Commentationes Mathematicae Universitatis Caroline

Tomáš Kepka
 Distributive groupoids and preradicals. I.

Commentationes Mathematicae Universitatis Carolinae, Vol. 24 (1983), No. 1, 183--197
Persistent URL: http://dml.cz/dmlcz/106215

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

DISTRIBUTIVE GROUPOIDS AND PRERADICALS I.
 Tomáš KEPKA

```
    Abstract: A theory of preradicals and their compositi-
ons for the class of distributive groupoids is developed.
Key words: Groupoid, preradical.
Classification: 20L10
```

The main open problem in the theory of distributive groupoids is whether free distributive idempotent groupoids are cancellative. In solving this problem, it appears useful to have at hand an auxiliary theory dealing with congruences which are more or less preserved by homomorphisms. In this way, we come to the notion of preradical known from the theory of modules (see e.g. [1]) and the purpose of the present note is to study preradicals and some of their generalizations for various classes of groupoids but mainly for the class of distributive groupoids. As for details concerning basic definitions, terminology and notation as well as for further references, the reader is referred to [2].

1. Basic notions. Let A be a non-empty abstract clasa of groupoids (i.e., A is closed under isomorphic images). A semipreradical r (for A) assigns to each $G \in A$ a congruence $r(G)$ of G in such a way that $f(r(G))=r(H)$ whenever
$G, H \in A$ and I is an isomorphism of G onto H. We shall say that r satisfies the condition

- (A) if $H \in A$ whenever $G \in A, H$ is a subgroupoid of G and a block of $r(G)$;
- (B) if $G / r(G) \in A$ for every $G \in A ;$
- (C) (resp. (D)) if $f(r(G)) \subseteq r(H)$ whenever $G, H \in A$ and 1 is an injective (resp. projective) homomorphism of G into H;
- (E) if $f(r(G)) \subseteq r(H)$ whenever $G, H \in A$ and is a homomorphism of G into H ;
- (F) if $r(H)=H \times H$ whenever $G, H \in A, H$ is a subgroupoid of G and a block of $r(G)$;
- (G) if $r(H)=1 d_{H}$ for every $G \in A$ such that $H=G / r(G)$ belonge to A;
- (H) (resp. (I)) if $r(H) \cap(f(G) \times f(G)) \subseteq f(r(G))$ whenever $G, H \in A$ and f is an injective (resp. projective) homomorphism of Ginto H;
- (K) if $r(H) \cap(f(G) \times f(G)) \subseteq f(r(G))$ whenever $G, H \in A$ and f is a homomorphism of G into H.
A. semipreradical satisfying (E) is said to be a preradical. Every preradical satisfies both (C) and (D) and the converse is true provided A is closed under factorgroupoids (resp. subgroupoids). A semipreradical satisfying (A) and (F) (resp. (B) and (G)) is said to be idempotent (resp. a semiradical). A semipreradical satisfying (A), (C) and (H) (resp. (B), (D) and (I)) is said to be hereditary (resp. cohereditary).

Let r be a semipreradical. A groupoid $G \in A$ is aaid to be r-torsion (resp. r-torsionfree) if $r(G)=G \times G$ (resp. $r(G)=$ $=1 d_{G}$.

Let r, s be semipreradicals. For $G \in A$ put (r $\cap s)(G)=$
$=r(G) \cap s(G)$ and denote by $(r+s)(G)$ the congruence generated by $r(G) \cup s(G)$. We obtain thus two semipreradicals $r \cap s$ and $r+\mathbb{L}$. Purther, we shall write $r \circ s=s \circ r$ if $r(G) \circ g(G)=$ $=s(G) \circ r(G)$ for every $G \in A$. In that case, $r \circ s=a \circ r=r+s$. The following results are clear.
1.1. Proposition. Let r and s be semipreradicals.
(i) If both r and satisfy (C) (resp. (D), (E), (H)) then $r \cap$ satisfies the condition.
(ii) If both r and s satisfy (C) (resp. (D),(E)) then r+s satisfies the condition.
1.2. Lemma. Let \mathbf{r} be a semipreradical, $G, H \in \mathbb{A}$ and let f be a homomorphism of G into H such that $\operatorname{ker}(f) \circ r(G)=$ $=r(G) \circ \operatorname{ker}(f)$. If $a, b, c \in G$ are such that $f(a)=f(b)$ and $(b, c) \in r(G)$ then $(a, d) \in r(G)$ for some $d \in G$ with $f(c)=f(d)$.
1.3. Proposition. Let r and s be semipreradicals such that $\operatorname{ker}(f) \circ r(G)=r(G) \circ \operatorname{ker}(f)$ and $\operatorname{ker}(f) \circ s(G)=$ $=s(G) \circ \operatorname{ker}(f)$ whenever $G, H \in A$ and f is a projective homomorphism of G onto H. If both r and satisfy (I) then $r+s$ satisfies (I).

Let A denote the class of groupoids. We define two semipreradicals id and $t \ell$ by $i d(G)=1 d_{G}$ and $t \ell(G)=G \times G$ for every groupoid G. Obviously, both id and $t \ell$ satisfy all the ten conditions (A),...(K).
2. Composition of semipreradicals. Let A be a non-empty abstract class of groupoids. Consider two semipreradicals Y and s and suppose that satisifes (B). We define a semipreradical $r: s$ by $(r: s)(G)=f^{-1}(r(H))$, ρ being the natural
projection of G onto $H=G / B(G)$. The following assertions can be verified easily.
2.1. Proposition. (1) s $\subseteq x: s$.
(ii) If r satisfies (B) then $r: s$ satisfies (B).
(iii) If r satisfies (D) then $r, r+s \subseteq r: s$.
(iv) If r satiafies (C) and satisfies (C) and (H) then r s satiafies (C).
(V) If both r and s satisfy (D) (resp. (E)) then r ss satisfies (D) (resp. (E)).
(Vi) If A is closed under factorgroupoids, r satisfies (D)
and (F) and satisfies (H) then ris satisfies (F).
(vii) If r satisfies (F) and s satisfies (C) and (H) then
r:s satisfies (F).
(viii) If r satisfies (G) and satisfies (G) and (I) then
r:s satisfies (G).
(1x) If s satisfies (G) then s :s $=$.
(x) If r satisfies (H) and satisfies (C) and (H) then r s satisfies (H).
(xi) If A is closed under factorgroupoids (resp. aubgroupoids), reatisfies (D) and (H) and satisfies (H) then r:s satisfies (H).
(xil) If r satisfiea (I) then $r: s \subseteq r+s$.
2.2. Lemma. Let $G, H \in A$ and let f be a homomorphism of a into H anch that $\operatorname{ker}(f) \circ g(G)=g(G) \circ \operatorname{ker}(f)$ 。

Suppose that $\mathcal{P}(g(G))=g(H) \cap(f(H) \times f(H))$ and $\mathbf{I}(H / s(H)) \cap$ $n(G(G / E(G)) \times g(G / B(G))) \subseteq g(r(G / g(G))), g$ being the induced memomorphitim of $G / s(G)$ into $H / E(H)$. Then $(r: s)(H) \cap(f(G) \times$

2.3. Proposition. Suppose that $k e r(f) \circ B(G)=$ $=g(G) \circ \operatorname{ker}(f)$ whenever $G, H \in A$ and f is a (projective) homomorphism of G into H. If r satisfies (K) (resp. (I)) and a satisfies (D) and (K) (resp. (I)) then r :s satisfies (K) (resp. (I)).
2.4. Proposition. Suppose that every groupoid from 1 is idempotent. Let satisfy (A), (C) and (F) and let ratisfy (D) and (F). Further, let either r satisfy (A) or let A be closed under factorgroupoids. Then r:s satisfies (F).
2.5. Proposition. Let $r+s$ satisfy (B) and (G) and let both r and asatisfy (D). Then $r+s=r: s$.
2.6. Lemma. Suppose that r satisfies (B) and let q be a semipreradical. Then ($q: r$):s $=q:(r: s)$.
2.7. Lemma. Let r_{i}, $i \in I$, be a non-empty family of acmipreradicals. Then (Σr_{i}) :s $=\Sigma r_{i}: s$.
2.8. Lemma. Suppose that r satisfies (D). Let $s_{i}, i \in I$, be a non-empty family of semipreradicals satisfying (B) such
 $\subseteq r: \sum s_{i}$.
3. Composition of semipreradicals. Let A be a non-empty abstract class of groupoids. Consider a semipreradical reme tisfying (B); in fact, we shall demand a bit more which will be clear from the following. For overy ordinal $0 \geq 0$, we define a semipreradical ${ }^{\circ}{ }_{r}$ by ${ }^{O_{r}}=i d,{ }^{0+1} r=r_{i}{ }^{\circ} r$ and ${ }^{0}{ }_{r}=$ $=U^{P_{r}}, p<0$, if $a>0$ is limit; here, we assume that $G /{ }^{\circ} r(G) \in \mathbb{A}$ for all $G \in \mathbb{A}$ and $0 \geq 0$. It ia clear that
$0_{r \subseteq}{ }^{1} r_{r}{ }^{2} r \subseteq \ldots \subseteq^{0}{ }_{r} \subseteq^{0+1} r_{r} \subseteq \ldots$ and ${ }^{1} r=r$. Moreover, for every groupoid $G \in A$ there exists an ordinal $0=\ell(G, r)$ which is the least with ${ }^{\circ} r(G)={ }^{0+1} r(G)$. Setting $\hat{r}(G)={ }^{\circ} r(G)$ we obtain a semipreradical \hat{r}. The following statements are nearly obvious (use 2.1, 2.4 and, occasionally, a transfinite induction).
3.1. Proposition. (i) For every $0 \geq 0$, the semipreradicals ${ }^{\circ} \mathbf{r}$ satisfy (B).
(ii) $\hat{\mathbf{r}}$ is a semiradical satisfying (B).
(iii) If r satisifes (D) then all the semipreradicals ${ }^{\circ} r$ satisfy (D) and $\hat{\mathrm{r}}$ satisfies (D).
(iv) If r satisfies (E) then all the semipreradicals ${ }^{\circ} \mathrm{r}$ satisfy (E) and \hat{r} is a radical.
(v) If r satisfies (C) and (H) then all the semipreradicals ${ }^{\circ} \mathrm{r}$ as well as $\hat{\mathbf{r}}$ satisfy (C) and (H).
(vi) If A is closed under factorgroupoids (resp. subgroupoids) and r satisfies (D) and (H) then all the semipreradicals ${ }^{\circ} r$ as well as \hat{r} satizfy (D) and (H).
3.2. Proposition. Suppose that every groupoid from A is idempotent and that A is closed under subgroupoids. Let r satisif (E) and (F). Then \hat{X} is an idempotent radical.
3.3. Lemme. Let s be a semipreradical such that s satisPies (D) and $r \cap s=1 d$. Then $\hat{r} \cap s=1 d$.
3.4. Proposition. Suppose that r satisfies (D). Let a be a semipreradical such that \hat{s} exists, s satisfies (D) and $\mathbf{r} \cap \mathrm{s}=\mathrm{id}$. Then $\hat{\mathrm{r}} \cap \hat{\mathrm{B}}=1 \mathrm{id}$.
3.5. Lemma. Let s be a semipreradical such that k_{s} erists and satisfies (B) for each nor-negative integer k. Sup-
 ve integers n, m.

Proof. We show that $r:^{m_{s}}=m_{s} s$ by induction on m. For $m=0$, there is nothing to be proved. If $m \geq 1$, then $r: m_{s}=$
 tion hypothesis.
3.6. Lemma. Let s be a semipreradical such that $s: r=$ $=s+r$. Then $s:^{n_{r}}=s+{ }^{n} r$ for each non-negative integer n.

Proo1. By induction on n. If $n \geq 1$, then $s+{ }^{n} r=$ $=s+{ }^{n-1} r+{ }^{n} r=\left(s s^{n-1} r\right)+{ }^{n} r$ by the induction hypothesis. However, as one may check easily, $\left(s s^{n-1} r\right)+{ }^{n} r=(s+r):^{n-1} r=$ $=s: r^{n-1} r=s:_{r}$.
3.7. Lemma. Let s be a semipreradical such that k_{s} exists and satisfies (B) for each non-negative integer k. Sup-
 non-negative integers n, m.

Proof. Use 3.5 and 3.6.
3.8. Lemme. Suppose that r satisfies (D). Let sea semipreradical satisfying (B) such that $r: s \subseteq s: r$. Then $\hat{r}: s \in$ $\subseteq \mathrm{s}$: $\hat{\mathrm{r}}$.

Proof. First, by induction on $0 \geq 0$, we show thet ${ }^{\circ}{ }_{r: s} \subseteq s:{ }^{\circ}{ }^{r}$. If 0 is not limit then we can proceed similarly as in 3.5. Assume that $0>0$ is limit. We have ${ }^{\circ} \mathrm{r}: \mathrm{s}=$
 the induction hypothesis. Now, let $G \in A$. There is an ordinal - such that $r(H)={ }^{\circ} r(H)$ for every factorgroupoid H of G and $(r: B)(G)=\left({ }^{0} r: B\right)(G) \subseteq\left(B:{ }^{\circ} r\right)(G)=(B: r)(G)$.
4. Gomposition of semipreradicals. Let A be a non-empty abstract class of distributive idempotent groupoids. Consider two semipreradicals r and s and suppose that r satisfies (E) and s satisfies (A). We define a semipreradical r.s by $(a, b) \in(r, s)(G)$ iff $(a, b) \in s(G)$ and $(a, b) \in r(H)$, H being the block of $a(G)$ containing a (take into account that all the blooks of $s(G)$ are subgroupoids and all the translations of G are ondomorphisms). The following observations are clear.
4.1. Proposition. (i) r.ssns.
(ii) If r satisfies (A) then ros satisfies (A).
(iii) If s satisfies (C) (resp. (E)) then r.s satisfies (C) (resp. (E)).
(iv) If s satisfies (E) and (F) then s.s $=$ s.
(v) If r satisfies (G) and s satisfies (B), (D) and (G) then ros satiafies (G).
($\mathrm{\nabla i}$) If r satisfies (H) then $\mathrm{r} . \mathrm{s}=\mathrm{r} \cap \mathrm{s}$.
(vii) If both r and satisfy (H) then ros $=r \cap s$ satisfies (H).
4.2. Lemme. Let $G, H \in A$ and let f be a homomorphism of G into H such that $\operatorname{ker}(f) \circ s(G)=s(G) \circ \operatorname{ker}(f)$. Suppose that $s(H) \cap(f(G) \times f(G))=f(s(H))$ and $r(L) \cap(f(K) \times f(K)) \subseteq f(r(K))$ whenever L is a block of $s(H)$ and K is a block of $s(G)$ such that $f(K) \subseteq I$. Then $(r . s)(H) \cap(f(G) \times f(G)) \subseteq f((r . s)(G))$.
4.3. Proposition. Suppose that $\operatorname{ker}(f) \circ s(G)=s(G) \circ \operatorname{ker}(f)$ whenever $G, H \in \mathbb{A}$ and I is a (projective) homomorphism of G into H.
(i) If r satisfies (K) and satisfies (D) and (K) then r.s satisfies (K).
(ii) If A is ciosed under subgroupoids and both r and satisfy (I) then r.s satisfies (I)。
4.4. Proposition. Let rns satisiy (A) and (F). Then $\mathbf{r n s}=\mathbf{r a s .}$
4.5. Lemma. Suppose that r satisfies (A) and let q be a preradical. Then q.(r.s) $=$ (q.r).s.
4.6. Lemma. Let $r_{i}, i \in I$, be a non-empty family of preradicals. Then $\left(\cap r_{1}\right) \cdot s=\cap r_{1} \cdot s$.
4.7. Lemma. Let $s_{i}, i \in I$, be a non-empty family of semipreradicals satisfying (A) such that the semipreradical $\cap s_{1}$ satisfies (A). Then $r \cdot\left(\cap s_{i}\right) \subseteq \cap r \cdot s_{i}$. The equality holds, provided r satisfies (H).
5. Composition of preradicals. Let A be a non-empty abstract class of distributive idempotent groupoids. Consider a preradical r satisfying (A). For every ordinal $0 \geq 0$, we define a preradical r^{0} by $r^{0}=t, r^{0+1}=r . r^{0}$ and $r^{0}=\cap r^{p}, p<0$, if $0>0$ is limit; here, we assume that all the blocks of r^{0} belong to A. We have ... $r^{0+1} \subseteq r^{0} \subseteq \ldots \subseteq r^{2} \subseteq r^{1} \subseteq r^{0}, r^{1}=r$ and for every groupoid $G \in A$ there exists an ordinal $0=\boldsymbol{L}(r, G)$ which is the least with $r^{0}(G)=r^{0+1}(G)$. Setting $\bar{r}(G)=r^{0}(G)$, we obtain a preradical \bar{F} and we can formulate the following simple facts.
5.1. Propoaition. (i) For every $0 \geq 0$, the preradicals r^{0} satisfy (A).
(ii) Fis an idempotent preradioal satiafying (A).
(iii) If r satisfies (G) then F is an idempotent radical.
5.2. Lempar. Let be a preradical auch that s^{k} exiata
and atisfies (A) for each non-negative integer k. Suppose
 geren, m.

Proof. Similar to that of 3.5.
5.3. Lemma. Let s be a preradical such that s.r. $=m \cap$.

Proof. Similar to the of 3.6.
5.4. Lemma. Let s be a preradical such that s^{k} exdsta and satisfies (A) for each non-negative integer k. Suppese that
 gative integere n, m.

Proof. Use 5.2 and 5.3.
5.5. Lemma. Let be a proradical satisfying (A) such

Proof. Similar to that of 3.8 .

6. Bxamples

6.1. Example. Let A be the class of groupoids. For $G \in A$, define $t(G)$ by $(a, b) \in t(G)$ iff $a, b \in G$ and ac $=b c$, $c a=c b$ for every © © G. It is easy to see that t is a semipreradical satisfying (A), (B), (D), (F) and (H). By 3.1, \hat{t} is an idempetent semiradical satiafying (D) and (H).
6.2. Brample. Let A be the class of groupoide and let B be a non-empty abstract olass of groupoide closed under subgroupoids and cartesian products. For every $G \in A$, let $m_{B}(G)$ denote the least congruence of G such that the corresponding factorgroupoid belonge to B. Then m_{B} is a radical satisfying (A) and (B). Moreover, if G, H are groupoide and I is a pro-
jective homomorphism of G onto H auch that $\operatorname{ker}(f) \circ m_{B}(G)=$ $=m_{B}(G) \circ \operatorname{ker}(f)$ then $f\left(m_{B}(G)\right)=m_{B}(H)$.
6.3. Example. Let A be the class of groupoids. For every $G \in A$, let $\operatorname{fr}(G)$ denote the Frattini congruence of G. Then Ir is a semiradical satisfying (A), (B) and (D). If G is a non-trivial initely generated groupoid then $\operatorname{fr}(G) \neq G \times G$.
6.4. Example. Let A be the class of regular groupoide. Then t (see 6.1) is a hereditary preradical.
6.5. Example. Let A be the class of quasigroups and B a non-empty abstract class of cancellative groupoids such that B is closed under subgroupoids and cartesian products. Consider the radical m_{B} from 6.2. Then m_{B} is a cohereditary radical.
6.6. Example. Let A be the class of quasitrivial groupoids and B that of commutative groupoids. Then m_{B} is an idempotent radical.
7. Examples. Let A denote the class of distributive idempotent groupoids:
7.1. Example. For every $G \in A$, define $p(G)$ (resp. $q(G)$ by $(a, b) \in p(G)$ (resp. $(a, b) \in q(G)$) iff $a, b \in G$ and $a c=b c$ (resp. oa $=c b$) for each $c \in G$. Then both p and q are semipreradicals satisfying (A), (B), (D), (F) and (H) and $p \cap q=1 a$. By 3.1 and 3.4 , both \hat{p} and \hat{q} are idempotent semiradicals satisfying (A), (B), (D) and (H) and $\hat{p} \cap \hat{q}=i d$. Moreover, $p \circ q=$ $=q \circ p$ and $\hat{p} \circ \hat{q}=\hat{q} \circ \hat{p}$ (see [2]).
7.1.1. Proposition. Let M be a generator set of a groupoid $G \in A$ and O the least limit ordinal greater than $\operatorname{card}(M)$.

Then $l(G, p) \leq 0$ and $l(G, q) \leq 0$.
Proof. Let $(a, b) \epsilon^{0+1} p(G)$. Then ($\left.a c, b c\right) \in \epsilon^{0} p(G)$ for overy $0 \in G$ and there is an ordinal $u<0$ such that (ad,bd) $\in{ }^{u} p(G)$ for every dGM. Now, denote by N the set of all $e \in G$ such that (ae,be) $\subset{ }^{u_{p}}(G)$. It is clear that N is a subgroupoid of G and $M \subseteq N$. Consequently, $N=G,(a, b) \epsilon^{u+1} p(G)$ and $(a, b) \epsilon^{0} p(G)$.
7.1.2. Corollary. Let $G \in \mathbb{A}$ be a finitely generated groupoid. Then $\ell(G, p) \leq 0$ and $\ell(G, q) \leq 0$, 0 being the first infinite ordinal.
7.1.3. Proposition. Let M be a generator set of $\hat{\text { a }} \hat{\mathrm{p}}$-torsion groupoid $G \in A$ and O the least limit ordinal greater than $\operatorname{card}(M)$. Then $\ell(G, p)<0$.

Proof. By 7.1.1, $\ell(G, p) \leq 0$, and hence there is an ordinal $a<0$ such that $(a, b) \sigma{ }^{u_{p}(G)}$ for $a l l a, b \in M$. From this, we see that $u_{p(G)}=G \times G$.
7.1.4. Corollary. Let $G \in A$ be a finitely generated \hat{p}-torsion groupoid. Then $\ell(G, p)$ is finite.
7.1.5. Proposition. Let $G \in A$ be a medial groupoid and $M \subseteq G$ a subset such that G is generated by M as a left (right) ideal. Denote by o the least limit ordinal greater than card(M). Then $\ell(G, p) \leq O(\ell(G, q) \leqslant 0)$.

Proof. Let $(a, b) \in{ }^{0+1} p(G)$. Then there is an ordinal $u<0$ such that $(a b, b) \in{ }^{u} p(G)$ and $(a c, b c) \in{ }^{u_{p(G)}}$ for every $c \in M$. Denote by \mathbb{N} the set of all $d \in G$ such that (ad,bd) $\in u_{p(G) \text {. We ha- }}$ ve $M \subseteq N$ and a.ed $=$ ae.ad $u_{p(G)}$ ae.bd $=a b$.ed $u_{p(G)}$ b.ed for all $\mathbb{d} \in \mathbb{N}$ and $e \in G$. Hence \mathbb{N} is a left ideal and $\mathbb{N}=G$. Consequently, $(a, b) \in{ }^{\circ} p(G)$.
7.1.6. Corollary. Let $G \in A$ be a left-ideal-free medial
groupoid. Then $\chi(G, p) \leqslant 0$, 0 being the first infinite ordinal.
7.1.7. Lemma, $p: q=q: p=p \circ q=q \circ p=p+q$.

Proof. Suppose that $G \in \mathbb{A}$ and $(a, b) \in(p: q)(G)$. Then d.ac $=d . b c$ for $a l l d, c \in G$. In particular, da. $c=d c . a c=$ $=d c . b c=d b . c$ and $(a, b) \in(q: p)(G)$. We have proved that $p: q \subseteq q: p$. Similarly the converse inequality, and so $p: q=q: p$. By 2.1(iii), $p+q \subseteq p: q$. Finally, d.ac $=d . b c, d a . c=d b . c$ for all d,éG, therefore da $=d . b a, b a . c=b c,(a, b a) \in q(G)$, $(b a, b) \in p(G)$ and $(a, b) \in(q \circ p)(G)=(p \circ q)(G)=(p+q)(G)$.
 $m_{q} \circ n_{p}$ for all non-negative integers n, m.
(ii) $\hat{p}: q \subseteq q: \hat{p}$ and $\hat{q}: p \subseteq p: \hat{q}$.

Proof. Apply 7.1.7, 3.7 and 3.8.
7.2. Example. For every $G \in A$, define two relations $r(G)$ and $s(G)$ by $(a, b) \in r(G)$ iff $a=a b, b=b a$ and $(c, d) \in s(G)$ iff $c=d c, d=c d$. Denote by $a l(G)$ and $a r(G)$ the least transitive relation containing $r(G)$ and $s(G)$, resp. Then both al and ar are idempotent preradicals satisfying (B) (see [2]). By 3.1 and 3.2, $\widehat{a l}$ and $\widehat{a r}$ are idempotent radicals satisfying (B). It is easy to see that $p \subseteq a r, q \subseteq a l, \hat{p} \subseteq \widehat{a r}$ and $\hat{q} \subseteq \widehat{a l}$. Purther, as proved in [2], $a \ell \cap a r=1 d$ and we have $\widehat{a \ell} \cap \widehat{a r}=1 d$ by 3.4 .
7.2.1. Proposition. $a \ell \circ a r=a r \circ a l$.

Proof. Let $G \in A, a, b, c \in G$ and $(a, b) \in a(G),(b, c) \in I(G)$. Then $a b=b=b c, b a=a, c b=c, a . c a=b a . c a=b c a=b a=a$, $c a . a=c a, b a=c b . a=c a, c . c a=c b . c a=c . b a=c a, c a . c=$ $=c a . c b=c, a b=c b=c,(a, c a) \in r(G),(c a, c) \in s(G)$. We have proved that $s(G) \circ r(G) \subseteq r(G) \circ s(G)$ and the rest is clear.
7.3. Example. Denote by M the class of medial greupoide. By 6.2, we have a radical m_{M} satisfying (A) and (B). By 5.1, \bar{m}_{T} is an idempotent radical.
7.3.1. Proposition, Every finite groupoid from A is $\bar{m}_{\mathbf{H}}$ toreionfree.

Proof. It is well known that every simple distributive groupoid is medial. Hence $m_{M} \subseteq f r$ (see 6.3) and the result easily follows.
7.4. Example. For every $G \in A$, define a relation $f(G)$ by $(a, b) \in j(G)$ iff the aubgroupoid generated by a, b, c, d is medial for all $c, d \in G$. Denote by $m i(G)$ the least congruence of G containing $j(G)$. Then md is a semipreradical satisfying (A), (B) and (D).
8. Examples. Let A designate the class of regular distributive idempotent groupoids. Then both p and q (see 7.1) are hereditary preradicals satisfying (B) and $\boldsymbol{\ell}(G, p) \leqslant 0$, $\ell(G, q) \leq 0$ for every $G \in A$, 0 being the first infinite ordinal (see [2]). Further, both \hat{p} and \hat{q} are Kereditary radicals, $\hat{p}: \hat{q}=\hat{q}: \hat{p}, p=a r, q=a \ell, \hat{p}=\widehat{a r}$ and $\hat{q}=\widehat{a \ell}$.

Referencem

[1] L. BICAN, T. KEPKA, P. NKMEC: Rings, modules and preradicals, Lecture Notes in pure and appl. math., Mar cel Dekker Inc., New York 1982.
[2] J. JEŽEK, T. KEPKA, P. NK̈MEC: Distributive groupoids, Rozpravy CSAV 91/3, 1981.

Matematicko-fyzikálni fakulta
Univerzita Karlova
Sokolovaká 83
18600 Praha 8
Czechoslovakia
(Oblatum 13.10. 1982)

