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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,4 (1982)

THE RANGES OF NONLINEAR OPERATORS
OF THE POLYNOMIAL TYPE
Josef VOLDRICH

Abstract: In this paper we prove the existence results
for the equation Au + Su = £, where A is a polynomial operator
on a reflexive Banach space, S is a strongly continuous nonli-~

nearity.

Key words: Polynomial operators, perturbations, stirong
subasymptote.

Clasgification: 4T7H15

1. Introduction., J. Frehse investigated a class of non-

linear functional equations and nonlinear operators of polyno-
mial type (see e.g. [1]). The ranges of these operators are

closed linear subspaces with a finite codimension and the equ-

ation

(101) Au = f
has at least one solution if f satisfies the Fredholm conditi-

on, Further, J. Frehse deals with the solvability of the equa-

tion

(1.2) Au + Su = f,

where S is the Landesman-Lazer type nonlinearity (see e.g.[2]).
Thie paper continues, in some sense, the works [1],[2] and

deals with the solvability of the equation (1l.2) in section 2,

where S is "subpolynomial-type" nonlinearity. In section 3 the

abstract theorems are applied to the examples of polynomial
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operators, for example, to the problem
(A=2) [(Au = Au)? + (Au = Aw)3] +
+iul°rsignu= £fin O,
u=0on 3% -
There are elso presented results concerning the solvability
of (1.2) in section 4, where the operator S has a vanishing
strong subasymptote, For example, there is considered the pro-
blem u
. 5
{(A-M [(Au - AW + (Au - A w3+ ——-tml,

u=0 onofl.
The proof which is published in [5], is analogous to that con.
tained in the papers [3],[4) where equations with linear non-

invertible operators in the main part are considered.

2. Abgstract theorems. We shall investigate continuous
maps A:B~>B* where B is a real reflexive Banach space with &
norm -0l , B¥ is its dual space. We consider following condi
tions:

(2.1) There exists aZ 0 such that it holds
(1) 1f 1im sup ™81 A(u+tv),v>l< + @
t>+o0
then {A(u+tv)v)> = <Au,v? whenever te R, u,vce B,
(ii) 1if 1im sup t™2 1 <A(tw),v)] < + oo
t>vou
then {A(tw),v> = <A(0),v) whenever teR, v,w&B.
(2.2) If u,veB, e (%) = <A(u+tv),u+tv) and
. -1
lim inf ¢ t)Z0

() t-)rg ;P( )2 ’
i im - t @

(ii) lt_"s‘}‘gi tTTe(t)<+ @,

th lim t~ t) = O,
en t>+o0 @( )

Any continuous operator A satisfying conditions (2.1) and

{2+2) will be said a-polynomial,
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An operator A satisfying

(2.3) m inf lu-v I "1 < Au-Av,u-v>Z 0 for each veB
= 0o

will be called the asymptoticelly monotone operator.
(2.4) There exist constants K,c>0, p>1 and a finite dimen-
sional subspace Vc B with a bounded linear projection Q:B —> V
such that

<au,u>Z cllull® = Kllqull P - X whenever ue B.

2.5, Definition. A continuous operator A:B —> B¥ is said regu-
lar if the variational inequality

{Au-f,u-v> £ 0, vek,
has & solution ue K for any bounded closed convex set KC B and

for every £ e B,
The main result of Frehse’s work [1] is as follows.

2.6, Theorem. Let A:B—>B* be a regular operator satisfying
conditions (2.1)(i) with a = 0, (2.2)=(2.4) and let A(0O) = O,
Then the equation Au = f has at least one solution if and only
if tL(R(A)T .

Moreover, dim R(A)Y £ dim V< + coO.

We shall use the next lemma in proofs of the following

theorems.

2.7. Lemma. Let A:B—> B* be an asymptotically monotone a-po-
lynomial operator, A(0) = O, Suppose that for some ve B there
exist constants dJ°, C, KZ O such that the inequality

(2.8) <awvy£C + Kliwhe

holds for every we B. If a Z 0 then v1R(A).

Proof, The inequality (2.8) implies {A(w+tv),v> £ C +

J
+ Kl w+tvl® and from the asymptotical monotonicity of the
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operator A (1.e. lim inf [ t1"1 ¢ A(w+tv) - Aw,tv)> Z 0) we ob-
tain (A(w+tv),v)> 2 < Aw,v> - € for every tZ t, with some t >0,
€ > 0, Together with the supposition (2.8) and the condition
(2.,1) we have

(2.9) { A(w+tv),v) = {Aw,V) for every t€R.

Using the inequality 1‘151_)1*:105 1t1ml¢ A(w+tv) = A(2w),~w+tvD> Z 0
we get that %Hﬁa&g lt|'1<A(w+tv) ,W> <% K(w) with some constant
K(w). It ylelds together with (2.9) lim sup 1)t (t)<+ 05
where @ (t) = {A(w+tv),w+tv) . Prom conditions (2.2),(2.3),

A(0) = O 1t follows that

(2.10) um tle(t) = o,
Iti=>+c0

Let s€ R be fixed. It is obvious that

1im inf \tl']‘(A(w+tv) - A(sw),(1 - 8)w+tv> Z 0

l£1= +o0
and this together with (2.9) yields
Lim inf {4)71[(1-8) @ (1) + & CAw,tv> = CA(sw),(1-8)w+tv )] Z O,

It\>+c0

According to this fact and with respect to the condition (2.10)
we have 8 {Aw,v)> - {A(sw),v> 2 0, -8 <Aw,v)> + {A(aw),v>Z O and
(2.11) a {Aw,v> =<A(sw),v> , BER,

If a<1l then 04 d'< 1 and a8 8 Aw,v> £ C + Klsl® 1t whd

we get {Aw,v> = 0, taking the limits 8 — ¥ © . This completes

the proof for a<1l.
Let aZ1, There exists 2% > O such that llAuli£1 + || ACO
= 1 for every ue B, lull £~ . The inequality
{Aw,v) = %l(A(ﬁTﬂ YoV 2 - l,g—l-‘- fvll, wo,

is an immediate consequence of (2.11)., Therefore, there exists
the constant L3> 0 such that {Aw,v> Z -L llwl , we B, Using the
inequality (2.8) and the fact that aZ1 we obtain
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1im sup t 2| <A(tw),v>|l< + o0 .
t>+o0

From (2.1) we get {Aw,v> = {A(0),v> = O, It means that vlR(A)

and the proof of the lemma is complete.
Let S:B —> B¥ be an operator satisfying conditions
(2.12) hsull gygce + 3 uuu", <, B,5Z0,

(2.13) there exist constants G,H>O such that the inequality
m an? lu | "1 ¢Sy - Swouy - wHZ -G - H twhe
Mu.% “>+00

is fulfilled for every we B.

2.14. Definition. Let V be a closed linear subspace of B,
V. =4{ueV, lull 5 rf. A mapping ¥ :V;—> R will be said a
strong subasymptote of the operator S with respect to V if

(2.15)  ¥(2)41im 1nf < Su,, Nu, ) "H(u,-m)> , we B,
ey 3 'Y 3

holds for any sequence {uj}?:l such that lluj |l— + 00 end
'\ujll '1ud—> 2z (i.e. weakly) for j — + c© , where 240, z€V.

2.16. Theorem. Let A,S:B —>B* be continuous operators with
the following properties
(1) A is an asymptotically monotone a-polynomial opera-
tor, A(O) = O and A satisfies (2.4),
(ii) S satisfies (2.12),(2.13) and p>1 +d°, aZ d,
(1i1) A + S 1is a regular operator.
It W:(R(A)L )1—-> R is a strong subasymptote of the operator
S with respect to R(A)1 and 1f
(2.17) <t,z><V¥(z) for every ze(R(A)‘L )1, z¥0,

then the equation (1,2) has at least one solution,

Proof. Let us suppose that the equation is not solvable
and let u, be the solution of the variational inequality
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(2.18) {Au + Su-f,u-w>< 0, wEB .

Observe that u, e OB, and therefore llu | = r. Choose & sequen-

+ -
ce {r;} i:ol so that ﬂuri -t uri~>~ z weakly in B. According to

(2.18) with w = O and in view of the growth of S (see (2.12))
we get the inequality {Au. ,u, >& Lllu, I gor 124 witn
i 71 i °

some positive constant L. Since p>1 +J we obtain from (2.4)
that 1im inf |Qu,. NPilu, ) “Pz §>0. The fact that dim R(Q)<
i >+c0 i -
< +00 implies Q(ur1 I uri A7")— Qz in B for 1 —> + oo and
1 Qz i >0, therefore z%0,
We claim z.lR(A)., Observe that

1im int Ilurill "1<Av.r1 - AW.uri -w>Zo,

i—>+co
-1
1im inf lu, #1 ™" <f - Au, =-Su_ ,u, -w>Zo0
L >4 00 Ty Ty ri' Ty
and therefore
(2.19) lim inf llu_ § “1<¢ ¢ - Su_ - Aw,u. - w) Z 0.
i>+to0 Ty Ty Ty

From (2.13) we have

1im influ. 1 "1< 2 - Aw - Swyu. - w)>Z g - Hllwﬁ‘r
i>+o00 Ty Ty

and this gives the estimate
lm inf<-awpuy, Huy 17952 26 - Hiwl? - («+pliwi?) -
i>+00 i i
"|<f,z>l .

Consequently, {Aw,z>% G + I<f,z>] + < + (B + H) lwi® and the
Lemma 2,7 implies z1R(A).

Observe thet the inequality (2.19) yields

(2,27 - {Aw,z? - 1im inf<{Su. , lu_ |l 'l(u -w)>Z 0.

1>+ Ty Ty Ty

As ¥ is the strong subasymptote of the operator S we get
{£,2Y - ¥(z)Z0, which is the contradiction with (2.17) and

the proof is complete.
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2.20, Proposition. The condition (2.17) is necessary for the
solvability of (1.2), if<Su,z> < ¥ (2z) for every uc B, z#0,
z € (R(A)L), .

Proof., If Au + Su = £ then {f,z>=<Su,z?> < ¥(z) for
ze (R(A)L), .

In the case J < 1, the strong subasymptote of the opera-

tor S can be replaced by more verifiable conditions:

2.21) 1im inf lluy i "1 <su, - Swy,u, - w,> Z -G
¢ ) liawg > + 00 1l i 1% T W=

+
for every bounded sequence {wi§ i‘:l‘

(2.22) For every ze R(A)‘L » 2+0, there exist t e R, v,€ B such
that <S(tzz + vz),z> > G, where G is the constant from (2.21).

(2.23) 1im inf(S(tz:l +v),-2;> £ <S(tz + V) =27

19+ 00
holds for any t€ R, ve B and any sequence {zi§+iflc By, z; — 2
weakly for 1i—> + o , zeR(A)'L s 2§0,

A strongly continuous operator S satisfies the condition (2.23).

2.24, Theorem. Let A,S:B—> B* be continuous operators with
the following properties

(i) A is an asymptotically monotone a-polynomial operator
satisfying (2.4), A(0) = O,

(i1) S satisfies (2.12),(2.21)-(2.23) and p>1 +d , aZd,
d< 1,

(iii) A + S is a regular operator.

Then the equation Au + Su = O has at least one solution.

Proof, The condition (2.21) implies (2.13), Let us suppo~
se that the equation Au + Su = 0 is not solvable. Analogously

as in the proof of Theorem 2.16 there exists a sequence
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r ] -1 uri——s- z weakly in B for

{u 31,1, fla ill——> + 00 ,llu
i~—> + 00 , zcR(A)L , z+0, and (Au + Suri,uri -w>£0 for
Ty

every we Bri. As the operator S satisfies (2.21) and (2.22) we

have

Z -1 -1
- G£1im inf lu | <S(1:zuri Iluriﬂ +v,) - Su

1")”'“) i ri’

+ VvV, _=-u, )=
z Ty

= 1m dne<s(ta, lu, 1™ 4 v ) - su ,-u, flu, I 72>
iske BTy Ty &) = Stpyory iy
because d < 1, The operator A + S is regular and therefore we
- z
get ¢ Auri + Suri, uri> Z 0 and
lim inf {S(t,u, ilu Pl e vy s mu ,-u, du, I 7152 6.
iote Ty z T Ty

Further, A is asymptotically monotone, e.g.

lm ing < -huy 4-u, Hu, (72> Z 0
ir+e ur i ri( ?

and

lim inf (S(t u, Ilur
Ty i

=t s v,)s ~u, lug h-1yz -q..
i>+o0 i

Ty
Prom (2.23) we obtain (S(t,z + vz),z>é G, which is the contra-
diction with (2.22).

3. Examples. Let PJxRS-——> R, J = 1,24444,8, be polynomi-
als satisfying the following conditions (with C,K,c>0)

(3.1) IPj(g MNsc@ +1g| P~1y for every €e R%,
(3.2) .,.%.4 PJ(S)gjéclflp'Kror every geks,

»n
(3:3) 2, (Ry(§) = By(m)) (§4 = m4)Z0 for all §, n€R?,
Let Qc RN be a bounded domain with a smooth boundary and let
V= Wzm’p(ﬂ.)r\ W:’p(ﬂ). p>1l. We define
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L 17 078 0%), § = 1,...,8,

7 igigem
for every ue V where 35%)5 c®(N) (rl,lal€m, j = 1,40
eeey8)e Let

2m
o =D 880 £ TS, 3w 1,

hold with some < > O for every g.‘e RN. Let us define the
operator A:V —> V¥ by
»
{Au,v) = %:3‘1 ,Q By(Lyuyeeeylqu) Lyv, vEV.
Using the Theorem 2,6, we see that the equation Au = ¢
is solveble if (£ - A(O))1 (R(a) - A(o))‘L o Let us remark that

for 8 = 1 it is possible to show: if we consider the operator

AzV/Ker[Ll] — (V/g eriL ] )* then this result follows from the
theory of monotone operators and (R(A) - A(O))-L = Ker[Lll .

Let the function @ be continuous, odd, increasing,
lm @(t) = +0 and |@(t)|£ o_o+ﬁltl°r, t €R, with some

tr+0
2,—{§. & > 0, Let 2mp>N, We define the operator S:V—> V* vy

{Su,v) = fn @ (u) v, VeV,
We note that the inequality (2.12) holds with some constents
&y 3 o Let us assume the conditions
-1
4) 1lim su wt) Le(t = w)<+ 00
(3.4) in sup g (%) Le(t)) 7 (@)
for every c Z 1, where y 1is a continuous function with

gm0 = 2

(3.5) measfl > 2 meas {x e O ;z(x) = 0%
for every ze (R(A) - A(O))‘L , 840,

3.6. Proposition. The mapping ¥:((R(A) - A(0))+); —>1K3,

where K is a real number, is a strong subasymptote of the
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operator S defined above with respect to (R(A) - A(O))-L .

Proof. We assume that A(0) = O and that for & sequence
{u }+°° cV it is Ilu "l > 40, (uy = w) fug i -l_ 7 weak-
ly for n—> + 0 , z€ R(A)'L , 2%0, weV, It suffices to show
that
u - w
n
lim in? [ o (u,) T -

m—y+ o0

As WEP(Q ) is compactly imbedded into C(fL) we have

u, “unll"l-—-) z and (uy - w) llu,ll “l_, zin Ly, (N)e If we de-
note Af ={x e N a(x)z e}, Qp=1xe6Qa(x)2-¢€}, O =
= QE v Q.'E then according to (3.4) and (3.5) there exist & >
>0, an integer ko>1 such that the inequality

(3.6) meas ‘Q'E - E—f—% 1 (%——'_’_’—%) meas(ﬂ\ﬂe)>0

holds for every kZ ko. There exists a natural number n, such

that (x) - w(x)
x) -
z(x) _k_. u_B_r._l:_x___é £

u_(x)
z(x) - 'E—é 'nu “éf’; + z(x) a.e. in L

o n

+ z(x) a.e. in {1,

for every nZn,. So we get

-u_ + W

u - w u - w
&?(“n)'ﬁ_ﬂ_ = 'Elg?(un)'ﬁi:ﬁ'* fé?('“n)'ﬂ"‘""[‘" -

k +1 k +1
‘L\nbe oko cy(e oko “un“)

Wy

k. -1 k -1 k +1 X +1
Jag & E— e 2wy 1) - [ e Cp—gp—ilu Iz

> k-l k-
E.—k——cg(sT-—llu n)measﬂ -
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k+1 k +1 k-1
- —oko € [I (k:-l ) + ’ﬁ'nJ meas(ﬂ\ﬂs)?(g -E-;—ﬂunll Yy

where 19‘n —» 0 for n — + 00 , Observe that

-

o

O

Loty e T e T > Hull ) [mess 2,
n

k +1 kg
r—I ’{ r-r) + D )meas(&l\.ﬂ. )].
Denote the expression in the square brackets by c . It follows
from (3.6) that 1im c¢_> 0 and therefore
m—y+c0 1
k-1

lim & =2 € St yu 1
E . (] = 4 00 .
">+ 0 k, g e k, n n

The proof is finished.

If the operator A satisfies the condition (3.5) then the
Theorem 2.16 can be applied. If d < 1 then the operator S - f
satisfies the conditions (2.21)-(2.23) and the Theore 2.24 can
be used. In these cases, if p>1 +d° , a Zo > 0 then the equa-
tion Au + Su = f has at least one solution.

For example, the problem

(A=2)[(Au =2Aw)% + (Au =2Au)31 + (ul signu =2 1in 0,
u=0ondl
has at least one weak solution ue Wg"s(ﬂ.)r\wa's(ﬂ) for
0<d<3,

4., Problems with a bounded nonlinearity. Let B be & line-
ar closed subspace of Wk’p(_o.), kp>N, p>1, A(0) = O,

(4.1) {Su,v> = _f‘; ¢ (u) v, for u,ve B,
where the funotion ¢ is continuous, odd, |ﬂ1m g(t) = O. Then

Il Sull e & for every u€ B with some coms tant . Further,
B~ ¢ e
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we shall assume the following conditions be satisfied
(4.2) for all weR(A)‘L s teR, veB it is A(Vv + tw) = Av,

(4.3) there exists a bounded linear projection Q:B — R(A)‘L
and <Au,u>Z C lull P - K 4 Quil P - L for every ue B, where
p>1, C,K,L>0,

4.4, Proposition. Let the function t v+>< A(u + tv),w?
be a polynomial for any fixed u,v,we B, If A is regular and
satisfies (2.3),(2.4), A(O) = O, then the condition (4.2) is
fulfilled.

The proof can be found in Frehse’s papers or in [51.

Let ¥ :(0,+0)—> (0,+0) be the increasing function sa-
tisfying
"‘ < 1.{(6 )

TPrAN Lew)

""’“c(ﬁ)‘1
where fl_(w) = {xeQ j;0<iw(x)|< €} and such that

1im sup [¥ (e 1N ¥ (we )<+ for every o € (0,400).
€—> 04
4.5, Theorem. Let a regular asymptotically monotone O-po-

lynomial operator A satisfy the conditions (4.2),(4.3), A(0) =
= 0 and let S be given by (4.1). If

¢

for some a> O then the equation Au + Su = £ has at least one

Ayt =
(4.6) Eij:rmw [Y () tnéi&’vcy('r) + 00

solution for an arbitrary fl R(A)‘L .

Sketch of the proof. Let us consider the function
- @(§ ) for Ig1 £ D,
a!zg,___> g;(b) for g: > b,
@ (~b) for F < =b,
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and the corresponding equation Au + §u = f, From the Theorem

2.16 this equation has a solution u because

0 = sup |{t,w>l< | & (b)| int lwl.
we R(’A)‘L ’ ¢ awre R(AY J;l
Hac e 5y=1 e g5y= 1

Using the condition (4.2) we can obtain a priori estimate

" ch “ C(ﬁ)é Cl = cl( " £ “ B*‘-)-

Purther, methods from [3],[4] give a priori estimate
~
I Qu il c@y=c3 = o3l @, 1),
where a>0,

a+01

w‘1<cz<i§fza§<g) s e 18 ynhH

ey =

c,y = cy(8, P ,f) = fﬁmmi (1?;;@?(5 ) fg fwly.

If there exist numbers a,be R, O<a<b, such that b> cl(g,f)-f
+ cB(a,?é sf) then the solution u of the equation Au + /Svu =1
is also the solution of the equation Au + Su = f because §u =

= Su, The condition (4.6) guarantees the existence of such num-

bers a, b.

For example, the problem
u
{(A-?L)[(Au -2w? 4 (Au =2u)?] 4+ ——p = £ 10 0,
+u
u = 0on 3,
has at least-one weak solution ue Wg'6(n,)n W2’6(D.) if

£1KerL A -Xidl,
It is also possible to apply the abstract results to the

existence of solution of the Neuman problem
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.
v

1

-1 0
9 [(a +]Vul?) u] ° =finQ

+
ax, 8x; ~ 1+lulf

ou .
S 0 on 34L,

where ¢>0, p>1, kZ2. If feL,(Q), [f; #(x)dx = 0, this
problem has at least one weak solution ue Wr*P(Q),

[1

[2]

[3]

[4]
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