Commentationes Mathematicae Universitatis Carolinae

Oldřich John

The interior regularity and the Liouville property for the quasilinear parabolic systems

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 4, 685--690
Persistent URL: http://dml.cz/dmlcz/106187

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

 23.4 (1982)
THE INTERIOR REGULARITY AND THE LIOUVILLE PROPERTY FOR THE QUASILINEAR PARABOLIC SYSTEMS
 O. JOHN

Abstract: It is proved that the Liouville property of parabolic quasilinear system - i.e. the fact that each bounded weak solution in $\mathrm{R}^{\mathrm{n}+1}$ is constant - implies the $c^{0 \cdot \alpha}$-regularity of all bounded weak solutions in arbitrary domain. Similar results for quasilinear elliptic systems wore established in [3] - [5].

Key words: Quasilinear parabolic system, interior regularity, parabolic Liouville property.

Classification: 35K55

Denote $z=(t, x)=\left(t, x_{1}, \ldots, x_{n}\right) \in R^{n+1}$ and let $u=$
$=\left(u^{1}, u^{2}, \ldots, u^{m}\right)$ be a vector function. We consider the system
(1) $\frac{\partial u^{1}}{\partial t}-\frac{\partial}{\partial x_{\alpha}}\left(\alpha_{i j}^{\alpha \beta}(u) \frac{\partial u^{j}}{\partial x_{\beta}}\right)=0,1=1, \ldots, m$,
which we shall write for the sake of brevity as
(2)

$$
u_{t}-\operatorname{div}_{x}\left(A(u) D_{x} u\right)=0
$$

The coefficients $\alpha_{i j}^{\alpha \beta}$ are supposed to be continuous on \mathbf{R}^{m} and
(3) $(A(u) \eta, \eta)=a_{i j}^{\alpha \beta}(u) \eta_{x}^{i} \eta_{\beta}^{j}>0$ for all $\eta \neq 0, u \in \mathbb{R}^{m}$.

In what follows we shall write for the vector function
$u=\left\{u^{1}\right\}_{1=1}^{m} \quad u \in I_{2}(Q)$ instead of $u^{i} \in\left(I_{2} Q_{0} 1=1, \ldots, m\right.$.
Let $Q \subset R^{n+1}$ be a domain. not necessarily bounded. We
say that the function $u \in W_{2,10 c}^{0,1}(Q)$ is a weak solution of the system (1) in the domain Q if for each $\varphi \in D(Q)$ we have

$$
\begin{equation*}
\int_{Q}\left[u \varphi_{t}-A(u) D_{x} \quad D_{x} \varphi\right] d z=0 \tag{4}
\end{equation*}
$$

(The space $W_{2,10 c}^{0,1}(Q)$ is the linear set of all functions u such that u^{i} and $D_{x} u^{i}$ are in $L_{2,10 c}(Q)$ for all $1=1, \ldots, m$. On each $Q^{\circ} c \subset Q, Q^{\bullet}$ bounded, the seminorm

$$
\|u\|_{0,1, Q^{\prime}}=\|u\|_{L_{2}\left(Q^{\prime}\right)}+\left\|D_{x} u\right\|_{L_{2}\left(Q^{\prime}\right)}
$$

can be introduced for all $\left.u \in \mathbb{W}_{2,100}^{0,1}(Q).\right)$
The system (1) is said to be regular in a domain Q if each weak solution u of (1) in Q which is bounded belongs to $C^{0, \alpha / 2, \alpha}(Q)$.

The space $c^{0, \infty / 2, \alpha}(Q)$ is the inear set of all functions continuous on Q for which on each compact $Q^{\circ} \subset \subset Q$ the expression $\sup \left\{\frac{\left|u(t, x)-u\left(t^{\prime}, x^{\prime}\right)\right|}{\left|t-t^{\prime}\right|^{/ 2}+\mid x-x^{\prime} \alpha^{\alpha}} ;(t, x) \in Q^{\prime},\left(t^{\prime}, x^{\prime}\right) \in Q^{\prime},(t, x) \neq\left(t^{0}, x^{\prime}\right)\right\}$ is Pinite.

Finally, we say that the system (1) has parabolic Liouville property if for each weak solution u of (1) in the whole R^{n+1} holds the implication
(5) $\|u\| L_{\infty}\left(R^{n+1}\right)<\infty \Longrightarrow u$ is a constant vector function.

Theorem 1. Let the system (1) have parabolic Liouville property. Then it is regular in each domain $Q \subset R^{n+1}$.

Proof. Denote for $R>0, z_{o} \in R^{n+1}$

$$
\begin{equation*}
Q\left(z_{0}, R\right)=\left(t_{0}-R^{2}, t_{0}+R^{2}\right) \times B\left(x_{0}, R\right) \tag{6}
\end{equation*}
$$

where $B\left(x_{0}, R\right)$ is n-dimensional ball in R^{n} with the radius R and
the center x_{0}. Denote further by $u_{\varepsilon_{0}, R}$ the integral mean value (6) $\quad u_{z_{0}, R}=\operatorname{mes}^{-1} Q\left(\varepsilon_{0}, R\right) \quad\left(\int_{z_{0}}, R\right)^{u(z) d z .}$

As it was proved in [1], if for the weak solution u of (1) holds in some point $z_{0} \in Q$ that

$$
\begin{equation*}
\liminf _{R \rightarrow 0_{+}}\left[R^{-n-2} \int_{Q\left(x_{0}, R\right)}\left|u(z)-u_{z_{0}, R}\right|^{2} d z\right]=0 \tag{7}
\end{equation*}
$$

then there exista $Q\left(z_{0}, \rho\right)$ such that $u \in C^{0, \alpha / 2, \alpha} Q\left(z_{0}, \rho\right)$. (The points for which (7) holds are called the regular points of the weak solution.)

So we want to prove that for each bounded weak solution u of (1) the condition (7) is satisfied in all points $\varepsilon_{0} \in Q$.

Let Q, u and z_{0} be fixed, $Q\left(x_{0}, R\right) \subset \subset Q$. Substitute
(8)

$$
\begin{aligned}
& \tau=\frac{t-t_{0}}{R^{2}}, \xi=\frac{x-x_{0}}{R} \\
& u_{R}(\tau, \xi)=u\left(t_{0}+R^{2} \tau, x_{0}+R \xi\right)
\end{aligned}
$$

For an arbitrary constant vector ϕ, we can transform

$$
\begin{align*}
& R^{-n-2} \int_{Q\left(z_{0}, R\right)}\left|u(z)-u_{z_{0}, R}\right|^{2} d z \leqq \tag{9}\\
\leqslant & R^{-n-2} \int_{Q\left(z_{0}, R\right)}|u(z)-\phi|^{2} d z= \\
= & \int_{Q(0,1)}\left|u_{R}(\tau, \xi)-\phi\right|^{2} d z d \xi .
\end{align*}
$$

(In the first inequality we used the fact that the functional $I(\phi)=\int_{Q\left(z_{0}, R\right)}|u(z)-\phi|^{2} d z$ attains its minimum in the point $\phi=u_{z_{0}, R^{\prime}}$)

It is easy to see from (9) and (7) that z_{0} is a regular point of u if one can find a subsequence $\left\{u_{R_{n}}\right\}\left(R_{n} \rightarrow 0\right)$ of
$\left\{u_{R}\right\}$ such that
(10) $\quad u_{R_{n}} \rightarrow p$ in $L_{2}(Q(0,1))$,
(11) p is a constant vector function.

To prove (10) and (11) we return to the system (1). Substituting into (4) for t, x and u from (8), we obtain that $u_{R}(\tau, \xi)$ solves the following aystem:

$$
\begin{equation*}
\int_{(Q)_{R}}\left[u_{R} \varphi_{\tau}-A\left(u_{R}\right) D_{\xi} u_{R} D_{\xi} \varphi\right] d \tau d \xi=0 \tag{12}
\end{equation*}
$$

Here $(Q)_{R}$ is the image of Q in the transformation (8).
For $R \rightarrow 0+(Q)_{R}$ expands to the whole R^{n+1}, so that if we choose some fixed $K>0$, then $Q(0, K) \subset \subset(Q)_{R}$ for all R smaller than some $R(K)$. So, choosing φ with the support lying in $Q(0, K)$, we can see that each u_{R} solves the system
(13) $\int_{Q(0, K)}\left[u_{R} \varphi_{\tau}-A\left(u_{R}\right) D_{\xi} u_{R} D_{\xi} \varphi\right] d \tau d \xi=0$,
if only $R<R(K)$.
Writing now in (13)

$$
A_{R}(\tau, \xi)=A\left(u_{R}(\tau, \xi)\right), R<R(K)
$$

we can see immediately that we can interpret (13) as a class of the linear parabolic systoms with the bounded and measurable coefficients. Because of both the estimate

$$
\left\|u_{R}\right\|_{L_{\infty}(Q(0, K))} \leqq\|u\|_{L_{\infty}(Q)}
$$

and the continuity of $A(u)$ we can deduce that the coefficionts A_{R} are equi-bounded and that the corresponding systems have the same constant γ of ellipticity:

$$
\left(\Lambda_{R}(\tau, \xi) \eta, \eta\right) \geqq \gamma|\eta|^{2} .
$$

(The constant γ as well as the upper bound of $\left|A_{R}\right|$ depend only on $\|u\|_{L_{\infty}(Q)}{ }^{\text {. }}$

Using the lemmae 4 and 5 from [2] we obtain

$$
\begin{align*}
& \left\|\left\|u_{R}\right\|\right\| w_{2}^{1 / 2,1}(Q(0, K / 2)) \leq c\left\|u_{R}\right\| I_{2}(Q(0, K)) \leq \tag{14}\\
& \quad \leqq c^{*}\left(K,\|u\|_{L_{\infty}(Q(0, K))}\right),
\end{align*}
$$

where $W_{2}^{1 / 2,1}(Q(O, R))$ is a space of all measurable on $Q(O, R)$ functions w for which the expression $|i|=1 I \left\lvert\, \frac{1 / 2,1}{(Q(O, R))}\right.$ =
$=\|w\|_{L_{2}(Q(0, R))}+\left\|D_{x} w\right\|_{L_{2}(Q(0, R))}+$
$+B(0, R) \int_{-R^{2}}^{R^{2}} \int_{-R^{2}}^{R^{2}} \frac{\left(u(t, x)-\left.u(x, B)\right|^{2}\right.}{(t-s)^{2}} d t d s d x$
is finite.
Because of the compactness of the imbedding of $\mathrm{w}_{2}^{1 / 2,1}$ into L_{2} it follows from (14) that we can choose the subsequence $\left\{u_{n}\right\}=\left\{u_{R_{n}}\right\}$ for which

$$
\begin{aligned}
& u_{n} \rightarrow p \text { in } L_{2}(Q(0, K / 2)) \\
& D_{x} u_{n} \rightarrow D_{x} p \text { in } L_{2}(Q(0, K / 2)), \\
& u_{n} \rightarrow p \text { almost everywhere in } Q(0, K / 2) .
\end{aligned}
$$

Using the diagonal method (enlarging $Q(0, K / 2)$) we reach the subsequence $\left\{u_{n}\right\}=\left\{u_{R_{n}}\right\}$ of $\left\{u_{R}\right\}$ with the following properties:

$$
u_{n} \rightarrow p \text { almost everywhere on } R^{n+1}
$$

(16) $\quad u_{n} \rightarrow p$ in each $L_{2}(\Omega), \Omega$ is bounded in R^{n+1}, $D_{x} u_{n} \longrightarrow D p$ in each $L_{2}(\Omega), \Omega$ is bounded in R^{n+1}.

From here it follows - after passing to the limit in (12) that p is a weak solution of (1) in R^{n+1}, so that p is a constant vector function because of Liouville parabolic property.

From (9) we get, putting $\phi=p$ and $R=R_{n}$, that

$$
\lim _{n \rightarrow \infty} R^{-n-2} \int_{Q\left(z_{0}, R_{n}\right)}\left|u(z)-u_{z_{0}}, R_{n}\right|^{2} d z=0 .
$$

From here it follows immediately (7), q.e.d.

References
[1] M. GIAQUINTA, M. STRUWE: On the partial regularity of weak molutions of nonlinear parabolic aystems, Universität Bonn, Preprint Mo. 455, 1981.
[2] M. GIAQUINTA, E. GIUSTI: Partial regularity for the molutions to nonlinear parabolic systems, Annali di Matematica Pura ed Applicata 97(1973), 253-266.
[3] M. GIAQUINTA, J. EECAS: On the regularity of weak solutions to nonlinear elliptic systems vis Liouville's type property, Comment. Math. Univ. Carolinae 20 (1979), 111-121.
[4] M. GIAQUINTA, J. NECAS: On the regularity of weak solutions to nonlinear elliptic systeme of partial differential equations, J. reine angew. Math. 316(1980), 140-159.
[5] M. GIAQUINTA, J. NECAS, O. JOHN and J. STARA: On the regularity up to the boundary for second order nonlinear elliptic systems, Pacific J. of Math. 99 (1982), 1-17.

Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovaká 83, 18600 Praha 8, Czechoalovakia

