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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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DISTRIBUTIVE GROUPOIDS AND PRERADICALS |.
Tomas KEPKA

Abstract: A theory of preradicals and their compositi-
ons for the class of distributive groupoids is developed.

Key words: Groupoid, preradical.
Classification: 20L10

The main open problem in the theory of distributive
groupoids is whether free distributive idempotent groupoids
are cancellative. In solving this problem, it appears useful
to have at hand an suxiliary theory dealing with congruences
which are more or less preserved by homomorphisms. In this
way, we come to the notion of preradical known from the the-
ory of modules (see e.g. [1]) and the purpose of the presenf
note is to study preradicals and some of their generalizati-
ons for various classes of groupoids but mainly for the
class of distributive groupoids. As for details concerning
basic definitions, terminology and notation as well as for

further references, the reader is referred to [2],

1, Basic notiongs. Let A be a non-empty abstract class
of groupcoids (i.e., A is closed under isomorphic images).
A semipreradical r (for A) aaaigx:‘s to each GeA a congruen~
ce r(G) of G in such a way that £(r(G)) = r(H) whenever
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G,Hec A and f i8 an isomorphism of G onto H. We shall say that
r satisfies the condition

- (A) if He A whenever Ge A, H is a subgroupoid of G
and a block of r(G);

- (B) if G/r(G)e A for every GeEA;

=~ (C) (respe (D)) if £(r(G))< r(H) whenever G,He A and
£ is an injective (resp. projective) homomorphism of G into H;

- (BE) 12 £2(xr(G))<S r(H) whenever G,He€A and f is a homo-
morphism of G into H;

- (F) 1if r(H) = Hx H whenever G,He A, H is a subgroupoid
of G and a block of r(G);

- (G) 12 r(H) = 1dg for every G€ A such that H = G/r(G)
belonge to A;

- (H) (reap. (I)) 12 r(H)N(£(G)x £(G)) = £(r(G)) whenever
G,He A and f is an injective (resp. projective) homomorphism
of G into H;

-~ (K) i r(H)N (£(G)x £(G))c £(r(G)) whenever G,He A and
f is a homomorphism of G into H.

A.semipreradical satisfying (E) is said to be a preradi-
cal. Every preradical satisfies both (C) and (D) and the con-
verse is true provided A is closed under factorgroupoids (resp.
subgroupoids), A semipreradical satisfying (A) and (F) (resp,
(B) and (G)) is said to be idempotent (resp. a semiradical).

A semipreradical satisfying (A), (C) and (H) (resp. (B), (D)
and (I)) is said to be hereditary (resp. cohereditary).

Let r be a semipreradical, A groupoi‘d GeA is said to be
r-torsion (resp. r-torsionfree) if r(G) = GxG (resp. r(G) =
= 1d5).

Let r, 8 be aemipreradic:ls. For Ge A put (rns)(G) =
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= r(G)n 8(G) and denote by (r+s)(G) the congruence generated
by r(G)u s(G). We obtain thus two semipreradicals rn s and
r+5 . Further, we shall write ro8 = sor if r(G)o 8(G) =

= 8(G) o r(G) for every GeA. In that case, ros = sor = r+s.

The following results are clear.,

l.1. Proposition. Let r and s be semipreradicals.
(i) If both r and s satisfy (C) (resp. (D),(E),(H)) then rns
satisfies the condition,
(ii) If both r and s satisfy (C) (resp. (D),(E)) then r+s sa-
tisfies the condition.

l.2, Lemma., Let r be a semipreradical, G,He A and let £
be a homomorphism of G into H such that ker(f)o r(G) =
= r(G)o ker(f). If a,b,c € G are such that f(a) = £(b) and
(b,c)e r(G) then (a,d)e r(G) for some de€G with f(c) = £(d).

l.3. Proposition. Let r and s be semipreradicals such
that ker(f) o r(G) = r(G)o ker(f) and ker(f)o s8(G) =
= 8(G) o ker(f) whenever G,Hc A and £ is a projective homomor-
phism of G onto H. If both r and B satisfy (I) then r+s sa-
tisties (I).

Let A denote the clasa of groupoids, We define two semi-
preradicals id and t£ by 1d(G) = 14; and t£(G) = Gx<G for
every groupoid G, Obviously, both id end t£ satisfy all the
ten conditions (A),e.e,(K). '

2. Composition of semipreradicals. Let A be a non-empty

abstract class of groupoids. Consider two semipreradicals r
and 8 and suppose that s satisfies (B). We define a semipre-

radical r:s by (r:s)(G) = f'l(r(H)). f being the natural
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projection of G onto H = G/8(G). The following assertions can

be verified easily.

2.1, Proposition. (1) scr:s.
(11) It r satisfies (B) then r:g satisfies (B).
(111) If r satisfies (D) then r,r+sc ris.
(iv) If r satisfies (C) and s satisfies (C) and (H) then r:s
satisfies (C).
(v) If both r and s satisfy (D) (resp. (E)) then r:s satis-
fies (D) (resp. (E)).
(vi) If A is closed under factorgroupoids, r satisfies (D)
and (F) and s satisfies (H) then r:s satisfies (F).
(vii) If r satisfies (F) and 8 satisfies (C) and (H) then
r:g satisfies (F).
(viii) If r satisfies (G) and s satisfies (G) and (I) then
r:s satisties (G).
(ix) If s satisfies (G) then s:g = 8.
(x) If r satisfies (H) and s satisfies (C) and (H) then r:s
satisfies (H).
(xi) If A is closed under factorgroupoids (resp. subgrou-
poids), r satisfies (D) and (H) and s satisfies (H) then r:s
satisfies (H).
(xi1) Ifr satisfies (I) then ri:sSr+s.

242, Leqma, Let G,He A and let £ be a homomorphism of
@ into H such that ker(f)o s(G) = 8(G)o ker(?).
Suppose that £(s(G)) = s (H)n (£(H) = £(H)) and r(H/s(H)) n
N (g(a/8(06)) = g(G/8(G))) < g(r(G/8(C))), g being the induced
homomorphism of G/s(G) into H/s(H). Then (r:s)(H)n (2(G) x
» 2(a)) S £((ris)(G)).
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2.3 Proposition. Suppose tha'!; ker(f) o s8(G) =
= 8(G) o ker(f) whenever G,HEA and £ is a (projective) homo-
morphism of G into H. If r satisfies (K) (resp. (I)) and s
satisfies (D) and (K) (resp. (I)) then r:s satisfies (K)
(resp. (I)).

2.4..Proposition. Suppose that every groupoid from A is
idempotent. Let s satisfy (A), (C) and (F) and let r satisfy
(D) and (F). Further, let either r satisfy (A) or let A be

closed under factorgroupoids. Then r:s satisfies (),

2.5, Proposition. Let r+s satisfy (B) and (G) and let

both r and & satisfy (D). Then r+s = r:s.

2.6, Lemma, Suppose that r satisfies (B) and let q be &
semipreradical. Then (q:r):s = q:(r:s).

2.7, Lemma, Let r;, 1€ I, be a non-empty family of semi-
preradicals. Then (= ry)is = Zri H'B

2.8, Lemma. Suppose that r satisfies (D). Let 8, 1eI,
be a non-empty family of semipreradicals satisfying (B) such
that the semipreradical 2 s, satisfies (B). Then =z risy S

cr: Z‘si.

3. Composition of semipreradicals. Let A be a non-empty
abstract class of groupoids. Consider a semipreradical r sa-
tisfying (B); in fact, we shall demend a bit more which will
be clear from tl;e following. For every ordinal o Z 0, we de-

or = id, °"'1r = r:°r and %r =

fine a semipreradical °r by
= UPr, p<o, 12 0>0 18 1limit; here, we assume that

G/°r(G)e A for all Ge A and 02z 0, It is clear that

~
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0. 1. _2 0.cO+l. o 1

re"rcerSese S ese and “r = r, Moreover, for eve-
ry groupoid Ge A there exists an ordinal o = £ (G,r) which
‘18 the least with °r(G) = °*lr(a). Setting £6) = °r(G) we
obtain a semipreradical . The following statements are near-
ly obvious (use 2,1, 2.4 and, occasionally, & transfinite in-

duction).

3.1. Proposition. (1) Por every o2 0, the semipreradi-
cals °r satisfy (B).
(i1) % is a semiradical satisfying (B).
(iii) If r satisfies (D) then all the semipreradicals °r sa-
tisfy (D) and T satisfies (D).
(iv) If r satisfies (E) then all the semipreradicals °r sa-
tisty (E) and T 1s a radical, ]
(v) If r satisfies (C) and (H) then all the semipreradicals
°r as well as P satisfy (C) and (H).
(vi) If A is closed under factorgroupoids (resp. subgrou=-
poids) and r satisfies (D) and (H) then all the semipreradi-~

cals °r as well as # satisfy (D) and (H),

3.2, Proposition, Suppose that every groupoid from A is
idempotent and that A is closed under subgroupoids., Let r sa-
tisfy (E) and (F). Then T is an idempotent radical.

3.3, Lemma, Let s be a semipreradical such that s satis-

fies (D) and rn8 = 1d, Then Ths = id.

3.4, Proposition. Suppose that r satisfies (D), Let s
be a semipreradical such that 5 exists, s satisfies (D) and
ras = id. Then £n8 = 1d,

3.5. Lemma., Let s be a semipreradical such that kl ev-

ists and satisfies (B) for each nor-negative integer k, Sup-
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pose that ris = s:r. Then “r:s = Tg %r for all non-negati-

ve integers n, m,

Proof, We show that r®s = Pa:r by induction on m. For

m = O, there is nothing to be proved, If m>1, then r®s =
= ri8™ s = 5:r™ g = 8/ lair = ®a:r by 2.6 and the induc-

tion hypothesis.

3.6, Lemma., Let 8 be a semipreradical such that s:r =

= 84r, Then 8:r = 8+%r for each non-negative integer n,
Proof. By induction on n, If n>1, then s+'r =

= 848 1p0p o (s :n"lr)+nr by the induction hypothesis. Howe-

n-1 n-lr -

ver, as one may check easily, (s:% “r)+’r = (s4r):

= g:r™ 1y s:%r,

3.7, Lemma., Let s be a semipreradical such that Ky ox-

ists and satisfies (B) for each non-negative integer k. Sup-
pose that r:s = s:r = r+s. Then BrPs = Mg:Pr = %p4®s for all
non-negative integers n, m.

Proof. Use 3.5 and 3060

3.8, Lemma. Suppose that r satisfies (D). Let s be a
semipreradical satisfying (B) such that r:scs:r. Then fis ©
c 8:f,

Proof. First, by induction on o020, we show that
®risc 8:%r. If 0 is not 1imit then we can proceed similarly
as in 3.5, Assume that 0>0 is limit. We have %r:s =
= (=Pr)s = =Pris c Z8:Prce:(=Pr) = 8:°r by 2.7, 2.8 and
the induction hypothesis. Now, let Ge¢ A, There is an ordinal
o such that r(H) = °r(H) for every factorgroupoid H of G and
(r38)(6) = (°r:s)(G)c (8:°r)(G) = (8:r)(G).
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4, Composition of semipreradicals. Let A be a non-empty

abatract class of distributive idempotent groupoide, Consider
two aemipreradio‘als r and s and suppose that r satisfies (E)
and 8 satisfiea (A). We define a semipreradical r.s by
(a,b)e (r.s)(G) iff (a,b)c 8(G) and (a,b)& r(H), H being the
block of a8(G) containing a (take into account that all the
blocks of 8(G) are subgroupoids and all the translations of G

are endomorphisms). The following observations are cleer.

4.1, Proposition. (i) re.ssrns.
(11) If r satisfies (A) then r.s satisfies (A).
(1i1) If 8 satisfies (C) (resp. (E)) then r.s satisfies (C)
(resp. (E)).
(iv) If 8 satisfies (E) and (F) then s.s8 = 8.
(v) If r satisfies (G) and s satisfies (B), (D) and (G) then
r.s satisfies (G).
(vi) If r satisfies (H) then r.s = rns.
(vii) If both r and s satisfy (H) then r.s = rns satisfies
(H). ° '

4.2, Lemma. Let G,He A and let £ be a homomorphism of G
into H such that ker(f)o s(G) = 8(G)o ker(f), Suppose that
8(H)n (£(6) > £(G)) = £(s(H)) and r(L)n (£(K)x £(K)) < £(x(K))
whenever L is e block of 8(H) and X is a block of s(G) such
that £(K)E L. Then (r.s)(H) N (£(G)> £(G))=£((r.s)(G)).

4.3, Proposition. Suppose that ker(f)o s(G) = 8(G) o ker(f)
whenever G,HE A and f is a (projective) homomorphism of G into
He
(i) If r satisfies (K) and s satisfies (D) and (K) then r.s
satisfies (K).
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(ii) If A is closed under subgroupoids and both r and s sa-
tisfy (I) then r.s satisfies (I).

4.4, Propogition. Let rns satisfy (A) and (F). Then

TNE = TeBo

4.5, Lemma. Suppose that r satisfies (A) and let q be a

preradical. Then q.(r.8) = (Q.r).s.

4.6, Lemma, Let ry, 1€ I, be a non-empty family of pre-
radicals, Then (Nry)es = Nry.s.

4.7. Leoma. Let 85, 1€I, be a non-empty family of semi-
preradicals satisfying (A) such that the semipreradical N 8y
satisfies (A), Then r.(N ’i) < ﬂr.si. The equality holds, pro-
vided r satisfies (H).

5. Composition of preradicals. Let A be a non-empty ab-
stract class of distributive idempotent groupoids. Consider a
preradical r satisfying (A). For every ordinal o=0, we define
a preradical r° by ro =t , r°+1 = r.r° and r° = ﬂrp, p<o,
i 0>0 is 1imit; here, we assume that all the blocks of r°
belong to A. We have ...r°*lc rc.,.crlcric ¥, r! = r and
for every groupoid Ge A there exists an ordinal o = ¢ (r,G)
which is the least with r°(g) = r°*1(G). Setting F(G) = r°(6),
we obtain a preradical ¥ and we can formulate the following

si!nyle facts,

5.1. Propogition. (1) For every o=0, the preradicals
r° satisty (A).
(11) ¥ is an idempotent preradical satisfying (A).
(111) If r satisfies (G) then ¥ is an idempotent radical.

5.2, Lomma. Let s be a preradical such that s* exists
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and satisfies (A) for each non-negative integer k. Suppose
that r.s = s.r. Then r2.s® = s%.r" for all non-negative inte-
gers n, m,

Proof. Similar to that of 3.5.

5¢3. Lagma., Let s be a preradical such that s.r. = snr,
Then s.r” = snx" for each non-negative integer n.

Proef, Similar to the of 3.6.

5.4, Lenma, Let s be a preradical such that s* exists
and satisfies (A) for each non-negative integer k. Suppose that
Te8e = 8.T = TN8, Then r7.8" = g%.x” = r®n s™ for all non-ne-
gative .’u}togm n, me

Proof, Use 5.2 and 5.3.

5.5. Lenmg. Let s be a preradical satisfying (A) such
that s.rcre.s. Then s.Fc¥.s.
Proof, Similar to that of 3.8.

6. Examples

6.1, Example. Let A be the class of groupoids. For Ge A,
define t(G) by (a,b) e t(G) 1£f a,be G and ac = be, ca = cb for
every 0 6@. It is easy to see that t is a semipreradical satis-
fying (A), (B), (D), (P) and (H). By 3.1, T is an idempotent
semiradical satisfying (D) and (H).

6.2, Exsmple. Let A be the class of groupoids and let B
be a non-empty abstract class of groupoids closed under sub-
groupoids and cartesian products. For every Ge A, let mp(G)
denote the-least congruence of G such that the corresponding
factorgroupoid belongs to B. Then my is a radical satisfying
(A) and (B), Moreover, if G, H are groupoids and £ is & pro-
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jective homomorphism of G onto H such that ker(f)o nB(G) =
- mB(G)o ker(f) then f(mB(G)) = mp(H),

6.3, Example, Let.A be the class of groupoids. For eve-
ry Ge A, let fr(G) denote the Frattini congruence of G. Then
fr is a semiradical satisfying (A), (B) and (D), If G is a
non-trivial finitely generated groupoid then fr(G)=+Gx G,

6.4. Example. Let A be the class of regular groupoids.
Then t (see 6,1) is a hereditary preradical.

6.5, Example. Let A be the class of quasigroups and B
a non-empty abstract cless of cancellative groupoids such that
B is closed under subgroupoids and cartesian products. Consi-

der the radical my from 6.2, Then my is a cohereditary radical.,

6.6, Example. Let A be the class of quasitrivial grou-
poids and B that of commutative groupoids. Then my is an idem-~
potent radical.

T. Examples. Let A denote the clams of distributive i-
dempotent groupoidst

7.1, Example. For every Ge A, define p(G) (resp. q(G)
by (a,b)€ p(G) (resp. (a,b)e q(G)) iff a,beG and ac = bo
(resp. oa = cb) for each cc G. Then both p and q are semipre-
redicals satisfying (A), (B), (D), (F) and (H) and pngq = id,
By 3.1 and 3.4, both D and § are iaempotent semiradicals sa-
tistying (A), (B), (D) and (H) and pn§ = id. Moreover, Poq =
= qopand pod = Qo D (see [2]1).

T.1.1. Proposition. Let M be a generator set of a grou-
poid Ge A and o the least limit ordinal greater than card(M),
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Then A£(G,p)<o0 and £(G,q)<o0.

Proof. Lat (a,b)s°*1p(G). Then (ac,bc) e ®p(G) for overy
66 G and there is an ordinal u<o such that (ad,bd)e ®p(G) for
ev;ry dc M, Now, denote by N the set of all ec G such that
(ae,be) ¢ ¥p(G). It is clear that N is a subgroupoid of G and
Mc N, Consequently, N = G, (a,b)e“+1p((‘:) and (a,b) e °p(G).

.Tele2s Corollery., Let Ge A be a finitely generated grou-~
poid. Then £(G,p)<£o0 and .£(G,q)<o0, o being the first infini-
te ordinal, '

Tele3. Proposition. Let M be a generator set of & P-tor-
sion groupoid Gé A and o the least limit ordinal greater than
card(M), Then £(G,p)<o0.

Proof. By T.l.l, £(G,p)<o0, and hence there is an ordinal
n<o such that (a,b) e "p(G) for all a,be M. From this, we see
that “p(G) = Gxa,

Teled. Corollary. Let Ge A be a finitely generated p-tor-
sion groupoid. Then £(G,p) is finite.

Tele5. Proposition. Let Ge A be a med:l:a.l groupoid and Mc G
a subset such that G is éenerated by M as8 a left (right) ideal.
Denote by o the least limit ordinal greater than card(M). Then
£(G,p) <0 (£ (6yq)<0).

Proof. Let (a,b)e °*1p(G), Then there is an ordinal u<o
such that (ab,b)e "p(G) and (ac,bc) e “p(G) for every cs M, De-
note by N the set of all de G such that (ad,bd) € %p(G). We ha-
ve MEN and a.ed = ae.ad “p(G) ae.bd = ab.ed “p(G) b.ed
for ell d<N and ec G. Hence N is a left ideal and N = G, Conse-
quently, €a,b)e °p(G).

T.1.6, Corollary, Let Ge A be a left-ideal-free medial

L]
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groupoid. Ther £(G,P)< 0, o being the firat infinite ordinal.

T.leT. Lemma, Piq = q:p = poq = qop = p+q.

Proof., Suppose that GeA and (a,b) € (p:a)(G). Then
d.ac = de.bc for all d,c€ G, In particular, da.c = dc.ac =
= do.be = db.c and (a,b)e (qip)(G)s We have proved that
Piq S q:p. Similarly the converse inequality, and so p:q = Q:p.
By 2.1(iii), p+q&p:q. Pinally, d.ac = d.,be, da.c = db.c for
all d,e € G, therefore da = d.ba, ba.c = bc, (a,ba)e q(G),
(ba,b)e p(G) and (a,b)€ (qop)(G) = (po q)(G) = (p+q)(G).

7.1.8, Proposition. (1) Pp:™q = Pq:Pp = Pps"q = PpoTq =
My o®p  for all non-negative integers n, m.
(i1) P:q=q:p and Q:ps p:q.

Proof. Apply T.1.7, 3.7 and 3.8.

T.2. Example., For every Gec A, define two relations r(G)
and 8(G) by (a,b)e r(G) iff a = ab, b = ba and (c,d)ec 8(G) 122
¢ = de, d = cd. Denote by al (G) and ar(G) the least transiti-
ve relation containing r(G) and s(G), reapv. Then both af and
ar are idempotent preradicals satisfying (B) (see [2]). By 3.1
and 3.2, a/,\C and ar are idempotent radicals satisfying (B). It
is easy to see that pcar, qcal , Pcér and ﬁsﬁ + Furthes,

s
as proved in [2], el n ar = id and we have aln &r = 1d by 3.4

T.2.1, Proposition., af o ar = aroal .

Proof. Let GeA, a,b,ceG and (a,b) e8(G), (b,c)e r(G).
Then ab = b = b, ba = a, cb = ¢, a.,ca = ba.ca = bc.a = ba = a,
ca.a = ca.,ba = cb.a = ca, c.ca = cbeca = Coba = ca, CAeC =
= ca.cb = ¢c.ab = ¢b = ¢, (a,ca)e r(G), (ca,c)e s(G). We have

prow;'ed that 8(G) e r(G)c r(G)o 8(G) and the rest is clear,
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T.3. Example, Denote by M the class of medial groupoids.
By 6.2, we have a radical my satisfying (A) and (B). By 5.1,

-

my, is an idempotent radical,.

7+3.1. Proposition, Every finite groupoid from A is Wy~
torsionfree.

Proof. It is well known that every simple distributive
groupoid is medial, Hence mmsfr (see 6.3) and the result easi-
ly follows.

Tedo Mg. Por every Ge A, define a relation j(G) by
(a,b) e J(G) iff the subgroupoid generated by a,b,c,d is medial
for all c,d € G, Denote by md(@G) the least econgruence of G con-
taining j(G). Then md is a semipreradical satisfying (A), (B)
and (D).

8., Examples. Let A designate the elass of regular distri-
butive idempotent groupoids. Then both p and q (see 7.1l) are
hereditary preradicals satisfying (B) and £(G,p) <o,
£(G,q)< 0 for every Ge A, o being the first infinite ordinal
(see [2]), Purther, both P end § are Mereditary radicals,

A~
Pd=q:D, p=ar, qual ,P=& and §= 2l .,
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