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SHIFT1NGS OF THE HORIZON 
A. SOCHOR, P. VOPÉNKA 

Abatract: We investigate interpretations of the alterna­
tive set theory in this theory which preserve seta and the 
predicate c • 
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sion, revealment. 

Claaaification: 03B70, 03H99 

In the alternative aet theory (AST) we try to describe 

our understanding of the real world. Seta are considered as 

formalizations of collections we really meet, classes are 

formal counterparts of our idealizations and generalizations. 

Following this motivation, the interpretations of AST in AST 

which preserve seta and the predicate e are very important 

- they describe our different approaches to the real world* 

such interpretations will be called shiftinga of view. 

Collections converging toward the horizon of our obser­

vation ability (describing unlimited processes) are formali­

sed In AST by countable classes. Hence countability captures 

in AST the notion of distance of the horizon. Among ahlft-

inga of view there are interpretations which do not preser­

ve countability and therefore It la natural to call inttr-
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pretations of this type shiftings of the horizon. 

In the first section we shall see that in AST with the 

schema of the choice we are able to construct shif tings of 

the horizon. In § 2 we describe properties of shif tings of 

view. In particular, we describe the collection of all clas­

ses FN* where .# is a shifting of the horizon which do not 

change properties of finite natural numbers. 

We shall use notions and results of CVJ, [S-V 1J and 

[S-V 2] only. 

§ 1. Let T be a theory stronger than AST. An interpre­

tation * of AST in T is called a shifting of view in T iff 

T H ( V X ) Cls*(x)gc(VX*,Y*)(X*6* Y*aX*€Y*). A shifting 

of view .*; is called a shifting of the horizon in T, if more­

over Th-FN* 4-FN (FN being the class of all finite natural 

numbers) • 

If # is a shifting of view in T then Th-Set* (X) =? 

=3 Set (X). In fact, Set(X) implies (i3y)(X€y) and therefore 

(3y)(Cls* (y)&Xe* y)f on the other hand if Set* (X) holds 

then we get (3X)(Cls* (Y)&Xc* Y) from which the formula 

(3 Y) XeY follows. 

More complexly we can consider an interpretation toget­

her with an operation Q. • We define that a pair * , Q. is 

a trans formation of view (of the horizon respectively) in T 

iff ^ is a shifting of view (of the horizon respectively) in 

T and Q is an operation defined in T in such a way that for 

every X, Cy{X) is defined and it is a # -class and moreover 

for every (even nonnormal) formula $ we have T h $ (X^,... 

...,An) s -£* (C^(X1)>...,^-(Xn)). 
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The following results show that we are able to construct 

a transformation of the horizon in AST + A 62 (with conveni­

ent fixations). The existence of a translation of the horizon 

in AST itself remains as an open problem. 

Let AST+ denote the theory AST with the following addi­

tional assumptions: 

a) schema of choice A 62, i.e. we accept the axiom 

(Vn£ .FN)(3X)§(n fX)--> (3Z)(Vn€?N)$(i.fZ
w{n]) 

for every (metamathematical) formula § * 

b) P is an endomorphism and rng(F) • i (cf. 5 2 ch. V 

tVJ) 

e) Ex is a standard extension on A (cf. LS-V 1]) 

d) A td3 * V (cf. [S-V 13) 

e) d€(Ex(M) - FN) 

Let us note that we require the last assumption for simpli­

city only since for every dcV - A there is a countable X 

with d€(Ex(X) - X). 

If $ is a formula then f> is the formula resulting 

from $ by restriction of all quantifiers binding set vari­

ables to elements of A and all quantifiers binding class va­

riables to subsets of A# 

Let # be the interpretation determined by formulae 

Cls* (X) s (3Y£A) X « Ex(Y)« \ &\ 

X*G* Y * s X*€ Y*. 

The following statement i s a variant of Los's theorem. 

Metatheorem. For every formula $ we can prove in 

AST"*" 

( V Y l f . . . f Y k c A ) ( < | * (Ex(Y1)Md'i> . . . fEx!:Yk)«-[d'r) « 
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S * e B x « n # $ A (Y 1 "inJ t . . . t Y k "-fn?)J) ) . 

Demonstration. According to $ 2 [S-V 1] we have 

fe(Y1)"«tdl€*Bx(Y2)"-{dlad6«{cC #Ex(Y1)"-focJ € 

e Bx(Y2)"i<*\} 25 dcBxHoccA# X%«<art € Y2Moci$ ) . More-

OTer d€Bx(Fll) and thue Bx(Yx)Mdi € * Bx(Y 2 )"-U}« d € 

C Bx(F»)n Bx( -too € A# Y^ ioc } € Y2" -foc ?J ) m d € Bx({n# 

Y ^ ^ n l c Y2"4nJ]). The induction step for & and ~j ia tr i -

Tial because of dc(Bx(X)nBx(Y)) s d€Bx(XnY) and d€Bx(X)s 

s d 4 Bx(fK - X) for eTery X,Y£FH. If 

( ( 3 D # (X fBx(Y1)"-[d^ f . . . fBx(Yk)"id?))* then there ia 

Y£A such that f*(Bx(Y)"-{d]tBx(Y1)"-{d}f...fBx(Yk)"'td^) 

and using the induction hypothesis we get deBx(-fn#$* (Y"-tn$f 

Y 1 » - t n i t . . . f Y k " { n » J ) £ B x « n # ( ( 3 X ) f (X.Yj" f n * t . . . 

. . . t Y k " -tn\)) | ) . On the other hand l e t us suppose that 

dCBx«n#((3X) $ (X f Y 1 "in%.. . t Y k "<n\)) A P - Bx(fn# 

(3X£A) f ^ X . Y j " ^n%.. . t Y k "in^)J) . Thus, by A 62 (FH being 

a subclass of A) there i s YSA with 4n#(3 X£A) $A(X fY1"-Cd^ f... 

. . . t Y k "*n*) i -^n# § A (Y"4n* t Y 1 "«U* f . . . t Y k MnW and at 

the end we obtain using the induction hypothesis 

$*(Bx(Y)" 4d^tBx(Y1)" td l t . . . t Bx(Y k )" *d*) t froa which 

U 3 X ) $ (XtBx(Y1)" td^ t . . . tBx(Yk)" i*\)}* follows. 

Let 9, denote the operation defined by $.(X) * Bx(F"X). 

Metatheorem . The pair * , (^ i s a shifting of the ho~ 

rlson in AST4 and moreoTer in AST4, we can prove KJ*-

- Bx(fB). 

Demonstration. Proceeding in AST4 we hare at f irst to 

proTe (Vx) Cls* ( x ) . If x i s given then according to the as­

sumption A I d3 - Vf we can choose f € A with f(d) * x and 
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define Y * «yfn># n€ FN&ye Ar>f(n)}. We have 

( VycA)(V/neFlf)«yfn> e Ys-y €f(n)) and hence by the de­

finition of standard extension we obtain 

(VyKVoC eBx(FB))«yfot>€ Bx(Y) s y € f(oc )) which implies 

Bx(Y)"«Cd* - f(d). We have proved (3Y£A)(x - Bx(Y)Md}) 

and therefore x is a # -class. 

By the second theorem of $ 1 ch. V [VJwe have 

$(Xlf...fXk)s ^ ^ F ^ , . . . , ? ^ ) . Defining Y1 - ( F ^ ) x 

XFN f...f Y^ • (P
wXjc)xFHf we obtain the following equiva­

lences according to the last metatheorem: $*(Bx(F"X-j)f... 

...fEx(F«Xk)) s f* (Bx(Y1)*-fdlf...fBx(Yk)«4d» £5 

s deExtfn* $A(»^t...fF"X^)l> m # ^"X^...^"*^) m 
s • «! xj. 

Furthermore putting Y * FHx FN, Yw -( nl is the smallest 

complete proper subsemiset of H for every ncFN. Thus F!l"*» 

- Bx(Y)*{d} - Bx(FW). It remains to realise that Bx(FB)-fFI 

for every standard extension Bx (of. 8 2 -S-V 13). 

If f is stronger than AST + A 62 and Bf C are constants 

such that in T it is provable that B is a revealment of C 

(of. [S-V 2}) then we can fix constants Pf Af d and a stan­

dard extension Bx in such a way that all properties (a) ~ (•) 

are provable and Bx (F*C) - B (of. $ 2 [S-V 2])« Hence we are 

able to construct a transformation of the horlson * f £* la 

T (with definitions in question) so that the equality ty°) -

* B is provable. 

By the second theorem of 5 1 ch. V IVJ we get that If F 

is a constant denoting an automorphism in T (stronger than 

AST) then the pair of the identical Interpretation and of the 

operation (̂ (X) « ?"X is a transformation of view which is no 
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transformation of the horizon. 

§ 2. In the previous section we have constructed some 

shiftings of view, now we are going to show some results 

restricting the existence of shiftings of view, in particu­

lar we shall see that there are no other types of transfor­

mations of view than were mentioned above. 

Metatheorem. If * is a shifting of the horizon in T 

then in T it is provable that all * -classes are fully re­

vealed. 

Demonstration. If a % -class X is not revealed then 

there is a countable class Y e i such that there is no set u 

with Y £ u £ X . Let us suppose that *- is a shifting of view. 

By the prolongation axiom there is f with dom(f)c N - FN & 

fc. ( Vac € dom(f))(f(oc)€ X ss oc eFN) and therefore FN « 

• -too | f(c£)eXf is a * -class. Thus FN*- FN and sic is no 

shifting of the horizon. If all * -classes are revealed then 

they are also fully revealed, since for every i* -class X and 

every normal formula <p(z,Z) of the language PL, the class 

•$z$9(z,X)$ is a * -class, too. 

Me ta theorem. If a pair ;*. - G. is a transformation of 

view in T then in f we can fix an endomorphism F so that ei­

ther P is an automorphism and CJ-(X) = PWX for every X (and # 

is no shifting of the horizon in this case) or there is a 

standard extension Ex on rng(P)4=v so--that £(X) « Kx(PHX) 

for every X. 

Demonstration. At first let us realize that describing 

the satisfaction relation in question we get a (metamathema-
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tical, may be nonnormal) formula 0 (z19z29Z) such that in 

AST for every normal formula j> of the language PLy we have 

Q ( <?t<x1,•..,xn>, <x1,...,xk» == 9 (^••••»xn,x1,...,xk) 

(where <X,,...,X- > denote the k-tuple of classes X^,...,^; 

cf. CV3 or formally CS 13). Let us proceed in T. Since all 

sets are * -sets, we have E » B* » Q^(E) and moreover for 

every Godel's operation ̂  we have ^*(X,Y) » ^(X,!) (X and 

Y being arbitrary # -classes). Prom this, by induction we get 

(^(n) » n for every ncPH and moreover ©*(cj>,x,X) » 

= © (Q> »XfX) for every normal formula q? of the language PL, 

every set x and every * -class X. In particular, for every 

set-formula <y of the language PL we have 

^(x^, •..»xn) -s G( g>t<x19..#9xn>90) =.• 

- 0*(q.(9),(5.«xL,...,xn», ^(0))s © ( 9 , g . « x 1 , . . . , x n > ) , o ) £ 

=s ̂  (C^(xk),...,(^(xn)) 

and thence the class P * \<Cy(x)9x
s>9* x€Vj is an endomorphism. 

If P is an automorphism (i.e. rng(P) » V) then xcX == 

s (^(x) e(^(X) a P(x) e^.(X) and therefore Q,(X) * P"X. 

Let us suppose that rng(P) + V9 in this case we have to 

prove that the operation Ex(X) « Q..(P""lrtX) (defined for each 

X£rag(P)) is a standard extension. If a> is a normal formula 

of the language PL then 

cfAai9...9\) ^9(P"*1,tX1,...fp-l«xk) m 

s e (y,o9<p-
1«x1,...,p-

:i-xk» s Q*(c>(y )»^(o),q.(<i
?""1,,x1, 

...9p-1»xk»)is Q (9 •o9§.«rBl,,i19...9»-1«xk») == 
=3 9 (QXF* 1"^), #..f(^(p-

1"Xk)) 

by the second theorem o f § l c h . V [VI and by the previous 

r e s u l t s . The equivalence cp^X-t ••••tXj t) s~ 

2s. 0>((̂ .(P'*lnX1,..., (^(P"
1^)) expresses that .̂(P""1"*) is 
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a standard extension on rag(F) and we are done. 

According to the first lemma of 5 2 £S~V 2] we get the 

following result* 

Corollary. Let a pair * , (£• be a transformation of the 

horizon in f• Then in f it is provable that £-(X) is a reveal-

men t of X. 

According to the last metatheorem there are only two ty­

pes of transformation of view; considering a shifting of view 

* only- there are much store possibilities. On the other hand 

the absoluteness of some formulae implies some restriction in 

this case, too* 

Metatheorem. Let * be a shifting of the horizon in f 

such that for every formula $ we have 

f h ( Vn€FH)($(n) m <$*(n)). 

If C is a constant definable in ff then in f we can prove that 

C* is a revealment of C. 

Demonstration* Let us note that under our assumptions, 

* is an interpretation of f in f and hence our statement is 

meaningful because even the constant C* is definable* 

According to the last but one metatheorem and to the de­

finition of revealment we have to show in T that for every nor­

mal formula <f(Z) of the language PL it is y(C*) m 9(C)* Let 

Y(Z) be a formula defining the constant C in f (we have 

I h ( 3 ! Z) ¥ (Z) & ¥ (C)) and let 8(zlf«2fZ) be the formula 

Investigated in the last demonstration* In T, we have 

(3Z)(Cls*(Z) k y*(Z) g, 0 * ( 9 f O f < Z » s 

»(3Z)(Y(Z)8,G(9f0f<Z») 
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by our assumption and hence ©*(g> ,0,<C*> )==9( <y»Q,<C». 

Furthermore 0*(cj> ,0f<C*> ) == 0 (<p ,0,<C*>) and therefore 

cj>(C*) ===• g> (C) for every normal formula <p of the language PL, 

which finishes the demonstration. 

Corollary. Let R be a constant in T (stronger than 

AST + A 62). Then in T it is provable that R is a revealment 

of FN iff there is a shifting of the horizon ̂  in T such that 

FN* » R and such that for every formula $ , the statement 

( VneFN)(c$(n) == $*(n)) is provable in T. 

The last corollary describes initial se^nents which can 

serve as shifted horizons if we consider shiftings of the ho­

rizon of the above described type.fc A description of initial 

segments which can serve as shifted horizons remains as an open 

problem. Let us note that if T is stronger than AST and if 

is a shifting of the horizon in T, then FN* is fully revealed, 

but there can be even fully revealed initial segments such 

that the horizon cannot be shifted to them. The theory 

AST + ~i Con(ZF-pin) is consistent (relatively to ZF, say); let 

us fix oo so that there is a proof of inconsistency of ZFpin 

the length of which is 06 • If R is an initial segment with 

00 € R then we cannot construct a shifting of the horizon 

with FN* m R since AST H Con p(£^ p i n) (cf. [S 13). 

In this paper we dealt with interpretations of AST in 

AST; similar questions appear if we investigate (semantical) 

models of AST in ZF, some results concerning this topic can 

be found in tP-Sl. 

R e f e r e n c e s 

tP-Sl P. PUDLJCK and A. SOCHOR: Models of the alternative set 
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theory, to appear. 
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