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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,4 (1982)

THE INTERIOR REGULARITY AND THE LIOUVILLE PROPERTY
FOR THE QUASILINEAR PARABOLIC SYSTEMS
O. JOHN

Abstract: It is proved that the Liouville property of pa.
redolic quasilinear system - i.e. the fact that each bounded

weak solution in RP*l is constant - implies the c®*“-pegularity
of all bounded weak solutions in arbitrary domain, Similar re-
su{lts for quasilinear elliptic systems were established in [ 3]
- 5]0
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Rn+1

Denote z = (t,x) = (t.xl....,rh)e and let u =

= (ul,nz,....um) be a vector function. We consider the system
oul 9 L3 3ud

1) =% - = (.“m '5':',;)- 0y 1 = 1,0.0,m,

which we shall write for the sake of brevity as

(2) uy - divx(A(u)Dxu) = 0,

The coefficients a";g are supposed to be continuous on R

and
(3) (A(u)m,m) = a‘ig(u) ni n%>0 for all 7 #+ 0, ueR™,
In what follows we shall write for the vector function

u = {“i%l;-l uELz(Q) instead of uie(LzQ). 1=1,.00,m

Let QC Rn"':l be a domain., not necessarily bounded, We
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say that the function uﬁ'g:{oc(Q) is a weak solution of the

system (1) in the domain Q if for each g e D (Q) we have

(4) Jy [ugy - MwD, D oldz = 0.

(The space Wg:%oc(Q) 1s the linear set of all functions

. .

u such that u~ end Dou" are in Ly ;. .(Q) for all 1 = 1,...,m.

On each Q cc Q, Q° bounded, the seminorm

hulo,n,e =Muly cqry + 10ply o7
can be introduced for all ue WZ:%OOCQ)J

The system (1) is said to be regular in a domain Q if each

weak solution u of (1) in Q which is bounded belongs to
c®r*/2r(q),

The space C°'°°/2'°('(Q) is the linear set of all functions

continuous on Q for which on each compact Q°cc Q the expression

sup{ lu(t,x) - “st"x'!l; (t,x)eQ’, (t°,x°)e Q7 (4, 1) £ (47, x")

1t - t17240x - 21
is finite.

Pinally, we say that the system (1) has parabolic Liouville
property if for each weak solution u of (1) in the whole ro+l

holds the implication
(5) flul L (Rnﬂ)( © => u 1is a constant vector function.
Theorem 1, Let the system (1) have parabolic Liouville
property. Then it is regular in each domain Qc RO+,
Proof. Denote for R>0, z,e R™!
(6) Q(zo,R) = (t - RZ, %, + R2)= B(x,,R),

where B(X,,R) is n-dimensional ball in R" with the radius R and
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the center x,. Denote further by uﬁo'n the integral mean value

. -1
(6) u = mes”~ Q(z_,R u(ez)ds,
ZO,R o? ) @‘(4’?»)
As it was proved in [1), 1f foT the weak solution u of (1)
holds in some point L Q that
" pen=-2 12 _
(1) m tat[R S tule) =u, gl az) = o,

Zg)

then there exists Q(z_,® ) such that uc G°'°°/2’°LQ(LO.SD Yo
(The points for which (7) holds are called the regular points
of the weak solution.)
So we want to prove that for each bounded weak solution u
of (1) the condition (7) is satisfied in all points £, € Q.
Let Q, u and L be fixed, Q(zo.R) c C Q. Substitute

t-t X=X
o o
t.—ﬁr' §= - .

(8)

uR('t',§) -n(t0+R21: , x°+R§ ).

For an arbitrary constant vector ¢ , we can transform

-n=2 2
(9) R Q(i{,k) ) u(e) - “zo,Rl ds

LI

N

-Nn-2 2
R &(gmm\u(z)-upl dz =
= b, VoRCEL ) - 017 as ag .

(In the first inequality we used the fac¢t that the func-
tional I(} ) = f I u(z) = q>\2 dz attains® its minimum in
6Lz, R)

the point = u, ,B*)
o

It is easy to see from (9) and (7) that z  is a regular
point of u if one can find a subsequence 4uRn7; (R, — 0) of
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fug} such that

(10) uRn’—') P in LZ(Q(O,l)),

(11) p is a constant vector function.

To prove (10) and (11) we return to the system (1), Substi-
tuting into (4) for t, x and u from (8), we obtain that uR('z, f)
solves the following system:

(12) (@f)R Lug@e - Alup)Deug Degl 4= af = O.
Here (Q)R is the image of Q in the transformation (8).

For R—> 0+ (Q)R expands to the whole Rn'*l, 8o that 1f we
choose some fixed K> 0, then Q(0,K)ccC (Q)R for all R smaller
than some R(K). So, choosing ¢ with the support lying in

Q(0,K), we can see that each up solves the system

(13) m{,m [ugg, - Alug) Deup De @l dr df = O,

if only R<R(K).
Writing now in (13)
AR(T-' v% ) = A(uR('t' og ))v R<R(K)

we can see immediately that we can interpret (13) as & class of
the linear parabolic systoms with the bounded and measurable
coefficients. Because of both the estimate

lhug I zlul
L,(Q(0,K)) L,(Q)

and the continuity of A(u) we can deduce that the coefficients
AR are equi-bounded and that the corresponding systems have the
same oconstant o' of ellipticity:

(gl s €I MY z 7 lq.‘z-
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(The constant 7° as well as the upper bound of 'IARI depend only
on |l ull .
L(Q)*)

Using the lemmas 4 and 5 from [2] we obtain

(14 I ug il ollu i )
) ® '%/Z’I‘Q(O.K/Z)) ¢ "¥r "1,(Q(0,K)) £

*
£oTKohuly (qc0,5)))0
where '%/Z'I(Q(O,R)) is a space of all measurable on Q(O,R)
functions w for which the expression i wlil =
v1/2:1(q(0,R))
R? R 2
+ 6/‘ f f lu(t,x) = u(x,s)l dtdsdx
B(O,R) _R2 _R2 (t - 8)
is finite.

Because of the compactness of the imbedding of I%/ 2,1
into L, 1t follows from (14) that we can choose the subsequence
fu l =4 for which

Ups = dupd
u, — P 1n L,(Q(0,K/2))
Du —> D_p in L,(Q(0,K/2)),

w, —> p almost everywhere in Q(0,K/2).
Using the diagonal method (enlarging Q(0,K/2)) we reach the

subsequence {un'i- {uR?z of -funli with the following properties:
n

u, —> p almost everywhere on R,
(16) W, —> p in each L,(1), Q 1s bounded in RO+l
Du —> Dp in each L,(0), O 1s bounded in R**1,
Prom here 1t follows - after passing to the limit in (12) -

that p is a weak solution of (1) in Rn"l. so that p is a const-
ant vector function because of Liouville parabolic property.
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Prom (9) we get, putting ¢ = p and R = R, that

-n-2 2
1im R7® u(z) - u |© deg = 0,
m 00 (:z-:{;,R,n) ’ ( ) zO’Rn

From here it follows immediately (7), q.e.d.
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