(a)) is a sequence of pairwise different variables. Then 

t(a) is a sequence of pairwise different variables. 

Proof. Put L(FQ^(a)) • (z19...,zk) and t (a) * (a,,... 

..., ak)« Let & be an endomorphism of Q with e*(y,) • a, so 

that e (xx x) » ax,..., e Ux k ) • afc. We have e*(FQ3|t(y1)) • 

-= Fq*(a) and so e(FtlJ) a z1#..., e(F* W) = zfc. From this it 

follows that F ,...,F is a sequence of pairwise different 

variables; by Lemma 5, {ViU ,.. .,P[k3 * = iXj, x ,xx k$ . Since 

€, {Fl ,..., £(F t k 3) are pairwise different variables, the sa

me must be true for e (x, - ) 
x, x 

Є(x^
 fc
), i.e. for a

1
...,a

k
. 

Lemma 9. Let k? 2. Then there is a symbol F & P of arity 

£ 2 such that P ...... F are pairwise different variables. 
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Proof* There is an element meQ* with L (a) • (x-, £•••» 

• •••*!-. 1*# B y L e m m a 5» a d o e s not ->«->ong t0 the sub algebra of 

Q* generated by yit for any i. From this it follows that there 

are a symbol F c P 0f some arity n?2» elements ax a^e Q* 

and unary symbols HX
t...tH* (m>0) such that a « H 1* ... 

— t tQ* FQ# ( ai'- # >*n)*1?Ut
 b *PQ*<*1>-'- » V - B y LelBlia 8* U ( b > i B 

a sequence of pairwise different variables. There is an endo-

morphism e of Q w i th b • £* (Fft*(y,....tyn)); hence 
c l*W w»tkJ, * 

«. \r M * » » tvr ) is a sequence of pairwise different vari

ables, so that Ftl3
t...t F

lkl are pairwise different variables. 

Lemma 10. There is a mapping A i A — > P with the fol

lowing three properties: 

(1) nG-£kna(G)for all G e A -

(2) If Glt...tGtt e A are pairwise different and %{QX) « ... • 

« -^^Gffl) then m ^ k . 

(3) If k £ 2 then the set P \ 7i (A ) contains an at least bina

ry symbol. 

Proof. Let G s A . Suppose that there is no symbol H € P 

such that G(zlt...tz )€^HtlJ....f H
t k 1 for #©*** »«4rwise dif-

X lip 

ferent variables zlt...tzn • Then the set U of terms which are 
i "G 

not of the form G(zlt...tzn ) with z,,...,* pairwise diffe-
1 nG x "G 

rent variables satisfies evidently the assumptions of Lemma %9 

so that M=Q by Lemma 7t evidently a contradiction. This shows 

that for every G e A we can choose some £t(G) e F such that 

G(zlt....z )e { A ( G ) L X ]
 t...t 2L(G)Ck3} for some pairwise dif

ferent varxables z1f...tz_ . (1) follows from Lemma 5t (2) is 

x nG 

evident and (3) follows from Lemma 9. 

- 585-



Theorem 1. Let A , P be two type* and let k > l be an 

integer. The following two conditions (I),(II) are equivalent: 

(I) There exists an isomorphic functor X H-> X* from the vari

ety of all A -algebras to soma variety of V-algebras such that 

for sons P € V, P is a V-free algebra of rank k and P* is a f-

free algebra of rank 1* 

(II) There exists a mapping A : A —>* V such that the fol

lowing four conditions are satisfied: 

(1) nG^knMQ) for all G c A . 

(2) If G,,...,G e A are pairwiee different and ^l(G^) = 

*...* A(G a) then a^k* 

(3) If k > 2 then the set P \ (K (A ) contains an at least 

binary symbol* 

(4) If P contains a miliary symbol then A contains a 

miliary symbol* 

Proof* The direct implication follows from Lemmas 10 and 

6* Now let (II) be satisfied. Denote by V the variety of all 

A -algebras* If k*-l than 3. is injective and na~ nsi(G) * o r a i l 

G & A ; this* together with (4). implies that V is equivalent 

to a variety of P -algebras. Let k>2* By (3) there exists an 

at least binary symbol Sc P\ %{A ) , and evidently it is enough 

to consider the case when S is binary. For every F 6 P fix a 

finite sequence ^p, consisting of all pairwise different sym

bols G e A with F = 2t(G). If P contains miliary symbols, fix 

a miliary symbol H e A • For every A -algebra A define a V -
k 

algebra A* with the underlying set A as follows: 

SA#((ait...,ak)t (b^,*..^)) ~ (bk#ax
 ak-l*; 

if F eP\-CS^ ia a symbol of arity n>l and (Up - (G .....G
01), 
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put 

- > « - l . — *V. <-k*i *3k} <
-

П
k-k

+
l'"-

a
nk

, ) 

- ( Giui v } ^ v ) , a i a*); 

G
l
 G

m 

if F e F is miliary and ^(0 .....G™), put 

V* ^''"^A^A'--"
1
^-

For every A -morphism ct :A — > B define a F -morphism oc* :A*-> 

—•> B* by oC*(a
1
,...

t
a

k
) « (oG (a^),..., oC(a

fc
) )• It is not dif

ficult to prove that the class W of F-algebras isomorphic to 

A* for some A e V is a variety and that X »—> X* is an isomorph

ic functor from V to W such that the V-free algebra of rank k 

corresponds to the W-free algebra of rank 1. We shall not give 

here a detailed proof of this fact, since it is analogous to 

that of Theorem 1.1 of til. 

Theorem 2. Let A 9 P be two types. For every integer 

1Z 0 put d
i
 -* Card 4 F e A ;n

p
?il and g± -* Card 4 F e P ;nF£ i? . 

The variety V of all A -algebras is isomorphic to some variety 

of P-algebras iff the following seven conditions are satisfied: 

(1) If dQ is infinite then dg^ gQ. 

(2) If d, is infinite then d±£ gi# 

(3) Min(di;i Z 0 ) £ Min(g±;i Z 0). 

(4) If g 2 a 0 then d i ^ g i for a l l i . 

(5) If g± = 1 then e i the r d±£ g± for a l l i or d± -= 0 . 

(6) If gQ = 1 then dQ£ 1 . 

(7) If F contains a nullary symbol then A contains a milia

ry symbol» 

Proof. By Lemma 4, the isomorphism of V to some variety 
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•f r-algebra* la equivalent to the oxiatoneo of an integer 

kZ"! satisfying tho condition (I) of Theorem 1 and thus to 

the oxiatoneo of k and % satisfying tho condition (II) of 

Theorem 1* It is not difficult to re-formulate this conditi

on in terms of the cardinal numbers d i and g.̂ * 

. R e f e r e n c e 

[ U R. McKENZIE: A now product of algebras and a type reduc

tion theorem (to appear). 

Matematicko-fyzikálni fakulta. Universita Karlova, Sokolovská 
83, 18600 Praha 8, Czochoslovakia 

(Oblátům 23.4. 1982) 
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