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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
23.4 (1982) 

BASIC EQUIVALENCES IN THE ALTERNATIVE SET THEORY 
K. CUDA. B. KUSSOVA 

Abstracts In the paper we study a special case of equi-
valences of indiscernibility, so-called basic equivalences. 
The equivalences, whose definition has quite a set-logical 
character, play an important role in non-standard descripti
ons of topology and other areas of the alternative set theo
ry. We proved here among others that there is not possible 
to include a proper set-theoretically definable class into a 
monad and that each set-theoretically definable function which 
has a fixpoint with respect to the basic equivalence in a mo
nad is necessarily an identity on this monad. 

Key wordss Alternative set theory, basic equivalence, 
monad, set-theoretically definable class. 

Classifications Primary 03E70 

Secondary 54J05 

This work is devoted to the studying of some properties 

of equivalence c « • The equivalence -§- is defined in IVI, 

ch. V, § 1. Already from the results presented in the quoted 

book it follows that ==• is of consequence in the alternative 

set theory. In the paper [V 1), the definition of the equiva

lence Y wr-icri is a generalization of =s , is given, and se

veral essential theorems are proved there. Other works in the 

alternative set theory, especially tS - V], confirm the im

portance of these equivalences and, above all, the signifi

cance of .==-, ; we shall call it basic equivalence. 
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How we remind (from IVl and IV 13) several crucial defi

nitions and assertions which we shall need later on. 

We put x «*-y iff the formula g>(x)isg>(y) holds for any 

set-formula g>(z) of the language FL-,. 

Even now we can see that the non-standard description of 

topology is much closer to set-logical considerations than the 

standard one* 

If X is a finite or a countable class, then ~|- is an e-

quivalenoe of indiscernibility (cf. t V3, ch. Ill) which is to

tally disconnected. The clopen figures in =~ are 3 u f l t the 

classes which belong to Sdx* 

Moreover, it was proved in [V 1] that for each equivalen

ce of indiscernibility .==- there is an equivalence t & which 

is finer. This fact actually led to the name - basic equiva

lence - for^^fs * 

Monads in.$==2 » i.e. classes of decomposition of V accor

ding to ,===• t correspond (by a one-one correspondence) with 

ultrafliters on the ring of classes Sd*c> (recall that Sdt * 

denotes the system of all classes of the form Jx; <£(x)| where 

«> is a set-formula of the language &bfci* cf. IS - Ve 13). 

The correspondence is described as follows: for (t-t € V/-!r and 

& being an ultrafilter on Sd*cif we have X e f g l 2 ^ for 

each X c Sd* •̂ 

We shall define an ordering rr* on monads (note that it 
i CI 

is similar to Rudin-Keesler's ordering on ultrafliters) and 

investigate its properties* 

Perhaps, the most interesting result of this paper is the 

theorem, analogous to the classical theorem of the set theory, 
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which asserts that two monads have the same strength (in order

ing by i> ), iff there exists a one-one mapping between them* 
it i 

Note that through the whole paper we do not use the axiom 

of extensional coding (the axiom of choice) and the axiom of 

cardinalities. When we speak about ordering on V, we bear in 

mind the natural ordering on the class (see [ V3, ch- II, § 1)* 

The authors thank P. Vopenka for discussions concerning 

the problems studied. 

S i . At first we prove that the following statement holds 

for each function Fe Sd,„,: if P has a fixpoint with respect to 
TC$ 

|-̂  , then F is an identity. We also show that the condition 

cannot be generalized in the a^nme that if F,GeSd.£Cj and 

F(x).^aG(x), then F(x) « G(x) is valid, see Example 1. 

Theorem 1. Let FeSd^i, F be a function- Then 

(Vx)CF(x).l=jx -=»QX€Sd^ c ?)(PrX « IdTX & (aic}(x)Sl)]. 

Proof. Let F(x)i|*i x for F e S d ^ . Let us denote X » 

« *t,F(t) « tj. Because X e S d ^ and hence X is a clopen figu

re, it suffices to prove that xeX since this implies 

f - - i c i (x)cx. 

Suppose x^X and put Y « do»(F) - X • Obviously Ye S d ^ . 

Moreover, x e Y and hence ^c-.(x)£Y. 

Let us construct the graph G of F; its chromatic number 

being less than or equal to 3. Therefore, the field of G is 

the union Y^uYguY^ where Y.[ (i « 1,2,3) are mutually disjoint 

(Y' contains just the elements of G which are coloured with 

the same colour). Hence ( F " Y ^ ) A Y ^ • 0. Firstly, we prove that 
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we can choose Y^ in such a way that Y.̂ 6 S d ^ » we simply colour 

the graph G. 

Let *KA cw be the system of components of G. Firstly, let 

Ka terminated by a cycle. Then we colour the smallest element 

of the cycle by the colour 1 and going back around it the verti

ces will be alternately coloured by colours 1 and 2, eventually 

3 (when the cycle has an odd number of vertices). If K^ ends 

by a vertex which does not belong to dom(P), we colour it by 

the colour 1 and when going backward we alternate colours 1 and 

2. If K£ Is confinal with N (K£ is now a proper class) we find 

its least element and colour it by the colour 1. Then, starting 

from the point to both the opposite sides, we alternate colours 

1 and 2* Thus, Y-[e S d ^ (i » 1,2,3)» 

Put YjL » Yj[ndom(F) for i » 1,2,3. Obviously Y±e Sd^cj. Sin

ce xeY, there exists jeil92,3$ such that xeY.;then (".£C$(x)£ 

£Y .» . Moreover, for each i there is ^n^4^^± ** $ a n d therefore 

also F M ^ c } ( x ) ^£\c|(x) • 0| this is in contradiction to 

F(x)if j x. 

Remark. It is possible to reformulate Theorem 1 into the 

following equivalent version: 

(Vx,c) l*tiX9ri"t*utl*) - tx*t 

since the formula ycDef* c? is equivalent to the formula y * 

• P(x) for a suitably chosen function FeSd^ c$. 

Example 1. There are functions P,GcSd such that 

Qx)(F(x) A G(x) & F(x) + G(x)). 

We shall define functions P, G, as follows: for each <t,u> 

we put F(<t,u» » t and G«t,u» • u. Let v, w be such that v-^w 
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and v «=- w. Then i t suff ices to put x • < vfw>. 

Now we s h a l l take an i n t e r e s t in a question how monads 

are mapped by s e t - t h e o r e t i c a l l y definable re la t ions and how 

functions of Sd^c^ behave on monads in j^K* 

Theorem 2 . (Vx ty fc) dom( < u . c | ( < y f x » ) • ( ^ - i c S ^ ) ^ 

8< r n g ( < a i c l « y f x » ) » <«^ c ? (y ) . 

Proof. We prove only the f i r s t a s s e r t i o n ; the second one 

can be proved analogously. F i r s t l y , no te tha t i f XeSd , , and 

<y,x>eX, then x€dom(X) and dom(X) € Sd|c~;. Let 4'Xn*n eFNi be 

a descending sequence of c lasses from Sd, * such tha t ( a i C j (x)= 

= fUX^neFN"? and l e t $Y incFNi be such a descending sequence 

of c lasses from S d ^ for which ( ^ c j « y t x » = fUYn ;n€FN? and 

dom(Yn)SXn. Then according to LVl f ch . I I , 5 5, we have 

d o m ( ^ i c - j « y f x » ) • dom(A -CYn#n € FN?)« fUdom Yn#neFNj » 

Theorem ? . Let RcSdc ? f R be a r e l a t i o n . Then for each 

xf the c l a s s R ^ ^ j t x ) i s a closed f igure in ^=fj • 

Proof. The fact tha t ^("-.i c$ (-*) i s a f igure follows im

mediately from the previous theorem when applying i t to 

C^tcS^y-**) *or <y f x>€R. I t remains to prove tha t R"(-^ e$(x) 

i s a sr-class (cf . § 2 ch. I l l t V l ) . Since R" ^ c j ( x ) » 

* dora((Ro(Vx. ftc^)))"1) a n d s ince the c lasses Rf Vf 

jouj ^(x) are ^ - c l a s s e s , the c l a s s Rw ( a , c - ( x ) i s a l so a JT-

c l a s s (see § 5 ch . I I CV3). 

From Theorem 3 i t follows immediately: 

Theorem 4 . £«-t R c S d ^ , R be a r e l a t i o n . Let <y fx>€R 

and x -̂g-̂  x . Then there i s a s e t y such tha t y Jk* y and 
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<y,x>€R. 

The next theorem asserts that functions of Sd<* •> are both 

continuous and open with respect to *«, • 

Theorem 5# Let FeSdr c ? f F be a function. Let ^ be a 

monad in e«=-s • Then Fw>u, i s e i ther empty or F"^ i s a monad 

Proof. The assertion follows directly from Theorem 4 . 

Remark. Realize that Theorem 3 results i n : The inverse 

image of a monad ln,-|--t i s a closed figure. 

Lemma 1 . (Vx f y f t f c ) x ^ ^ y i f f < t f x > i « | < t f y> * 

Proof. At f i r s t f l e t x .«-=*., 7» We know that x.f=%5 y i f f 

for each formula g? the condition g>(x,c ft) s 9>(y*c ft) holds. 

We have to prove that for each formula ^ 9 It 1B provable: 

y « t f x > f c ) «* y ( < t f y > , c ) . Thusf l e t y be given, then we put 

cp(x fc ft) .s (3z) (z • < t f x > & Y ( Z , C ) ) . Conversely, assume that 

< t f x>^ - | i | < t fy> i s va l id . Now the formula <p i s given and we 

find a corresponding formula y : We take ip(z#c) ss G t f x ) ( z « 

- < t f x > & 9 ( x f c f t ) ) . 

Theorem 6. Let Fc Sd^ c j , F be a function. Let x 1 ^ x 2 

and F ^ ) - -Kxg) • y . Then *x .t^* Xg. 

Proof* Befine a function G as fol lows: G(t) • < F ( t ) f t > . 

Then Ge Sd|0^ and thus G i s continuous in j^i • Therefore 

<yfx-L> » GCx-̂ ) -̂g-̂  G(xg) • <y f x 2 >. According to Lemma 1 we ha-

Remark. I t follows immediately from Theorem 6 that for 

Fc Sdr /_ l f F a function, the inverse image of each element y 
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restricted to a monad in ,=£-.* is a monad in ĉ=== -,• 

Our next remarks are concerned with the question whether 

it is possible to converse Theorem 5* i.e. if for each cf F € 

€ Sdy, F a function, the assertion 

is valid. We shall show that the answer is negative. Let us 

reformulate the problem in this way* Let FeSd,d, f F a functi

on, and let, for each r"^c$» ("{©$ sucn that P" (^ id " 

• (£{0* 'exist. What kind of definability holds then between c 

and d t 

At first, we introduce a new notion. 

Definition. The sets c, d are called incomparable iff 

c£Def{d} and d*Def{cr 

The following theorem 7 gives the example of such a func

tion which belongs to Sd, .,»- SdrG? (c, d are incomparable) and 

transforms monads in ,===2 onto monads in ,-£•-, -

For proving the theorem we need two lemmas. Remember now 

that in ES - Ve 1.1 f there is proved that there exists at least 

one olass of indisoemibles which is a proper jr-class and which 

is an intersection of countably many classes from Sd . We shall 

choose one of them and denote it Ind. 

Lemma 2. Ind is a monad in = 

Proof. Ind is a figure in ==- (see CV3). For Ind being a 

monad in -=- it is sufficient to prove that x •» y for each xfy € 

e Ind; in other words, we must prove that for an arbitrary 

formula <p e FL f g>(x) s <p (y) holds. According to the de

finition of indiscernibles we know that for each ordered n-tup-

le it is true <j> (xlf ...,3^) «s <p (ylf ...fyn) and hence also 
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<j(x) s 9(y). 

Lemma 3« (\jc ^Def) ( V d1#d2 £ ind) ["(d-^d^Def^ & 

^ d l i t j d 2 & d l ^ d 2 ) ^ c* D e ff<d l fd^i^ 

Proof. Let ceDefr,, ,v> . Then there is de Ind such 

that d<:c<'d1< d2 (note that c>Def and monads tend confinal-

ly to Def). Since ceDef^.^ , ., we have F(dlfd2) » c for 

a suitable function Fe Sd . Construct ^ c ^ ^ i ^ tne m©nad is 

a class of indiscernibles, for (^{c}^
di) - Ind holds. But the 

there is d.-. such that d^d.., d-<" d2 and d^>Def^c>. Let 

i j r ( t f t l f t 2 ) s F(t1#t2)> t. Obviously f is true for dfdlfd2. 

These elements are, however, indiscernibles and hence it is 

also true ^(d^d-^d.-,). Thus c>d,f which is in contradiction 

to d 3^Def 4 c r 

Theorem 7. There is a set-formula g? e FL such that for 

each c> Def there exists d incomparable with c and f defines 

a function F£ Sd,d, - Sdr0i for which the condition 

holds. 

froof . Let c?Def and l e t d- j fd 2€lnd be s e t s s a t i s fy ing 

the assumptions of Lemma 3 . I t i s easy to verify t h a t < d l f d 2 > 

and c are incomparable: c ^ D e f c / d d >j follows d i r e c t l y from 

Lemma 3 and for d l f d 2 > Def^c^ we have <d l f d 2 >^Def^ c | . Deno

te d m < d l f d 2 > . Furthermore, define a function F by: F(d1) « 

» d2 , F(d2) » d-ĵ  and F ( t ) = t for each t d i f ferent from d-^dg. 

Then obviously Fe Sd^^^ and F transforms each monad in =̂=-̂  on

to a monad in r:=-~, . 
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§ 2. In the beginning of this paragraph we shall investi

gate the "strength" of monads from the standpoint of definabi

lity. Further let <u- 9 ^i denote monads in ,--£=-, * 

Definition. We say that ^ 2 is stronger than ^c, (nota

tion: ^14.^} ^2) i f f there is a function PeSdcc^ such that 

p« ^ 2 « ( a 1 # If (^ 1 ̂ | ^ g and ("2-tc} <^1 a t t h e s a m e ti'* 

me, we say that ^ and ^ have the same strength (notation 

^ 1 ic^ ^ 2 ^ # W e w r i t e C^l ic? (̂ 2 i f simultaneously 

(L\&\ <^2 and t^\£c\ ("* 2 and we say that (̂ 2 is s t r i c t ly 
stronger than (*̂» 

Remark. Notice that from the results of § 1 it follows: 

?\&\ ^ 2 - ^ F € S < W ( p t t <" 2~ ^ 1 > ~ O P e S d ^ ) F" <^2n 

Lemma 4. ( V ^ , tu2) ^ ̂ ^ j ^ 2 s (3He Sd̂ 0-j) 

H: (Ux «-> ^ 2 J . 

Proof. Let (x\Jfc} ^2* ^ n e n •fc*-61*6 &r® functions PfG e 

e S d , j such tha t P(x) e (U^ for each x € (U- and G(y) e (U,2 

for each y e. (U-T» Construct a composite of P and G. Obviously 

P o G e S d . c p dom(PoG) - (u^ and (P o G)w (t--̂  » ^a # Thus 

y ,-==-, (p o-G)(y) for each y e (U , In accordance with Theorem 1 

there i s a c l a s s X£Sd^c?j such tha t Po G i s the i d e n t i t y func

t ion on X and (u , . , ( y ) £ X . Since ("< c i (y) --- c^i* w e n&v© P o G -

• Id r ( u 1 and therefore Gr(P"X) » (PrXr 1 .Hence i t suff ices 

to put H = G r (P"X). The converse impl icat ion i s obvious. 

Lemma J5. Let (U^ ^ j ^ 2 and l e t P,(?6Sd^c?» be such 

functions for which P : c^ ^—> ru2 and G: ^a, *—^ r ^ 2 ho ld . 
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Then P r ^^ i G t1 ft^. 

Proof. The assertion i s an evident corollary of Theorem 1# 

Remark. Note that the assumption Pi^cl ^ 2 in the pre

vious lemma i s e s s e n t i a l . Namely, i t follows from Example 1 

that? 

G x ) ( 3 ( a 1 t c u 2 ) C 3 P > G € S d - r 0 } ) <*l - <^ 2 * p * <*l ~~~* ^2 & 

&Gt flx —*> <"2&F(x)*C.Cx). 

Lemma 6. Let ^ . ^ <"2. Then 

(VF)(F i s a figure i n 4 f ^ ) Fn ( ^ x (U. 2 )4-0=»Fi <**.. « - » <^2. 

Proof. Let x e P n C ^ x . ^ g ) , then <x fF(x)> e ^ x ^ 2 # 

Denoted » ( U ^ 0 | « x f P ( x ) > ) . Since V i s a monad, there i s a des

cending sequence of o lasses X^e Sdr ? such that v m OfX^^n e 

€. FIT?. 

We prove that there i s keFlf such that X^ i s a function. 

Assume that for each ne FIT there ±a x^e domCXjj) such that 

XjMx^ has at l eas t two elements. We prolong the sequence 

- fx ineFHj by the axiom of prolongation. Let oc^ be the great

est element such that for each /S , ± £ fi £ oC ^9 the c lass 

XJ ix^h has at l eas t two elements. Evidently OCJDPIT for eaoh 

i € F N . The sequence $<*>£ i s a descending one. Therefore there 

ex is ts ? suoh that for each i e PH we have i e y e 0 6 ^ Const

ruct H-CXj f 4 x ] ; ifePH}* by a consequence of the axiom of pro-

longation, the c lass has at l eas t two elements, too. At the sa

me time, however, Hi X̂  r -f x^] $ i e F N } £ ? and ^ i s a functi

on - a contradiction. 

Thus l e t k 6 PH be suoh an element for which X-̂  i s a func

t ion . Since v £ X. we obtain that X^e Sd^c^ i s a function 
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which is a one-one mapping of ^ onto rUg. It is true now 

that F f* /a-., » X- r <«, • V (recall that the domain of a monad 

is a monad); this completes the proof. 

Further we shall formulate several criteria which enable 

us to verify whether ^u^ ~< ^cx2# 

Lemma 7. Let F e S d ^ t F be a function. If F" <u,2 • ru.-, 

then the following are equivalents 

(1) ("^ ("2 

(2) (Vy) C y e ^ ^ (F"1B{y i O ^ has at least two ele

ments) J 

(3) (Vy) ty e ̂  ==> (f^^yj n <u2 i8 infinite) J 

(4) (Vy) t y *> ^x -» (f"ltt^y} n ^ 2 is a nontrivial monad 

Proof. For (!)-=-> (4) see Theorem 6. The implications 

(4) --> (3) and (3) *=» (2) are trivial. For (2) — * (1) realize 

that -|(1) says actually that <^-\^\ (^2 a n d n e n c e» *» accor

dance with Lemma 6f the function F is a one-one function and 

therefore ~i(2) is valid. 

Remark. It is possible to rewrite (equivalently) the sta

tements (2),(3),(4) using only the quantifier 3 . 

Finally, we prove that for each monad in^§-j there is no 

proper class XcSdy which is a part of the monad. The assertion 

is interesting with respect to the prolongation theorem which 

implies that in each infinite or-class (and therefore also in 

each semiset) there exists an infinite set which is a part of 

it. Thus, if we want to use the direct analogy to the prolonga

tion axiom for classesf we Ifave to turn to the technique of 

Sdy classes (see [S - V 21). 
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Theorem 8 . Let X c S d 0 . Then 

(Vx,y) [ x n x l S (a(y)&xV i x l has a t l e a s t two elements] => 

= ^ ( C 6 ( y ) -s5 ( U . ( X ) . 

Proof. If 55 = x, then obviously XM-Cz$ S (U,(y) and Xw{z} 

has at least two elements. Define functions F-, F2 as follows: 

for each t let F-L(t) he the first element of X
wit$ end let 

F2(t) be the second element of the same class. Then P-j,PpeSd0 

and PV (U(x) » (u(y) for i « lt2. This implies cu(y) d («.(x). 

If (U(y)^(U,(x) then Fn = Pp,which is a contradiction. Thus 

<<4,(y) -? ̂ ( x ) . 

Remark. Theorem 8 and also the following Theorem 9 hold 

obviously also for the relation r--?=> . 

Theorem 9. Let (U, be a monad in -=- • Then 

-i[(3X€.Sdv) (X a proper c l a s s & X ^ ^ ) . 

Proof. Let y e <a and l e t there be a proper c l a s s Xe Sdy 

such tha t X £(<x(y) . Then there are x, X such tha t XHx? * 3- and 

X&Sd . Since X £. (U.(y) we have Xn-Cx5 S <a(y) and by Theorem 8 

the a s se r t ion (t^(y) A <a(x) ho lds . Define (by induction) a 

function G by the r u l e : for each t l e t G(t) be the smal les t e-

lement of X"it{ - rag(G r -Cz;z< t\). Evidently G£SdQ and G i s 

a one-one funct ion. Furthermore, G(x) € XM-txr £• ^ a ( y ) . Thus G i s 

a one-one mapping of x in to ("-(y) and hence x ^ y $ th i s i s in 

cont rad ic t ion to ( ^ ( y ) ^ ^ ( x ) # 

§ 3. In the last part of this paper we shall formulate 

several interesting statements concerning algebraical proper

ties of the relation ,£-. • 

Theorem 10. There is no maximal monad (in ordering by 
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<a >• 
Proof* Let ^ be a maximal monad. Let x,y e ^ and x4=y. 

We claim that rt-({x,yO.Cc^ ("- • Obviously (Ctttxty?).^ r^ • 

Since £w"C*x,yH • *x,y? S <u we have (tiOfx^l) /-^ due to 

Theorem 8. 

Theorem 11, There are uncountably many minimal monads 

( i n ^ ? ) . 

Pirstly we prove the following assertions 

Lemma 8. AJL is a minimal monad (in^-^ ) iff each func

tion Pe Sd^c^ is either constant or one-one mapping on (tt . 

Proof* Suppose <tt is not a minimal monad. Then there is 

a monad i) such that ^ \c\ (^ and v is not trivial. This im

plies the existence of a function GeSd/c2 for which >> « G
w<u* 

and G is not one-one mapping. Thus G is a constant function, 

which is a contradiction ( i> is not a singleton). 

Conversely, let (tt be minimal. Let PeSdjc>, P be a func

tion which is not one-one on <a .We shall prove that then P 

is a constant function on p* .By Theorem 5 we know that Pw(tt 

is a monad. Moreover, Pw ̂  ^ j <tt . According to the defini

tion of minimal monads we have, however, that Pn(tc is a sing

leton and therefore P is constant on <tt • 

Proof of Theorem 11. We shall prove that for each count

able system of monads i<y-$\ there is a minimal monad ^ which 

is a proper class and which is disjoint with all (*** • 

Let us enumerate all functions of Sdjc2» denote them P., • 

We shall construct a descending sequence of proper classes 
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X±€ S&ie^ for which two conditions holdt P1 i s e i ther const

ant or one-one on X± and X±o ^ • 0 , The c lasses X1 w i l l be 

constructed by induction. Let X i be formed, we produce X., .•» 

in such a wayt Divide X± into two d is jo int proper olasses X±9 

X i " x i * T h e n t h e m o n a d f^i+l i s a P 8 ^ of one and only one 

of them. Purther we consider just the c lass from the couple 

*i» X i " * i which i s d i s jo int with ^ ^ - denote i t X±. 

How we invest igate ¥±^ X±m i f , ± + 1 ^ Y^ l s a s e t # t h e i l 

^i+l1* Y i € sdio\* D e n o t e u * Y i ^ do»(^1+1)« In this case, we 
p u t X i+1 * Y i * u * L e t f u r t h e r p

1 + i ^ ^ be a proper c l a s s . Then 

either * 1 + 1 " Y1 i s a se t or * 1 + 1 " Y-t^V. In the f i r s t s i t u a t i 

on we have * 1 + 1 " Y-jC s 4 { 0 p L®t t be the smallest element of . 
P i+ l" Y i flU0h t h a t { ^ ^ " W J + Vl such a t ex i s t s s ince X± i s 

a proper o l a s s . We shal l put now X1 + 1 « (y
1+i)""*t** I f ^i+i" Y i 

i s a proper c l a s s , then * 1 + i generates a decomposition of Y± 

according to the equivalence x « * y = r P ( x ) « P(y)# denote 

\ZA t -pny the system of c lasses of the decomposition. In this 

second case we shal l put X1 + i ** izf z i s the smallest element 

of Zt& t c P - Y ^ . 

Let us construct OX., • The intersect ion i s a proper &-

c lass and therefore a figure in .r*-j • We claim that for each 

P€ Sd|c-- the function P i s either constant or one-one on f\X± 

and that n X± rs ^L± « 0 . The assertion C)X± n (U,± * 0 i s t r i 

v i a l since for each ^^ we have Xj n ("-. » 0 . Let further be 

Pj€ Sd^0 i | then - according to our construction - the function 

¥± i s either constant or one-one on X±m The sane i s therefore 

true also for D l i . 

Because 0 X i l s a proper c l a s s , there i s a monad in f)X± 
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which is a proper classf too. Thus we have constructed (see 

Lemma 8) at least one proper minimal monad. 

It is easy to verify that we can produce an uncountable 

amount of such monads. If there is only a countable number of 

minimal monads then we create - in accordance with the above 

mentioned procedure - a next minimal monad which is different 

from all preceding ones. This completes the proof. 

Remark. It follows from the results of J.B. Paris concer

ning non-standard models of PA that there is a monad which has 

no minimal monad "under its elf. 

.State further that using the familiar construction of the trans-

finite induction one can prove (by means of the axiom of choice 

and the axiom of cardinalities) that there is a chain X of mo

nads inj==s , with ordering ,r*? of type -CI, such that each mo

nad inx£*t "lies under" a monad of the chain X • 

Theorem 12. (J <alf <«2) ( <u 1 t-gj <u 2 * (u 2 ^ ^ x ) # 

Proof. We know from the previous theorem that there is an 

uncountable amount of minimal monads. We prove now that there 

are among them two monads which are not comparable with respect 

to ordering r-̂ , • Thus, if (U f %> are minimal monads and either 

P Kol "** or V-T^l ^ *-°ldfl» then we have (W £>^ V .But the

re is only a countable number of monads like these9 since the

re is rjust a countable amount of functions from Sd,£ĉ  which are 

one-one functions. 
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