Commentationes Mathematicae Universitatis Caroline

Kamila Bendová; Per Hájek
 A logical analysis of the truth-reaction paradox

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 4, 699--713
Persistent URL: http://dml.cz/dmlcz/106189

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A LOGICAL ANALYSIS OF THE TRUTH.REACTIOŃN PARADOX Kamila BENDOVA and Petr HAJEK

Abstract: A logical paradox that originated in discussion on Arifilcial Intelifgence (AI) is analyzed by means of arithmetization of metomathematica. The purpose is to isolate places where the apparent paradox disappears when notions occurring in it are understood as formal arithmetical notions and, secondly, to show how double use of self-reference in the paradox can be formalized.
Key words: Paradox, self-reference, Peano arithmetic, artificial intelligence.
Classification: Primary 03F30
Secondary 03B45, 68G99

§ 1.Introduction. The paradox in question was first formulated by Cherniavsky [I] in context of discussion on the difference between the reasoning of the man and the machine. His presontation is rather hard to understand; fortunately, the paradox was mimplified and clarified by Havel [4] who called the paradox the truth-reaction paradox. Havel's aim was to contribute to the diecussion mentioned above. In this paper we diaregard completeIy the context of AI, take the paradox as it stands and look at it through the eyes of mathematical logic. This means that we replace intuitive notions involved in the paradox by formal notions (which can be done in various ways) and try oither to show that a partioular formal theory is inconsiatant or to isolate

Abstract

places where the would-be proof of a contradiction is not a proof and cannot be converted to a proof. This geams to be the profeseional duty of a mathematical logician when facing a paradox, (Needless to say, such an analysis does not mean that the paradox, formulated in intuitive terms, is meaningless or uninteresting.) We shall present such an analysis and show two possibilities of formalization inside formal arithmetic. The first one, based on the notions of provability, is aimpler, but disregards the fact that the paradox uses two sorts of self-reference: first (usual) self-referential sentences (sentencea referring to themselves) and, second, self-referential proofs (proois referring to themselves). This second kind of self-reference seems to be new and the classical diagonalization lema of Gödel-Feforman does not enable us to construct self-referential prools. (The recursion theorem is the appropriate means for this.) The analysis results in a construction of a partial recursive function that formalizes attempts at constructing a proof of a contradiction; we show that all attempts fail.

The reader is assumed to know the elements of arithmetization of mathematies and of recursion theory. Knowledge of the papere by Faderton [2] and Smoryniki [5] from the Handbook of Mathematical Logic is more than aufficient for the present discusaion.

82. The Paradox. In this part the Cherniavaky-Havel Iruthreaction paradox will be briefly deacribed. (For details see [1],[4].)

Consider an informal theory with two binary predicates E and T, two axdons 11,12 and an "evidence rule" Bv .

```
T(x,y) (usually writtori xiy) describes the experimental situati-
on where some subject (either a human or a computer) accepts the
text y as true after analyzing the text m, E(x,y) (written INy)
mean: that x includes evidence for y.
Al. INEy }->\mathrm{ x\ly
(If x includes evidence for }y\mathrm{ then the subject accepts }
when knowing x.)
A2. }\textrm{xB}(土\textrm{INy}->7y)->~(xIy
(The subject does not want to be in contradiction with rea-
lity, more preoisely: the aubject will never acoept a stem
tament if this very act of accepting would make the state-
ment false.)
Bv If you, after being exposed to x, feel convinced of y then
xNy.
The particular case important for us is the folloving:
If x contains a prool of y then xFy. Havel doea not apecify
the notion of proof involved here; he merely majs mwhat is
a proof for us (e.g. for the reader) thould be an evidence
    for the subject, too."
    The truth-reaction paradox followe.
1. Let d denote the text of this proof (linem 1. through 8.)
2. ! = (dTs) (self-referontial definition of a
    mentence S)
3. dT* }->\mathrm{ न *
    (directiy from 2.)
4. dE(dTm }->\mathrm{ \ *)
    (1.-3. is a proof of 3. - thas 4.
    follows by EV)
5. ר(dTa)
42 applied to 4.
by 2. and 5.
8. dEs \& ( (dTs) (5. and 7. put together)

And 8. contradicts Al.
In Havel \(s\) theory variables range over texts (they might be called text variables); formulas are particular texts and if \(x\) is a text and \(y\) is a formula then both \(x\) ITy and \(x k y\) are formulas, thas particular texts. Note that proofs (from mome axdoms) are also particular texts. This suggests treating Havel's theory as a kind of propositional calculus or, better, text calculus with ueual formation rulea for propositional formulas enriched as follows:
(1) Any finite sequence of symbols is a text
(2) If \(x\) is a text and \(y\) is a formula then both \(x T y\) and \(x\) ary are formulas.
( \(T\) and \(E\) may be understood as some modalities.)
Consider a simplified particular case where \(T\) and \(E\) are identified and made independent of the first variable. Thus variables are propositional variables and \(T\) becomes necessity \(\square\)
(A1) is trivialized,
\((A 2)\) obtains the form \(\square(\square A \rightarrow \neg A) \longrightarrow \neg \square A\)
Ev says "if A is provable then infer \(\square A\) ", which may be understood as necessitation: from \(A\) infer \(\square A\).

\section*{One further assumes}
(AO) all propositional tantologien and the existence of a partieular propositional formula being a fixed-point of the modality 7 밍


Theoren 1. Axioms (A0)-(A2), (Fp) together with modue ponens and necessitation form a contradictory modal theory.
(The paradoxical proof above amounts directly to a proof of a contradiction.)

Remark 1. This shows, in particular, that (A2) in the present form is not provable in the modal system \(G\) of [6].
§3. Arfthetsisal interpretations. Our general approach is aa follows: We let variables of Havel's theory range over ifinite sequences of aymbols of the language of Peano arithmetic PA, hereafter called PA-texts. The notion of provability involved in (Ev) will be made precise as meaning PA-provability (provability in PA). For each PA-text \(s\) we have ite code (formalization) re 7 which is a particular term describing \(s\) in PA.

An interpretation of Havel's theory will be any pair \(\varepsilon(x, y)\), \(\tau(x, y)\) of PA-formulas having (at most) two free variables; \(\tau\) interprets \(T\) and \(\varepsilon\) interprots \(E\). Havel's axioms become axiom chemes: For any PA-texts \(d\), w, we have
\(\left.\left.\left(A 1^{\times}\right) \quad \varepsilon(\Gamma d\urcorner, \Gamma_{s}\right\urcorner\right) \rightarrow \tau\left(\Gamma d^{\urcorner}, \Gamma_{s}{ }^{7}\right)\)

(Hote that for each text s, 7 is also a text; if a is a formula then 7 is a formula.)

Let \(T\) be a theory containing PA. The interpretation is sound in \(\mathcal{T}^{\prime}\) if ( \(A I^{\times}\)) and ( \(A 2^{\times}\)) are provable in \(T^{\prime}\) (for each choice of d, s) and if the following holds (the rule Ev) \(s\)

If \(d\) is a PA-proof of a formula \(s\) then \(\mathcal{T}^{\top} f \varepsilon\left(\Gamma_{d}{ }^{7}, \Gamma_{s}{ }^{7}\right)\).
We shall exhibit some interpretations sound in some theoriea and not sound (111) in some others. In each case we shall show how
the construction of the paradoxical would-be proof is formalizable and isolate the exact place where the exact place where the formalization is not a proof of contradiction.

To close this section, let us recall some facts about PA used in the sequel (see [4]):

Fact 1 (Diagonalization lemma). Let \(x\) be a PA-formula with one free variable. Then there exists a sentence \(\varphi\) such that
\[
\mathrm{PA} \vdash \varphi \equiv \chi\left({ }_{\varphi} \varphi^{7}\right)
\]

Fact 2 (about \(\Sigma_{1}\)-sentences). Every true closed \(\Sigma_{1}\) PA-formula is a theorem of PA. (A PA-formula is \(\Sigma_{1}\) if it has the form \((\exists x) \psi\) where all quantifiers in \(\psi\) are bounded, see [4].)

Fact 3. PA is consistent since it has a model (the standard model of natural numbere).
84. An analyis based on provability. In the first interpretation we ignore the self-reference to \(d\) and identify \(T\) and \(E\) as one unary predicate. The predicate \(T(=E)\) must be interpreted In aceordance with the evidence rule, i.e. if there is a PA-proof
 \(\operatorname{Pr}(x)\) where \(\operatorname{Pr}(x)\) is the \(s t a n d a r d\) predicate of provability in PA, 1.e. for each PA-sentence \(\varphi\) we have
\[
P A \vdash \varphi \quad \text { iff } \quad P A \vdash \operatorname{Pr}\left(\Gamma^{\Gamma} \varphi^{\urcorner}\right) .
\]

More generally, if \(\mathcal{T}\) is an axiomatized extension of PA then \(\operatorname{Pr}_{\mathrm{g}}(x)\) denotes the standard provability predicate for \(\mathcal{T}\) : thus \(P_{r}(x)\) is the same as \(\mathrm{Pr}_{P_{A}}(x)\).

Thus this interpretation is sound in a theory \(\mathcal{T}\) if we have the following:
（A2）\(\left.\quad T \vdash \operatorname{Pr}\left({ }^{\Gamma} \operatorname{Pr}\left(\Gamma_{\varphi}{ }^{\top}\right) \rightarrow \neg \varphi^{\top}\right) \rightarrow \neg \operatorname{Pr}\left({ }^{\top} \varphi\right\urcorner\right)\)
（Ev）If there is a proof of \(\varphi\) in PA then \(\tau \vdash \operatorname{Pr}\left({ }^{r} \varphi^{7}\right)\) ．
The paradox translates to the following sequence of PA－formulas \(2^{\prime}\) ．\(\varphi \equiv \neg \operatorname{Pr}\left({ }^{〔} \varphi{ }^{7}\right)\) where \(\varphi\) is a particular sentence of PA auch that \(\operatorname{PA}+\varphi \equiv \neg \operatorname{Pr}\left({ }^{\Gamma} \varphi^{\top}\right)\) 。
\(3^{\circ} \cdot \operatorname{Pr}\left(\Gamma_{\varphi} 7\right) \rightarrow \neg \varphi\)
\(4^{\circ} \cdot \operatorname{Pr}\left({ }^{「} \operatorname{Pr}\left({ }^{「} \varphi^{\urcorner}\right) \rightarrow \neg \varphi^{\top}\right)\)
\(5^{\circ} \cdot{ }^{\circ} \operatorname{Pr}\left({ }^{\circ}\right)^{\prime \prime}\)
\(6^{\circ} \cdot 9\)
\(7^{\circ} \cdot \operatorname{Pr}\left(\Gamma \varphi{ }^{\circ}\right)\)
8＇． \(7 \operatorname{Pr}(\Gamma \varphi\urcorner) \& \operatorname{Pr}(\Gamma \varphi\urcorner)\)
Theorem 2．The interpretation of \(T\) and \(E\) by \(\operatorname{Pr}\) is not sound w．r．t．PA．

Proof．The axiom（AI）is provable in PA due to identifica－ tion of \(T\) and E．（Ev）is true in PA by Fact 2，since \(\operatorname{Pr}(x)\) is a \(\Sigma_{1 \text {－formula．}}\)

Let us now suppose that（A2）is provable for every formula \(\psi\) ．This means
\[
\operatorname{PA} \vdash \operatorname{Pr}\left({ }^{\Gamma} \operatorname{Pr}\left(\Gamma^{\Gamma} \psi^{\urcorner}\right) \rightarrow \neg \psi^{\urcorner}\right) \rightarrow \neg \operatorname{Pr}\left(\Gamma^{\top} \psi^{\urcorner}\right)
\]
for every \(\psi\) ，especially for the sentence \(\varphi\) for which
\[
\left.\operatorname{PA} \vdash \varphi \equiv \neg \operatorname{Pr}\left(\Gamma_{\varphi}\right\urcorner\right)
\]

Then in PA all steps in the Paradox are provable and we have a proof of contradiction on PA which is not possible（Fact 3．）． Thus the axion（A2）is not provable for every formula \(\psi\) ．

Theorem 3．The interpretation of \(T\) and \(E\) by \(\operatorname{Pr}\) is mound w．r．t．PA＋Con PA \(^{\text {where }}\) Con \(_{P A}\) is the sentence formally expresising consiatency of PA．

Proof．Not that if \(\varphi\) is a PA－sentence then
\[
\operatorname{PA}+\operatorname{Con}_{\mathrm{PA}} \vdash \neg \operatorname{Pr}\left(\Gamma_{\varphi}\right) \vee \vee \operatorname{Pr}(\ulcorner\neg \varphi\urcorner)
\]

We want to prove
\[
\operatorname{PA}+\operatorname{Con}_{\mathbf{P A}} \vdash \operatorname{Pr}\left({ }^{「} \operatorname{Pr}\left({ }^{\Gamma} \varphi \varphi^{\top}\right) \rightarrow \neg \varphi^{\top}\right) \rightarrow \neg \operatorname{Pr}\left({ }^{「} \varphi^{\top}\right)
\]

We have
\(\mathbf{P A} \vdash \operatorname{Pr}\left({ }^{「} \operatorname{Pr}\left({ }^{\Gamma} \varphi^{\top}\right) \rightarrow \neg \varphi^{\top}\right) \rightarrow\left(\operatorname{Pr}\left({ }^{\Gamma} \operatorname{Pr}\left({ }^{\Gamma} \varphi^{\top}\right)^{\top}\right) \rightarrow \operatorname{Pr}\left({ }^{「} \neg \varphi^{\top}\right)\right)\)
\(\operatorname{PA} \vdash \operatorname{Pr}\left({ }^{\Gamma} \varphi{ }^{\top}\right) \rightarrow \operatorname{Pr}\left({ }^{「} \operatorname{Pr}\left({ }^{\Gamma} \varphi^{\urcorner}\right){ }^{\top}\right)\)
by the properties of \(\operatorname{Pr}(x)\) ．
Thus we have
PA， \(\left.\operatorname{Con}_{\mathrm{PA}}, \operatorname{Pr}\left({ }^{\Gamma} \operatorname{Pr}\left({ }^{\ulcorner } \varphi\right\urcorner\right) \longrightarrow \neg \varphi^{\urcorner}\right), \operatorname{Pr}\left(\Gamma^{\top} \varphi^{\urcorner}\right) \vdash \operatorname{Pr}\left({ }^{\ulcorner } \neg \varphi^{\urcorner}\right)\)
which implies provability of（A2×）．
Corollary（Gödel second incompleteness theorem）．PAYCon \({ }^{\text {PA }}\)－
Immediate from Theorem 1 and Theorem 2．

Remark 2．Comparison with a proof of second Gödel \({ }^{\text {n }}\) in－ completeness theorom，e．g．in［5］makes obvious that the present proof is by no means a new proof of this celebrated result；it merely show that the analyzed paradox－in the present inter－ pretation－involves the same reasoning as that used in the proof of the second Gödel＇s Theorem．

Fact 4．Consider the theory PA＋A2 where A2 is the axiom schema as above．We have PA \(+\mathrm{A} 2 \vdash \mathrm{Con}_{\mathrm{PA}}\) ．

Proof．Let \(\varphi\) be a sentence auch that
\[
\operatorname{PA} \vdash \varphi \equiv \neg \operatorname{Pr}\left({ }^{\ulcorner } \varphi \varphi^{\top}\right) ;
\]
then PA \(\left.\left.\vdash \operatorname{Pr}\left({ }^{「} \operatorname{Pr}\left({ }^{\Gamma} \varphi\right\urcorner\right) \rightarrow \neg \varphi\right\urcorner\right)\) by Fact 2.
and thus
\[
\left.\operatorname{PA}, \mathrm{A} 2 \vdash \neg \operatorname{Pr}\left(r_{\varphi}\right\urcorner\right)
\]

1．e．
\[
\text { PA,A2 } \vdash(\exists x)(\operatorname{Pml}(x) \& \neg \operatorname{Pr}(x))
\]
which is a sentence equivalent to \(\mathrm{Con}_{\mathrm{PA}}\).
Remark 3. We saw in the proof of Theorem 1 that the aequence ( \(\left.2^{\circ}\right)-\left(8^{\circ}\right)\) is not a sequence of formulas provable in PA: we could not use (A2). How, (A2) is provable in PA+Con PA (and PA \(\operatorname{Con}_{P A}\) is consistent); filling the details makes ( \(\left.2^{\circ}\right)-\left(6^{\circ}\right)\) into a (PA+Con \({ }_{P A}\) )-proof. But this does not entitle us to conclude \(\operatorname{Pr}_{P A}\left(\Gamma^{\prime}\right)\), but only that \(\operatorname{Pr}_{P A+C o n}\left({ }^{[ } \varphi^{7}\right)\). Thus this is the place where the "proof of contradiction" collapses. (In fact


Remark 4. The reader can easily see that if we change our notion of soundness of ( \(\tau, \varepsilon\) ) by postulating ( \(E V^{*}\) ) If \(d\) is a ( \(P A+C o n_{P A}\) )-proof of a then \(T^{\prime} \vdash \varepsilon\left({ }^{\prime} d^{\top}, r_{s}{ }^{\top}\right)\) then the interpretation of \(T\) and \(E\) by \(\operatorname{Pr}_{P A+C o n}^{P A}(x)\) is not sound w.r.t. \(\mathrm{PA}+\mathrm{Con}_{\mathrm{PA}}\); similarly for other theories \(\mathcal{J} \supseteq \mathrm{PA}\).

Similarly, the reader may verify that if \(\mathrm{Pr}_{\mathrm{PA}}\) is taken for \(\varepsilon\) (to interpret Havel \(s \mathrm{E}\) ) and \(\tau(x)\) is any formula of the language of \(P A\) such that \(P A \vdash(\forall x)\left(P_{r_{P A}}(x) \rightarrow \tau(x)\right)\) then the corresponding instance of A2 is unprovable in PA. (If we had such a proof then the paradox would yield a proof of contradiction in PA.)
85. An analysis based on the notion of proof. The interpretation of Havel's (and T) presented in the preceding section does not depend on the first argument of \(E\) ( Of T) and therefore the diagonalization over proofs is disregarded. Here we shall imitate the paradox more closely.

First realize that it is trivially impossible for a text
to contain itself as a proper subtext; the reference of a proof to itself is only possible by means of an appropriate description of a proof and not by quoting the whole proof in a part of itself.

We could identify descriptions of finite sequences with nullary Turing machines. If such machine \(d\) converges and produces an output \(\{d\}=s\) then it is a successful description of \(s\), if it diverges ( \(\{d\}\) is undefined) then \(d\) fails to describe a symbol. More generally, the description may have some finitely many steps, say 9. Such a description may be best understood as a unary Turing machine \(d\) for which we are interested only in values \(\{d\}(0),\{d\}(1), \ldots,\{d\}(8)\). If all these values are delined then \(d\) successfully describes the word \(s=\{d\}(0) * \ldots *\{d\}(8)\) (where * is the aign of concatenation); if \(d\) fails to describe a word in 9 steps we may at least ask whether \(d\) has ancceeded to describe a word in (say) three steps, i.e. whether \(\{\mathbb{d}\}(0),\{d\}(1)\), \(\{d\}(2)\) all converge and if so, we can investigate the word \(\{d\}(0) *\{d\}(1) *\{d\}(2)\) 。

We shall understand the paradozical "proof" as a description of a binary Iuring machine \(h\) that processes (mentions) each stepwise description d of a proof (sucesaful or failing) and tries to deacribe a new proof (in 9 steps)
\[
\{h\}(d, 0),\{h\}(d, 1), \ldots,\{h\}(d, 8)
\]

By Recuraion Theorem, we then investigate an arbitrary \(d\) such that
\[
\{h\}(d, i) \cong\{d\}(i)
\]
for each 1 ( \(=0,1, \ldots\) ). This will mean that the proof described by \(\{d\}(0),\{d\}(1), \ldots\) mentions itself.

Havel's predicate \(E\) (identified with T throughout) is most
naturally interpreted by postulating that \(\varepsilon(x, y)\) ass \(x\) is a sequence and contains a proof of \(y\), i.e. \(y\) is one of formulas (not necessarily the least one) occurring in \(x\) : \(\operatorname{Pr}_{P_{A}}(x, y) \equiv x\) is a sequence \(\&(\exists w)\) ( \(w\) is a subsequence of \(x \&\) \& wis a PA-proof of \(y\) ).

Convention. \(d^{n} n\) denotes \(\{d\}(0) * \ldots *\{d\}(n-1)\); this value exists if and only if all values \(\{d\}(0), \ldots,\{d\}(n-1)\) exist. \(\operatorname{Pr}_{P_{P A}}\left(x^{\prime \prime} y, z\right)\) is assumed to mean: for some \(y_{1} \leqslant y, x^{\prime \prime} y_{1}\) exists, say, \(x^{n} y_{1}=w\), and \(\operatorname{Pr}_{P A}(w, z)\). Note that for each particular \(n, \operatorname{Pr} \nabla_{P A}\left(x^{\prime \prime} \bar{n}, z\right)\) is a \(\sum_{1}\)-formula.
(Here \(\bar{n}\) is the \(n\)-th numeral, i.e. the term \(0 \underbrace{\prime \prime \cdots 1}\) n-times.)
Construction. We define a Turing machine \(h\) by describing its behavior for arbitrary first argument \(d\) and for aecond argument \(1=0,1, \ldots\). \(\{h\}(d, i)\) for \(i \geqq 9\) is irrelevant (say is 0 ) . The definition parallels teps in the Truth-reaction paradox, the first step being postponed: it will consist in an application of the Recuraion Theorem.
\(1=0:\) Given \(d\), the machine \(h\) constructs a self-referential sentence such that
\[
\operatorname{PA} \mid \equiv \equiv \neg \operatorname{Pr}_{P A}\left(r^{\prime} d^{\urcorner n g}, r_{B}{ }^{\urcorner}\right)
\]
and outputs a PA-proof \(p_{0}\) of the last equivalence. 1. 1: \(\{h\}(d, 1)\) prolonge \(p_{0}\) to a PA-proof \(p_{1}\) of
 this means that if we denote \(p_{0} *\{h\}(d, 1)\) by \(p_{1}\), then
 implication will be denoted ANT; it will be used in the antecedent of an instance of 12 .
\(1=2\) (First filling): \(h\) searches for a PA-proof of
\[
\operatorname{Prv}_{\mathrm{PA}}\left(\Gamma \mathrm{~d}^{\top} \overline{\mathrm{g}},{ }^{\Gamma} \mathrm{ANT}\right) ;
\]

If it succeeds then the found proof is \(\{h\}(d, 2)\); and we put \(\left.p_{2}=p_{1} *+h\right\}(d, 2)\). If it fails then \(\{n\}(d, 2)\) is undefined (as well as \(\{h\}(d, i)\) for all \(1>2\) ). (SimilarIy for other filfings below.)

Convention : The word "proof" (underlined) will have double meaning in the discussion below; at the moment, think of PA-proofs.
1. 3 (Second filling): \(h\) searohes for a proof of
which is an instance of A2; if sucoessful the found proof is \(\{h\}(d, 3)\) and we put \(p_{3}=p_{2} *\{h\}(d, 3)\).
 we put \(p_{4}=p_{3} *\{n\}(d, 4)\).
\(1=5\) : \(\{h\}(d, 5)\) prolonge \(p_{4}\) to a proof of s (using the equivalence in \(i=0\) ); we put \(p_{5}=p_{4} *\{h\}(d, 5)\).

1-6 (Third filling): h searches for a proof of
\[
\left.\operatorname{Prv}_{P A}\left(r_{d}{ }^{\top} n \overline{9}_{g} r_{B}\right\urcorner\right) s
\]
if successful then \(\begin{cases} & \} \\ (d, 6) & \text { is the found proof and we }\end{cases}\) put \(p_{6}=p_{5} *\{h\}(d, 6)\).
1. 7: \(\{h\}(d, 7)\) prolongs \(p_{6}\) to a proof of 7 s ; put \(p_{7}=p_{6} \times\left\{h^{2}(d, 7)\right.\)
\(1=8:\{\mathrm{h}\}(\mathrm{d}, 8)\) prolongs \(p_{7}\) to a proof of s \& f :
End of definition of \(h\).

Convention. In the sequel, \(d\) will denote an arbitrary Turing machine satisfying the equation
\[
\{h\}(d, 1) \cong\{d\}(1)
\]
for each \(1=0,1, \ldots\). (Exiatence is given by Recureion Theorem.)

Fact 5. For every choice d according to our eonvention, d"3 exdsts and is a PA-proof. (There is a first filling.)

Proof. We know that \(p_{1}\) is a PA-proof of ANT and that \(p_{1}=\{h\}(d, 0) *\{h\}(d, 1)\); since \(\{d\}(1) \cong\{h\}(d, 1)\) for \(1=0, \ldots\) ... 8, dn2 exists and equals \(p_{1}\). Thus the formula \(\operatorname{Pr}_{P A}\left({ }^{\prime} d^{\top} \overline{9}, r_{A N T}\right)\) is true and therefore PA-provable (being a \(\Sigma_{i^{\text {-formula) }}}\).

Fact 6. If "proof" in the construction means "PA-proof" then for each \(d,\{d\}(3)\) is undefined; the instance of A2 in question is not provable in PA. (Thus d"4 does not exist; there is no second filling.)

Proof. This is because if there were a second filling then there would also exist a third filling (see \(1=6\) in the construction), since \(p_{4}\) would be a PA-proof of \(s\) and \(p_{4}=d^{n} 5\); thus
 exist and would be a PA-proof of a contradiction.

Theorem 4. The interpretation of \(T\) and \(E\) by \(\operatorname{Pr}_{V_{P A}}(x, y)\) is not sound in PA. (Immediate from Fact 6.)

Fact 7. Axiom A2 is provable in PA+Con PA \(^{*}\)
 \(\longrightarrow \neg \mathrm{s}\urcorner)\) and \(\left.\left.\operatorname{Pr}_{P_{A}}\left(\Gamma_{P}\right\urcorner, \Gamma_{B}\right\urcorner\right)\). Then
 hence \(\operatorname{Pr}_{P A}\left(\Gamma_{7} \boldsymbol{s}^{\urcorner}\right)\). But \(\left.\operatorname{Pr}_{P A}\left(\Gamma_{p}\right\urcorner, r_{B}{ }^{7}\right)\) implies \(\operatorname{Pr}_{P A}\left(r_{s}{ }^{\urcorner}\right)\), so we have \(\operatorname{Pr}\left(\Gamma_{s} \& 7 \mathrm{~s}^{7}\right)\), a contradiction.

Theoren 5. The interpretation of \(T\) and \(E\) by \(\operatorname{Prr}_{P A}(x, y)\) is sound w.r.t. PA+Con PA \(^{\text {• (Immediate.) }}\)

Remarix. Similarly as in 8 3, we can try to understand \(h\) an a function trying to construct a proof of a contradiction in PA+Con PA . For this purpose, we shall understand the word "proof" (underlined) in the construction as "(PA+Con \({ }^{\text {PA }}\) )-proof".

Fact 8. If the construction of \(h\) is modified as just said then \(d\) " 6 exists and is a (PA+Con \(P_{A}\) )-proof, but for each \(d\), \(\{d\}(6)\) diverges thus \(d^{n 7}\) does not exist. (There is a second filling but there is no third ifiling.)

Proof. This follows from Fact 7: A (PA+Con PA )-proof of A2 is a second filling. Therefore there can be no third filling since otherwise the construction would produce a proof of contradiction in \(\left(P A+C o n_{P A}\right)\). (Let us mention that in the present situation \(p_{8}\) is a ( \(\mathrm{PA}_{\mathrm{C}} \mathrm{Con}_{\mathrm{PA}}\) )-proof and therefore also \(\{d\}(\mathrm{n})\), but it is not a PA-proof. In the second ifling, the axiom Con \(_{\text {pA }}\) is used in a substantial way.)

Thus the Trath-Reaction Paradox does not give us any proof of inconsistency in PA+Con PA because, as we have just seen, there ia no third filling.

References
[1] V.S. CHERNIAVSKY: On limitations of artificial intelligence, Inf. Systems 5(1980), 121.
[2] H.B. ENDERTON: Elements of recursion theory, Handbook of Mathematical Logic (North-Holland P.C. 1977), 527-566.
[3] S. PEPERMAN: Transfinite recursive progressions of axiomatic theories, Journ. Symb. Log. 27(1962), 259316.
[4] I.M. HAVEL: The truth-reaction paradox: a probe of limitations of artificial intelligence, Proc. ECAI 82, Orsay 1982.
[5] C. SMORYNSKI: The incompleteness theorems, Handbeok of Math. Logic (North-Holland P.C. 1977), 821-862.
[6] R. SOLOVAY: Provability interpretations of modal logic, Israel Journ. Math. 25(1976), 287-304.

Mathematical Institute, ČSAV, ذ̌itná 25, 11567 Praha 1, Czechoslovakia
(Oblatum 10.6. 1982)```

