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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROIINAE 
23,4 (1982) 

THE INTERIOR REGULARITY AND THE LIOUVILLE PROPERTY 
FOR THE OUASILINEAR PARABOLIC SYSTEMS 

O. JOHN 

Abotract: It i0 proved that thw Liouville property of pa
rabolic quaailinear system - i.e. the fact that eaeh bounded 
weak aolution in R11*1 ia constant - implies the C°'^-regularity 
of all bounded weak solutions in arbitrary domain. Similar re-* 
suits for quaailinear elliptic systems were established in 133 
- E53. 

Key words: Quasilinear parabolic system, interior regula-
rityf parabolic Liouville property. 

Classification: 35K55 

Denote z * (tfx) « ( t t x 1 M . . , 3 . n ) 6 R n + 1 and let u « 

• (u ,u ,...,u ) be a vector function. We consider the system 

<« #-^«s<»>-i^)-<>.-- - -
which we shall write for the sake of brevity as 

(2) ut - divx(A(u)Dxu) • 0. 

The coefficients a^5 are supposed to be continuous on R*1 

and 

(3) (A(u)T7f7j) » a^(u)??* 7)3 > 0 for all ^ * 0f ueR®. 

In what follows we shall write for the vector function 

u - "luHjf.x u&L2(Q) instead of u
1€(L2<JI» i - 1, ...fnu 

Let Q C R 0 * 1 be a domain, not necessarily bounded. We 
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say that the function ue*°» 10C(Q) i s a w e a k 8 0 * u t j » o n o f * h e 

system (1) in the domain Q i f for each o e 2) (Q) we have 

(4) f £ u <y t - A(u)Dx Dx<j>Jdz«0-

(The space w°» l o c ^ *"s * n e l i n e a r B%* ° * a 1 1 functions 

u such that \£~ and D u1" are in L2 i o c (Q) * o r a ^ * s 1> •••»»•• 

On each Q ' C C Q , Q# bounded, the seroinorm 

' ^ ' o . l . Q ' - I U I i L 2 ( Q ' ) + , J Dxu l lL 2 (Q') 

can be introduced for a l l u € W 2 f i o c ^ Q ^ 

The system (1) i s said to be regular in a domain Q i f each 

weak solution u of (1) in Q which i s bounded belongs to 

The space c°,oC/2»oC(Q) i s the l inear set of a l l functions 

continuous on Q for which on each compact Q ' c c Q the expression 

« , { ' - . * . - ) - - > • * * . - ' ) ' . { t t X ) c Q ' f ( t ' , x ' ) c Q ' , ( t t x ) * ( t ' . x ' ^ 
lt - ť f - ł l x - X •K 

i s f i n i t e . 

Finally, we say that the system (1) has parabolic Liouvi l le 

property i f for each weak solut ion u of (1) in the whole R n + 1 

holds the implication 

(5) Hull , < co ==£• u i s a constant vector function. 

VRn + 1) 
Theorem 1 . Let the system (1) have parabolic Liouvil le 

property. Then i t i s regular in each domain QcR n + 1 . 

Proof* Denote forR>O f zQe Rn+1 

(6) QU0,R) - ( V R 2 , t o + R 2>~B(x o fR), 

where B(xofR) is n-dimensional ball in R
n with the radius R and 
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the oenter x • Denote fur ther by u 0 R the i n t e g r a l mean value 

( 6 ' ) u R - mes*1 Q(»ftfR) / R u(m)di.. 
%QfR o a(z0j

K) 

As it was proved in L U , if for the weak solution u of (1) 

holds in some point e € Q that 

(7) lim inf I" R~n~2 f lu(s) - u„ ~\Z del = 0f 
R-*0+L (*(z0,R> °* 

then there exists Q(«Qf f ) such that uc C0t^'2,ctQii.of<t> )• 

(The points for which (7) holds are called the regular points 

of the weak solution*) 

So we want to prove that for each bounded weak solution u 

of (1) the condition (7) is satisfied in all points t,Qe Q, 

Let Qf u and zQ be fixed, Q(»0»R) c c Q , Substitute 

t-t^ x-xrt 
(8) -c . —J> f - — a f 

IT * R 

u R ( f f p - u ( t 0 + R2-r , x0 • R£ ) • 

For an a r b i t r a r y constant vecto r <p , we can transform 
(9) R"n"2 «(£ ,R> ' U(B> " "V*'' d" 4 

6 R " n ' 2 J 0 , R > l u ( z ) - ^ 2 d Z -

(In the first inequality we used the fact that the func

tional I(4> ) « f I u(z) - d>l2 d* attain*3 its minimum in 

the point 6 • u „•) 
*0f-i 

It is easy to see from (9) and (7) that zQ is a regular 

point of u if one can find a subsequence 4u^ \ (R_—y 0) of 
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-tUn.5 such that 

(10) uR — > p in L2(Q(0fl))t 

(11) p ie a constant rector function* 

To prove (10) and (11) we return to the system (1). Substi

tuting into (4) for t, x and u from (8), we obtain that uR(rf f ) 

solves the following systems 

(12) / £ U R 9 I S • A(uR)DpUR D-gd &v *f » 0. 
K 

Here (Q)R is the image of Q in the transformation (8). 

For R ~> 0+ (Q)R expands to the whole R
11*1, so that if we 

choose some fixed K^O, then Q(0,K) c c (Q)R for all R smaller 

than some R(K). So9 choosing <f with the support lying in 

Q(OfK), we can see that each uR solves the system 

(13) «<{K> [ U R^ ~ MUR) ̂ UR Df ?3 dr ** * °9 

if only R<R(K). 

Writing now in (13) 

AR(r t^ ) « A(uR(r f f )), R«rR(K) 

we can see immediately that we can interpret (13) as a class of 

the linear parabolic systems with the bounded and measurable 

coefficients. Because of both the estimate 

II u p II £ II u II 
R La)(Q(0,K)) L^Q) 

and the continuity of A(u) we can deduoe that the coefficients 

AR are equi-bounded and that the corresponding systems have the 

same constant if of elliptic!tys 

(AR(-tf %%}\*tfi * T j^i2. 
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(The cone tan t r as well aa the upper hound of IARj depend only 

on » u « L a ) ( Q ) 0 

Using the lemmas 4 and 5 from f2] we obtain 

( 1 4 ) i l lu R Hl 1 / P , h c Hu-ll* r 0 f o K ^ * 
R w 1 / 2 » 1 (Q(0 t K/2)) ^ L2(Q(O fK)) & 

^ o * ( K f n u i i L J Q ( 0 t K ) ) ) t 

where w| / 2 , 1(Q(0 fR)) is a apace of all meaaurable on Q(OtR) 

functions w for which the expression I)) w Hi , / 0 , • 
W 1 / 2» 1(Q(0 fR)) 

" U I II. 2(Q(0,R))
 + i | Dx w l lL 2(Q(0,R))

 + 

/ / f 'a.t,x)-u(x,B)l2

 i t ů m i x 

6,R) _fr _J
K* (t - s ) 2 + 

is finite. 

Because of the compactness of the imbedding of W 1 ' 2 f l 

into L 2 it follows from (14) that we can choose the subsequence 

n 
^ • ^ p t n L2(Q(0tK/2)) 

D x u n ~ ^ D x p i n * 2

( Q ( 0 ' K / 2 ) ) » 

u^—> p almost eTerywhere in Q(0tK/2). 

Using the diagonal method (enlarging Q(0tK/2)) we reach the 

subsequence-fu^- iu 1 of «CuRS with the following properties: 
n 

un~~> p almost eTerywhere on R
11*1, 

(16) "»—> P i n e B C h L 2 ( i l )f a ±e b o u n d « d i n R n 4 lt 
DA"^ D p ** eaoh L 2 ( i l ) » -̂  ia * o u » d e d *» R11*1* 

From here it follows - after passing to the limit in (12) -

that p io a weak eolution of (1) in R*14"1, so that p ie a const-

ant Tec tor function because of LiouTiUe parabolic property* 
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From (9) we get, putting <£ * P a a d R * ^n* * h a t 

lia R~n~2 / ) u(») - «- R )
2 dz » 0. 

*i->«o a(z0,R^) V K n 

Prom here it follows immediately (7)f q.e.d. 

R e f e r e n c e s 

[11 M. GIAQUINTA, M. STRUWEs On the partial regularity of weak 

solutions of nonlinear parabolic systems, Univer-

sitat Bonn, Preprint Mo. 455, 1981. 

C21 M. GIAQUIHTA, B. GIUSTI: Partial regularity for the soluti

ons to nonlinear parabolic systems, Annali di 

Matematica Pura ed Applicata 97(1973), 253-266. 

[31 M. GIAQUINfA, J. HB&AS: On the regularity of weak solutions 

to nonlinear elliptic systems via LiouTille's ty

pe property, Comment. Math. Univ. Carolinae 20 

(1979), 1U-121. 

[41 M. GIAQUINTA, J. NESAS: On the regularity of weak solutions 

to nonlinear elliptic systems of partial differen

tial equations, J. reine angew. Math. 316(1980)f 
140-159. 

[51 M. GIAQUINTA, J. NEdAS, 0. JOHN and J. STARA: On the regu

larity up to the boundary for second order non

linear elliptic systems, Pacific J. of Math. 99 

(1982), 1-17. 

Matematicko-fyzikálnf fakulta, Univerzita Karlova, Sokolovská 
83, 18600 Praha 8, Czechoslovakia 

(Ohlatum 21.6. 1982) 

- 690 


		webmaster@dml.cz
	2012-04-28T08:35:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




