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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,4 (1982)

AN ELIMINATION OF THE PREDICATE ,TO BE A STANDARD
MEMBER* IN NONSTANDARD MODELS OF ARITHMETIC
Karel CUDA

Abstract: In the paper, we are interested in the follow-
ing problem: Let *7l be a nonstandard model of Peano arithme-
tic. . Let J( be the standard submodel of *7{ , Let us define
a new external predicate P(x) in *7! using the predicate "to
be a member of 7L " and arithmetical (internal) means. We want
to find a new definition of P(x) in which the external part
and the internal part are separated. A method is described,
how to solve this problem. Namely, the new definition is ob-
tained by an algorithm which uses the syntastical form of the
original definition,

Key words: Nonstandard model of Peano arithmetic , non-
ste.nda.ri model of zrﬁn. external, internal,

Classification: Primary O3H10
Secondary O3ET0

Introduction. In the paper, a procedure is given how a

new form of description of an extermal predicate can be found
in any nonstandard model of Peano arithmetic . We suppose that
only the predicate "to be a member of the standard submodel”
and arithmetical (internal) means are used in the original
description of the predicate. The external part and the inter-
nal part of the desoription are separated in the new descrip-
tion.

The main result of the paper is the following theorems
Let *JL be a nonstandard model of Peano arithmetic (we need
the induction for all formulas), Let 71 be the standard subd-
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model of *% . Let St(x)=x e 2L . Let P(x) =

=*N =g (xy8y5¢.058,), Where @ 1is & formula in which only
the predicate St(x) and arithmetical means are used and
81500098 € * (ecg. @ = (Vz,5t(2))(x< a5 &(34)(t =

= z48, = St($)))). A formula qr(t,x,al,...,ah) of the langua-
ge of Peano arithmetic and a set X = { PjF: 7 — 3L % can be
found such that P(x)= (AP eX)(Vne® )(*¥ =y(F(n),x,89,000
eees8;)) s More then: The syntactical form of y can be found
by an algorithm using the syntactical form of ¢ . X can be
defined from the standard system F of the model *71 by a for-
mula in which only the quantifications of natural numbers and
members of & are used., The syntactical form of the formula

A defining X cen be obtained by an algorithm using the syn~
tactical form of @ -

Remember that the standard system ¥ of the nonstandard
model *7U is the system of parts X of 7 , such that for some
formula @(Xy8y,4..,8,) of the language of P.A. and some mem-
bers a,,...,8) € *N , nex=*"N & P(ny8y500058,)0

The paper is a free contimuation of the paper [& 2], The
facts contained in [& 2] are used only in remarks con cerning
the generalizations of the given procedure. The leading ideas
of both the papers are the same but the technicalities connec-
ted with the work in nonstandard models of P.A. (or ZPein =
Zermelo-Fraenkel set theory for finite sets) are not trivial
(we do not require the model * to be a)l-satura.ted). The
procedure can be (using some technicalities) generaligzed for
compact enlargements and the author intends to write another
free continmuation of these papers in the language of nonstan-

dard analysis describing this generalization.
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The set-theoretical language is mostly used in the paper.
The usage of this language is correct as the reader will de
able to prove the following fact after reading the first sec-
tion of the first chapter of [ V], Fact: Let us define a new
predicate in Peano arithmetic &€ b = a-th member of the dya-
die expression of b 18 1= (3 k,m,n)(b=k:2® + m&m<2%% k =
= 2n + 1). With respect to this new predicate we obtain the
Zermelo-Fraenkel set theory with the axiom of regularity and
with the negation of the axiom of infinity (the cardinality
of every set is a natural number),

We find the formula ¥ and the system ¥ in four stéps.

1) Using the operations J°, < , - and an arbitrary in-
finite natural number cC as a parameter, we find an external
set 6 <*2L and & normal formula ¥, (only members of 7
are quantified) such that 9(:,’&) =(3teb) 'Vl(t,x,?,ao).

2) We prove that © is a figure in an indiscernibility
relation, (A figure and an indiscernibility relation being
nonstandard topological notions,)

3) Ve find a connection with a standard compact metric
space, where X corresponds with a subset of this space con-
nected with 6 .

4) We find the definition of X from the standard sys-
tan ¥ of *IL .

The numbering and contents of sections corresponds to the
described divieion on steps. In the section O we translate
our problem into the set-theoretical language.

The author believes that the paper is readable also with-
out usage of references except of the given fact, another

fact in § 0 and remarks concerning generalizations.
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§ 0. We use the notion cless for parts of ™77 (external
gsets) and the notion set for members of *7l , We identify the
set & with the class & = {x;xEaf, Thus we use only € and not
£ ., For olasses we usually use the capital Roman letters. For
zetg, we usually use the lower case Roman letters. The small
Greek letters are used for subclasses of sets and natural num-
hers (finite or infinite). For finite natural numbers we use
OailgKyene o
Attention: 1) The members of *J are not called natural num-
hers from this moment. If we say "x is a natural number”, then
2 mean by this that x is & natural number in the sense of the
sat theory (w.r.t. € ).

2) A subclass of a set is usually a set in the set theo-
ry. In our case, this assertion does not hold. We prove that
the class PN (finite natural numbers) of all natural numbers
being members of a sitandard submodel is a subclass of a set
not being a set.

Definition 0.1t 1) N ={cG; o is a natural number}.

2) PN ={xe Njoce L.

Lemma 0.2: 1) a€b = *3 = a<b,
2) acb&kb eIl =>ac Il .
Proof: 1) Look at the definition of € in the introduc~

tion.
2) As 7L is the standard submodel and *771=a <b we have

acdl.

Lemma 0,33 (We use IPpy + reg.)
1) e N-FR&neFN = necoc o Thus (Vec e R-PN)(FN = ),
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2) For o.e N we define V,, by recursion. V, = {0};
V™ P(Ve)s For every ncFN we have V < 90 .

3) (3o )(cc e R-FN),

4) -~ (Ja)(a=FN).

Proof: 1) If«e€n then Mmoot < n (see L0.1)en 18 &
member of the standard submodel hence o¢ is also a member of
N - a contradiction.

2) If ae 2l then J(a)e 7L as J’(a) is definable from
a. If V & 7L for some ne PN, then there must be first such n
(we use the fact that 9L is the standard submodel). But Vn_le
€ 7l - a contrediction with P(V, ;)& 2T .

3) Using the regularity axiom we have (VY a)(3cc € N)(ae
6V, )e Let 8 €™~ 21 , Let o< be such that acV . If c € FN
then Ve 7?1 , thus a € 9, (see L0.2) - a contradiction.

4) If a=FN then max(a)e FN, Hence max(a) + 1€ FN= a - a
contradiction with the maximality of max(a). (Any subset of N

must have a maximal element - we use zrﬁn.)
Definition Ou4s V = ULV, joc € K}, Vpu = ULV ;< €PN},

Theorem 0,5t 1) a e*% = aceV,
2) ac = a6 Vpyge

Proof: 1) We use the regularity axiom.

2) Vpy =9 (see L0,3.2))s If a e 21 then the first <€
€ N s.t. aeV_ (the rank of a) is definable from a and hen-
ce cc must be in 97 .
Fact: A function G can be defined by the recursion such that
G:N<>V and G:FNHVmo

Instead of the definition of G we find the value G(324),
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(For the definition of G and the proof of the faoct see [VJ].)
324 = 2842%422; 8a23,6=22+21,2421; 3221420,122%; G(0)=0;
G(1)= {0}, G(2)= {03}, G(3)= {{03,03; G(6)= {{{0%},{03},
a(8)= {{{0%,033; G(324)={{{{0},0%%, {{{03} ,{03%, {{031}.
Let us note that the definition of € is connected with G.

Using the set-theoretical language we can consider the
oclass X = { x;P(x)} instead of the predicate P(x)., The fact
that P(x) is defined by an arithmetical formula with the pre-
dicate St(x), and parameters 8yseces8y, can be expressed by
the fact that X= { x3 q(x,ﬁ,...,%,vm)}, where @ is a normal
formula (only sets are quantified). To prove the equivalence
of these two formulations it is sufficient to prove the fol-
lowing assertion,

Assertion: (*7Lk a+b=o) = @~1(c)=G"1(a)+G"1(D),
(*Ni=a-bac) = 6-1(c)=G"1(a)6"2(b).

As the assertion concerns only the equivalence of the two
formulations of the problem we give here only the principal
mottos of the proof. 1) Let a@ b= (*=a<b), let aSv=
= G‘l(a)< G’l(b). In both the orderings we compare in the
following manners: Order the members in the decreasing sequen-
ce and use the lexicographical ordering.

2) a@b=a $ b, Let a be the @ 1least member such
that & "a*g "a, Let b be the @ predecessor of a., We have
1@ b ©aka 3 be But this is a contradiction with 1) and with
the fact that both a and b are sets of elements © 1less than
be

3) 2) implies ( *7%i=b=a+l) = G~1(b)=G"1(a)+l and the
required assertions we obtain by the induction.

A8 G:FN <>V, we can (using Th, 0.5.2)) reformulate the
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mein theorem in the following form: Let V, € be a nonsten-
dard model of zrnn+ reg, let FN be the olass (external set)

of standard natural numbers, An algorithm can be found which

to any normal formula 9:(1,'5’,1) gives a normal formula

y(x,d,t) and a system of functions X< “vm such that

P(x, BN = (IFeX)(VnePR)(V =y (x,&,F(n))). More then,

3 1is found in the following forms: Let & ve the standard
system of V (¥ = {Xc FNj(3 acV)(X=FNNa)}). A formula 3 can

be found in which only members of Vp. and Z are quentified such
that = {Pc TV T (P, 93

§1

Lemma 1.1t 1) Let 6 < u. If ’C(t'?) is a normal formule
then (Vted)y(t,8)= (3 veul(v26&(Viev) g (+,8)).

2) Espeocially (VYneFN)(Ix €N, >n);c(t.‘i) =
= (Jot € F-FK) g (L, 2)e

Proof: 1) v-{tsu;%(t,z)}.

2) Let 3 be an arbitrary element of N-FN, Put
X B B) =X €B&(T ot >X)( € Ny (o yE))o Use 1) for
6'=FN, u= B (ct. [T 2)),

Lemma 1.2: Let © <= u and let 7 (w,%) be a normal formula.
The following equivalence holds. (V t € 6)y (t,8) =
=(3%teP(u-6))(Vteu-t)y . The equivalence holds also for
dual quantifiers,

Proof: Use L.l.l.l).

Remarks: 1) The formulas on both the sides of the equiva-
lence have a similar syntactic form - a quantification restric-

ted to a class followed by a normal formula. The restricted
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quantifications are dual one to the other, This fact makes it
possible to put the quantifiers restricted to classes to the
beginning of the formmla,

2) It is possible to generalige the lemma for classes ?
as parameters., We require in this case that no proper subclass
of u can be defined by & normel formula using ?, € as parame-
ters., (For more details see [& 2],)

3) Por the "dualisation"™ of quantifiers wedo not need
the whole powerset axiom (the whole induction schema). The
following schema is sufficient. For any normal formula ¢ the
following formula is en axiom (V u)(3 v)(VE)({t:¢ (+,3) &

L teule v), We can also do some hiearchy restriction on for-
mulag in the schema if we want to use the "dualisation" only

for hierarchy restricted formulas,

Theorem 1,3t Let oc & N-FN, Let g:(x,g +2) be & normal
formula. A normal formula mp‘(x,y,'?), a set u and a class
6 c u can be found such that @(t,FN,8)= (3% e &)y (%,t,4).
More then: u is defined from o« using the operations &, < .and

S is defined from o, FN using the operations P, =< , - .

Proof: By the induction based on the complexity of the
formuls @ -

1) xePN = (3T cFN)(x=%t) (we put 6 =FN, u= o¢ ), Other
cases of atomary formulas are obvious (e.g. X=PN = x+Xx),

2) (3tte oMyl 6,04 (3% 62) y2(12,1,2) =
= (3Te 6 =62)(3 t1,4%) (T <L, 420 &yt & y?), 12
61c ul & 62 u? then we put G = 61x 62 and u=ulx u2,

3) (3xN(3teb)y(Rt,8,x)= (3Te6)Ix)y.

4) 1 (3tte eH e 6,7 = (vite 61yl 16t
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X (u', o) be the definition of ul from o¢ . Let us put u =
= P(ul), 6= Plul-cl), Using L1.2 we obtain the equivalent
(3te6)(3ul, 7(,(ul,oc))(V tle wlat)q 'qu having the requiz=

ed form,

Remarks: 1) The theorem can be generalized for several
*small" classes (instead of FN) and "large"” classes as parame-
ters (see [ 2]).

2) 1If FR occurs only in the prefix of ¢ then we can mo-
dify only the prefix. This modification and the definiticn of
© andu is dependent only on the gyntactie form of lhe pre-

fix of ¢ in this case.

§ 2

Definition 2,1: Let nv be an equivalence relation.

1) %g.,(X) = (Vx,y)(xeX&kyrx=> y€X), X 15 a figu-
re in ~ .

2) Fig (X) ={ys(3 xeX)(y~x)}, the figure of X.

3) @ (x) = Big_ ({x}), the monad of x.
Yact: ﬁlq,(?ig(x)).

Definition 2.2: 1) We use «r for words defined by the
following inductive definition: 1) The empty word A is a word,
i1) 12 U4, U, aTE words, then (ulx "‘2) is a word,

1i1) 4if ¢ is & word, then Pur i1s a word,

iv) any word is obtained by finitely many applications
> 11) snd iii) on the empty words.

2) PFor o« € N (finite or infinite) and for a wrd 1t we

lefine a set uf,f' end an equivealence % on n“ by the recursi-

oG o
'n based on the complexity of u o 1) u_{\- oC
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4 = (1a/7H)u (ot = FE)x (¢ = FN)), where Ia is the identi-
ty

mapping Id(x)-x. )
MXT) My “ix™ _
i1) “oc =u “xu”, {x, 22) E7 (¥y¥) =
@, n,
=X nb4 =, 3 v 2
e’
i11) uw“ = 5’(11;”). x = y= Mgy (x) = 1’1844, (y)e
% oc
Remarks For o« € FN all the equivalences are identical

with the equality.

Tpeorem 2,33 1) (Ve e N-FN)( 3'49._/\. (FN))e.

2) Sigy (€)= 919».,4 (uy - 6)

) Figalea 3‘49—%(6'2’@ ?"?mxwzw
(6,%6,). <

4) 3‘@%(6)@ .’&‘9%,,, (P(6)).

Proofs Only 4) is not obvious. Let us prove 4). We have
to prove that st&y? X=>yESG% , We have ySFig ., (y) =
=4

= Fig , (x)= & as & is a figure,
&

Corollary 2.4: The set u from the theorem 1.2 is uly

for
e suitable 4, oo and the class ¢ from this theorem is a figu-

re in %’g .
Remark: The given siep can be done also for several "in-

put” classes, if we suppose that they are figures in suitable

equivalences,

§3
«w 7
Theorem 3,1t If 3¢ < € N then u, £ u, and

(Vxyeud NxZy=xZy)e

Proof: By the induction based on the complexity of «w .

Only the step for Pt 1is not obvious. Let us prove this step.
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P
Let x,yc ug let x%"’ y and let t¢ x. There is 2 sey s.t.
s % t. As x,y¢ u?"' we have s,tc u;: o Using the induction
agsumption we obtain s %’ t. The proof of the aessertion with

X, y ochanged and the proof of => are analogous.

Definition 3.2t Por oc, B € N 8.t. B €< and a word
let us define the funotion oct;;': u:-‘l!‘-) u;; « We proceed by
the recursion based on the complexity of « .

A
1) ‘f ()= for ¥epf,
=f3-1for yex-03-

(o, =< w,)
1) £ Kmem) = ) 1 )

111) gcf:“(x) - (1)
Lemma 3.3t 1) df,;ﬁ' is described by a set-formula with

persmeters o, /3, 4 »
2) Por xeu‘,:' we have df:(x) = X,
3) It x£f47 then o0 o = .

Proof: By the induction based on the complexity of .

Theorem 3,4t 1) Por any o, € ¥, B £ < , any u and
any xX,Ye€ u::' the following implication holds:
Ly = Ly () F L (.

2) If Aec N-FN then the opposite implication holds, too.

3) If xe N-FN and x,yc uy then x Xy = (VYnecFN)
Cotm () = A0 (7)) = (B e B-FANf < & 05 (x) = £y

Proofs 1) By the induction based on the complexity of
44 ., Only the induction step for P 1is not obvious. Let w
prove this step. Let t ¢ ecfg‘"‘ (x) and let € ¢ x be such that

t= _£°(T). There is a Vey s.t. ¥ 2 3. By the induction

«’s
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assumption we have t%"df,:" (¥). If we change X, ¥y, then we pro-
seed analogously.

2) We again use the induction and only the step for J
s not obvious, Let te x, It is sufficient to find a Sey s.t.
i%"i. Let aewtf”"(y) be s.t. df;:(t) % s (the exiastence is
lnplied by the assumption of the impliocation). Let S8cy be a.t.

(s). By the induction assumption we have § = t.

3) The fact that the second assertion is mplied by the
first one can be proved by 1) and the fact that for ne FN .—_7-;”5’
Is the identity. The fact that the third essertion is implied
by the second one follows from Ll.l.2). Using 2) we prove that

the first assertion is implied by the third one.

Corollary 3.5t If PN < BsxeN&xeu, then “t,:‘ (x)g x
Proofs Put y -“f‘"’(x). ye u;;' hence mf:(y)'y' t:‘t;;" (x)
(see 3.3.2)), Hence y= x (see 3.4.3)).

'I.‘heo;qn 3.6t Let FRcsp£occe N, If %, & up/ are fi-
mresiné: then“:'" =g Oy, and(f)"'s;,-
s Plgy (5 ). Henoe & =(  £7)7In( 2o "c, ) end 6, =
. (,‘r;;w-((xr;;‘)'l-e,, )

Proofs Let x € g, . We have xgwtg‘(x)e €, N u. The
tirst equality is an easy consequence. The second equality is

also an easy consequence of x g“‘f;"(x).

Theorem 3,7t The operations - ,x ,  commutate with ¢
in the following senses Let PN = 3 <x<yeN.

1) If &3/5Su, are figures in f=: then dff:‘" Gl-xt:"gz-
'( 61 2)0
1/2.
2) It 6’1/29\1 are figures then (Q‘ (3 "6,) %
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w (w,=~ w)
x(octlgz " 6'2) = t 7”7 s "( 6'1“6’2).

<p
3) It ¢ u:': is & figure then ‘.'P(act{':""s) = d!:“"ﬂ’(@).

For ('xt: )1 hold assertions enalogous to 1),2),3).

Proof: We use Th., 3.6. We prove only the most complicat-
ed case and namely the case 3). Let xe@(df/;ﬂ"'e') =
= P(&nuy ). Thus xsﬁ;’ixsu/?"_—q; x -uf:"‘(x)

(see L.3.3.2)) => x € xfﬁ "P(6 ). Let on the other hand

x -ﬁcfgm' (y)%y € 6 . We have to prove that (Vte x)(t ¢

c °cr‘(‘;‘"e’(- €A u,‘;“)). Let for an arbitrary te x an element
secy be g.te t = °(t(:.:"(s). We have t% 8 (msee C.3.5), teu;f
hence t € 6 n uﬂ"’ as & 13 a figure. We now give the proof for
(yte )l Lot xe P((, £2)M"6) = P(Pig, (6)) (1. x
< Pigg(e’) = € ). We have to prove that T{cm"‘(x) -

-,wa"""x €6 , If tis an arbitrary element of x then
Tt:‘(t) ¢ 8nu’ =6 (see Th, 3.6). Let on the other hand
xe((ﬁ,ff"" )" 3(&)). Hence ,Xf,:‘"x €6 o If tis an arbit-
rary element of x then 'tt:(t) e & . Hence x EfP((,b. g:"‘)'l's‘ e

Definition 3.8: Let « ¢ N-FN, let €, < ul be a figure
in £ . We define a system 3(36;o of funotions F:FN —> Vp,
in the following manner: P & ﬁCs,d =(3xe ¢ )(VnePFN)(F(n)=
= I (D).

Remarkst 1) The notation F & 3(.'6.“ i8 not correoct as F
cannot be a set. We use this notation as it is objective, € can
be understood in the external sense or in the sense of codable
classes (see [V1),

2) Let us note that 395;‘ is & system of parts of the

standard submodel.



Theorem 3.9: Let o« e N-FN, let § € U, De a figure
2
in = -
1) tee =(IFe X )(Vne (R I () &
&t€u:)o
2) Por 3> o« let us put 6’,5 = Pig, ( G )+ We have
Y, = W - ?
6"(3 L8

Proof:t 1) => see the definition of X -« <= Por &

satisfying the righthand side let ¥ ¢ 6, be such that
w,s w

(Voe¥R)( _2 (%) = £ (t)) (see the definition of 'xe;,‘, for
the existence of t). We have t g? (see Th. 3.4.) and hence
teC,

2) Por x € G we have (sf:(x) -ocf:'( ﬂt:(x)) (mee
L.303-3)) and bf:‘(x) & 6;5 (see Th, 3t6)o

Corollary 3.10: For any normal formula g:(x. g‘ ,'E) there
are a normal formula y(x,y,’i) and a system of functions
X < "vm such that for any &, t the following equival ence
holds: ¢(t,PN,B) = (IPeX ) VnePN) v (t,F(n),R).

Proofs Let us denote (1),(2) the lefthand side and the
righthand side of the equivalence respectively., Using the theo-
rem (Th, 1.2) and the corollary (C.2.4) we find an equivalent
of (1) of the form (3% € 6, ) F (%,%,8). We know that @, <
< u: is a figure in % for a suitable word -+ and an arbit-
rary infinitely large « . Using the theorem Th. 3.9 we obtain
an equivalent (3) of the form (AP ¢ K¢ )(VneFN)

¥ (*(n),n, «, t,8). We know that 366-06 is not dependent on the
ohoice of oc and that ofy < ofy => (W(r(n).n,ecl,t,’t) -

= J(¥(n),n, x,,%,8)) (The 3.9.2), The 1.3, The 3.6). o does
not ocour in the formula ¢ . Using the logical law
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¢ = v(t)ro=(3cc)y () we obtain the equivalent (4)
(3P 6 Kg, )(3ct € N-FR)(V neFN) ¥ (F(n),n,c,t,8)s We prove
that (4) is equivalent to (5) (3 F e 3Cg°o)(Vne FN)(3< € N,
«>n) F (F(n),n,cc,t,8). Let us fixa P € XK. . Let fe ¥ -
- FN be an arbitrary element of N-FN, let ¢ € 6; be such that
(VY ne FN)(¥(n) -nf;: (s)) (for the existence of s see Df, 3.8,
The 3¢9.2)). Let us define the set function g by the following
description: Por o < 3 1let g( o) = the least o = 3 such
that ¥ ( d—f;:(g),d',cc.t,‘t). We have PN cdom(g) hence there is
a 7 € N-FN such that » s dom(g)e. Let us put o, = mex {g(JF)s
de 7. oLy N-FN and we have (V¥ ne FN) ?‘(nf;;' (s),n, oco,t,'g)
(remember that (o) <oty & F(eeeyece)) => F(eee Xpesa))e

We have proved (5) => (4) in view of F(n) = ,£2*(s). (4)=> (5)
is obvious. To finish the proof it suffices only to put
vix,y,8)= (3 x,,x,) (x = $xy,3,> & (3o € §y o> X,) F (x,%,,
LsToE)) and I ={P;dom(F) = PN&(IF ¢ ¥e, ) (¥ neFH)(F(n)=
= {F(n),n>)}.

Remarks: 1) Por o € N-FN the faotor space n::'/ g can
be endowed with a natural topology (a compact metric space is
obtained 1f *7 is w, -saturated). U{u nePNj forms a dense
subset. The members of ¥¢,  are sequences and their limits
form a subset of the topological space corresponding to the fi-
gure 6, ., For more details see [V]. Interesting is also the
connection between the obtained space and the Cantor ‘s disconti
nuum,

2) We bave found an equivalent of the promised form in i
set-theoretical language except of the usage of the function
G:FN <> Vppo Using the seotion O we can translate the found equ
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valent into the arithmetical language. In the last section we
give the description of X using only the standard submodel and

the standard system of the model.

§ 4. In this section we have to solve a problem typical
for the beginning of the € - d° method in the calculus. Namely:
How to find new definitions of notions easily definable with
the help of infinitely large (infinitely small) quantities,

The new definitions may be more complicated, may be less objec-
tive but mwst not use infinitely large or infinitely small quan-
tities. In our caese we consider the operations -,>, J° (power
class in formally finite sets).

Definition 4.1z We put ¥ = {xnVpyixe Vi. We call & the
standard system (of our nonstandard model V),

Remarks: 1) Remember that we suppose the powerset axiom
(the whole induction schema) hence we are in accordance with
the usual definition of the standard system.

2) Note that if our model is «,-saturated then ¥=

Lemma 4,2t If F e & is a funotion then there is a func-

tion f such that F = fn Vpy. Especially: If P e F & dom(F) =
= FN then there is a function f such that F = f£/PN,

Proof: Let x be such that F = xn VFN‘ Let gp(oc +X) be the
formula "xnV, is a function”. ¢ 1is satisfied for every nc FN
hence there is an < € N-FN such that ¢ is satisfied (see
L.1.1.2)). It is sufficient to put £ = xn V. .

Theorem 4,33 Let o € N-FN, 1) Xy (alx “2) -
G
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= {Fjdom(F) = T2 (I Py e Xy, ) (3FyH u, NV nePN)(F(n) =
® Ac
= <P1(n),1’2(n)>)§. We also have ¥ (a mmny € F.
2) 3{{0« {P;dom(F) = FN&F e 3’& (Y ne PR)(F(n)e u &

& (¥ m.ne FN) (m<n= (F(m) = * (F(a))N3 e L.

Proofs 1) Let PipeX S If xy e "2 are suoh

(u.,xvcz
-t ((xl,xz>‘) - <rl(n),l‘2(n))). We also have F =

n’l (x'1/2)) then (Vne FN)(F(n) =

(o, > (&z)
n{l{t, PP P ELCk t = ((x,l,xa))}nvr’. On the other

utfﬂ
® (v, > VL,_)
hand let P € “£¢1x w,) . Ir < xl,xz)e u, corresponds

to P then F corresponding to are members of K .
1/2 %172 ush

2) < 18 obvious. We prove 2 . Let F be a member of the
righthand side of the considered equality. Let g be a function
prolonging Fe Let @ (o¢ ,g) be the formula gl )c uf"' &
&(YBgB<cc)alB) -,ctf;’"(g(oc)). This formula is satis-
fied for every oc ¢ FN and hence there is a (3 ¢ N-FN such that

@(f +8). Henoe P ¢ xf:

Definition 4.4: 1) ’JC1 ® ‘JCQ = {Fjdom(F) = FN &
83N e 3"1)(3 PeX,) (VneFl)(P(n) = (P (n),P,(n)).
2) For!eJC andHeJC let us define PO H =
= (Vne FN)(F(n)e H(n)).
D)

3) For K = gc“.: let us define ={H e K g,

Y

(VPO H)Pe X ).

on
Theorem 4,5: Let < ¢ F-FR. 1) 1If 6‘1/2!-:—. u_ are figu-
w =
res in = then xs;-s‘,_ = 'xe“, - Jcsé :
Pata, Qs
2) It 61/22\1& are figures in = then
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X,

€, =

6 = 5(:5:’@3662 .
3) It 6c u, isa figure in ¥ then Ko =:lc$'9.
Prooft Only the case 3) is not obvious and hence we pro-
ve only this case, c - let H ¢ Xy, , let yeuf" be an ele-
ment corresponding to H ((V ne PN)(H(n) -&fnm (¥))), hence
Yy c6 .Let F@®H and let g be a prolongation of P, We Xnow
that for every neFN, g(n) s&tn@" (y)&(¥YB< n) (&(p) =
'ntrs (g(n))), hence this formula is satisfied also for an in~
finite 7 < oc (see L.1.1.2)). Hence g(7) ¢ °cf_f:"’(y)s 6 end
Te SCG,. 2-1let He X3 and let y< ui’"’ be an element cor-
responding to H, We have to prove y = 6 . Let x be an arbitra-
ry element of y, Let F & qu«_ be a function corresponding to
x, Yor any ne FN we have P(n;'e H(n) as F(n) -ccf:"(x) <

e ‘f:“' (y) = H(n). Hence PO H and F ¢ X; . Hence x ¢ 6 (see

Th. 3.9).

Remarks: 1) The elimination of the predicate "to be in-
finitely large" (IL( )) is commonly used in the case of one
quantification (J , IKx)) @ (Robinson s overspread lem-
ma). The author has got to know the elimination method for twe
quantifiers (Voc ,IL(cc))(3 B ,IL(B3)) ¢ from P, Vopinka [ see
8 1]). It is apparent that the Cauchy's € - &° expression of the
notion of a limit is an implicit form of such an elimination.
The equivalent for three quantifiers (3, IL(c)) VA3,
()3 ,IL(7)) ¢ was found by A, Vencovekd in the case
of wl-sa.turated models. A help variable for real numbers (or
for parts of natural numbers) appears in this equivalent.

2) An example, proving that help variables for natural
numbers do not suffice, was found by P, Vopénka in the case of

a)l-uturatod models., Let us note here that if the prediocate
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"x 18 a& member of the satisfactory relation on the standard
submodel™ (cf.§ O for the possibility of the usage of the set-
theoretical language) is a member of the standard system of the
model, then it can be expressed in the form

(oo $IL (6 )V B HJ2IL(B I T 9 »IL( )P (ocy By 2 9X),

where @ is a normal formula., If we suppose that this predicate
is equivalent to a formula having the prefix bounded to the
standard submodel followed by & normal formula, then it is equi-
valent to a normal formula in the sense of the standard submodel
in the case of elementary equivalence of the model and its stan-
dard submodel., An easy diagonal eonsideration proves that this
is not possible.

References

L& 11 X. GUDA: The relation between €- o” procedures and the
infinitely small in nonstandard methods, Set Theory
and Hierarchy Theory V, Lecture Notes in Mathema-
ties 619

{8 21 K. SUDA: An elimination of infinitely small quantities
and infinitely large numbers (within the framework
of AST), Comment, Math. Univ. Carolinae 21(1980).
433-445,

(vl P. VOPENKA: Mathematics in the alternative set theory,
Teubner-Texte Leipzig 1979.

Matematicky \istav, Univerzita Karlova, Sokoloveskd 83, 18600
Preha £, Czechoslovakia

- 803 -



		webmaster@dml.cz
	2012-04-28T08:46:28+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




