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CoMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,2(1983)

DISTRIBUTIVE GROUPOIDS AND PRERADICALS II

T.KEPKA

Abstract: One-sided ideals and the corresponding pre-
radicals of distributive groupoids are studied.

Key words: Groupoid, preradical.
Classification: 20L10O

This note is an immediate continuation of [2], The theo~
ry of preradicals developed in [ 2] is applied to some special
cases, Two preradicals derived from left and right ideals are
defined and their rOle in the structure theory of distributi-
ve groupoids is studied.

9, Ideals. Let A dencte the class of distributive idem-
potent groupoids,

9.1. Lemma. Let GeA,

(1) If I is an ideal of G and K a left (right) ideal of I

then K is a left (right) idesl of G,

(1i) If I is a left (right) ideal of G and K an ideal of I
then K is a left (right) ideal of G,

(iii) If I is an ideal of G and K an ideal of I then K is

an ideal of G,
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Proof. (1) Ve have abc I and adb = ab.ab = (ab.a)(ab.b)
for all ac @ and becK, Since I 18 an ideal of G and K a left
idesl of I, ab,acI and ab.,b€ K. Consequently, abeK.

(11) We have abe I and ab = ab.ab = (a.ab)(b.ab) for all ac G
and b€ K, Since I is a left ideal of G and K an ideal of I,
a.ab€l and b.abe K, Consequently, abc K.

(i11i) Use (1) or (ii).

9.2, Lemma. Let I, K be left ideals of a groupoid GeA.
Then IK is a left ideal of G and IXSK,

9.3, Lenmma. Let I be a left and X a right ideal of &
groupoid Ge A, Then KI = InK is a left (right) ideal of K(I).
Moreover, KI is an ideal of G, provided IKESKI,

9.4, Lemma. Let I and K be ideals of a groupoid GeA.
Then IK = INK = KI is an ideal of G.

9.5, Lemma. Let I be an ideal of a groupoid Ge A and let
a,b,6 ¢ G, Then ab ¢TI 1iff baecI and a.bceI iff ab,ecI,

Proof, We have ba = ba,ba = (ba.b)(ba.a) = (b.adb)(ba.a)
and ab,0 = ac.be = (a.bc)(c.bc), a.bc = ab,ac = (ab.a)(ab.c).

Por Ge A, define a relation w(G) by (a,b)ec w(G) 1ff the

elements a and b generate the same ideal of G.

9.6, Lemma. Let GC A, Then:
(1) (a,b)e w(G) 1ff a = £(b) and b = g(a) for some f,ge Mul(G).
(11) w(G) iz a ooxigruence of G, H = G/w(G) is a semilattice
and w(H) = idﬂ‘
(iii) Every block of w(G) is ideal-free.
(iv) If I is an ideal of G then w(I) = w(G)n (IxI).

Proof, (i) This is clear.
(11) Apply (1) and 9.5.
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(111) TLet H be a block of w(G) and a,b €H, There are positi-
ve integers n, m, sl""'sn' 11'000,!“6 {L,R? and llpoo.'%'
Diseeesby € G such that & = 51 4 °°° Sn,&n(b) and

- = - 3 L XX} s
) ”1.b1 oo !n'bm(a). Then & = 88 = 8) 44 ,,'“n(-)

and b = T !-,bb.(b")' From this, it is easy to see

1.bb1 eeoe
that a8y ,bby € H, and so (a,b) € w(H), Thus w(H) = HxH and H

is ideal-free.
9,7, Corollary. w is an idempotent radical.

9.8, Lerma. Let I be an ideal of a groupoid G€A. Then
G is isomorphic to a subgroupoid of the product of @/I and a
set of copies of I.

Proof., For every ac I, both I‘a and R. are homomorphisms
of G into I and r r\ﬂker(La)nﬂker(Ba) = id, where
r= (IxI)uid.

9.9, Corollary. Let I be an ideal of a groupoid GeA.
Then the groupoids G and Ix G/I generate the same groupoid

variety.

9.10, Proposition. Let G€ A, Then w(G) is just the least
congruence of G such that the correasponding factorgroupoid is
a semilattice.

Proof. Denote by r the congruence. By 9.6(ii), rSw(@).
However, 1f H is a block of w(G) then r|H = HxH as it fol-
lows from 9.6(iii)., Hence w(G)c r.

9.11, Corollary. w = mg, S being the class of semilat-
tices (see 6.2).
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10. Left and right ideals. Let A denote the class of Ai-

stributive idempotent groupoids. A groupoid G is said to be
left (right) permutable 1f it satisfies the identity x.yz =
® yoxs (Xy.z = x2z.¥).

10.1. Lemma, Let G&€A be left (right) permutable. Then
G is medial,

Proof. Por a,b,0,dcG, ab.,cd = c(ab.d) = c(ad,bd) =
= o(b(ad.d)) = b(c(ad.d)) = b(ad,cd) = b(ac.d) = ac,.bd,

10,2, Lemma, Let G€ A be both left and right permutable.

Then G is a semilattice.
Proof. PMor a,b,0€G, a,bc = ab.ac = (a.ac)db = (ab)(ac.b)=
= (ac)(ab.b) = (a{ab.b))c = {ab.ab)c = ab.c and ab = ab.a =

= a,ba = ba,

10.3. Lemma. Let I be a left ideal of a groupoid Ge A

and let a,b,ceG, Then a.,be €I iff b.,ace I,

Proof, a.bc = ab.ac = (a.,ac)(b.ac).

For Ge A, define a relation u(G) (resp. v(G)) by (a,b) €
€ u(G) (resp. v(G)) iff the elements a and b generate the same
left(resp. right) ideal of G.

10,4, Lemma. Let Ge A, Then:
(1) (a,b)e u(G) iff a = £(b) and b = g(a) for some f,ge Mull(G).
(ii) u(G) is a congruence of G, H = G/u(G) is left permutable
and u(H) = id.H.
(ii1) If K is & block of u(G) then K/u(K) is a semigroup of
right zeros.

Proot. (i) This is clear.
(11) u(G) is a congruence and H is left permutable by (i) and
10.3. Denote by £ the natural projection of G onto H. Let
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a,be G be such that (2(a),f(b)) e u(H). Then there are positi-
ve integers n, m and B1yeeesByy bl""'bne G with
(ay(ap(eee(a @))),b) e u(G) and (by(by(e..(byb))),a)e u(G).
From this, it is easy to see that (a,b)e u(G).

(1i1) Let a,be K. There are positive integers n, m and
8yseeerBp, bl....,bmsG with a = bl(...(b‘b)) and b =

= 8y(.se(aya)). Then a = bl(...(bm(a.l(...(ana))))) and

8 = by(eealby ((byby )Ceec((Byb ) ((B58,)(0ee(byaeby8)))))))
for every 141 <m and we see that biacK. On the other hand,
a = (by(..e(byb)))a = (bja)(e.e(byacba)), and therefore
(a,ba)e u(k).

10,5, Corollary. Both u and v are radicals.
10.6. Corollary. Both W and ¥V are idempotent radicals.

10,7, Lemma. Let Ge A, n>2 and 8yreces8 € G. Then there

are by,...,b, ,& G such that ((‘1‘2)"')% = bl(...(b
. :;Halm.
Proof, By induction on n, For n = 2, there is nothing to

n-2°

prove, For n2 3, ((alt.\a)...)qn = bl(“‘(bn-3°))'

c = R:;z(alaz). But, o = ng;z(.l).ng;z(az) -

n-2 n-3 n-2 n-3 n-1
= R% (31)(Ran (32)0 ‘n) b (Ran (Ql)aRan (32))03311 (al)'
10,7, Lgmma. Let GcA, n2>1, a,b,al,...,&ne G,
a = ((bay)e.q)a, and let H be the block of u(G) containing a.
Then there are mZ1 and by,...,b, € H such that a = ((bbl)"‘)bm'
Proof., Let 14£i<4n, We have a = 0(((aiai+l)"’)an)’
c = (((((bal)"')ai-l)ai-tl)"‘)an‘ From this, a = aa =

= (ca)((((aiaiﬂ)...)an)a). By 10.6, there are ¢y,ecspc, 46 G

n-i
such that a = (ca)(cl(...(cn_i.Rn"i"']'(ai)))). Obviously,
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R:’i"l(ai)e H, However, then d, = R:(ai)s Hand a =
= ((Rg(b)ay)eee)dye
10,8, Proposition. (1) u.v. = veu = unv,
(11) Q c T and arc ¥ (see 7.2).
(111) mycunv (see 7.3).
(iv) u+veEw, utvcw and viucw,
Proof. (1) By 10.T and 1ts dual, uNn VE V., UNVEUV
and the result follows from 4.1(1i).
(11i) The inclusion af = u is clear directly from the defini-
tions., Since u is a radical and Q is idempotent, Q € u.
(1ii) This follows from 10.1l, 10.4(ii) and its dual.
(iv) This is cleer.

10.9. Corollary. W2 = PP = wBA VP for all positive

integers n, m.
10.10. Corollary. u.vS V.u and v.,u< u.v.

10.11. Lemma., Let GC A be left permutable and (a,b)e u(G).

Then ab = b and ba = a,

10.12. Proposition. Let Ga A be left permutable. Themn:
(1) u(G)< ar(G)c v(G) = w(G) = ¥(G).
(ii) Every block of u(G) is a semigroup of right geros.
(111) W(6) = u®(6) = 1d; end a £ (G) = id.

Proof. (1) By 10.11 and 10.8(ii),(1iv), u(G)<ar(G)s v(G)<
= w(G). Denote by £ the natural projection of G onto H = G/v(G).
By 10.2 and the dual of 10.4(ii), H is a semilattice, and hence
w(H) = idg. If (a,b)& w(G) then (£(a),f(b))e w(H), f(a) = £(b)
and (a,b)e v(G). Thus w(G) = v(G).
(i1) This is clear from 10.11.
(1i1) Use (ii) and 10,8(ii).
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10.13. Proposition. ¥:iu = U:v = uiv = vm = W,

Proof. Let Ge A and let f denote the natural projection
0of G onto H = G/u(@). We have « H) = V(H) by 10,12(1i). Conse-
quently, (w:u)(G) = (¥:23(G), However, w(G) S (w:u)(G), we ha-

ve proved wSV:u, and 50 W = V:u. Similarly, w = U:v.

10.14. Propositior. Let G€ A he left permutable. Then
EX(C) ~ wlB) = v(6).

Proof, Put H = G/Q(G). Then ar(R) = idﬂ. Howsver,
(a.ab){ab) = a(ab,b) = ab.ab = ab and (ab)(a.adb) = a(ak.ab) =
= a.,ab for 511 a,be H, Hence ab = a.ab,

Purther, ba.adb = a(ba.,b) = s(b.ab) = a.ab = ab and ab,ba = ba,
from this, ab = ba and K is a semilattice. The rest ia elear,

10.15. Corollary. TLet Ge A be lefi permutable and idead-

free. Then G is é\r-torsion and right-ideal-free.

10,16, Lemma. Let G be a groupeid containing a sudgren-
poid H such that H iz a semigroup of right zeros, & = Ru{ej},
0¢ H, O,HCH and a0 = O for every a€ G, Then GeA is left per-
mutable and u(G)S Hx HE p(G).

Proof. Obviously, G is idempotent. Now, we show that @
is medial, For, let a,b,c,ds G, If a,b,c,d€ H.then ab.cd =

= d = acebds If 4 = O then ab.cd = d = ac.bdse If ¢ = 0 and

n

a,b,d6 H then ab.cd = ¢d = ¢c.,bd = ac,bde If a = O and b,c,d€
€ H then ab.,cd = d = ac,bde If 2a = O = ¢ and b,de H then
ab,0d = cd = ¢c,bd = ac.bd, If a = b = ¢ = 0 and de F then
eab.,cd = ae.,bd., Finally, we show that G is left permutable. For,
let a,b,ce G. It a,b,c ¢H then a,bc = b.ac. If ¢ = O then
8,bc = ¢ = bac, If &a = O and b,cec H then a,bc = ac = b.ac. If

a=0=D»and 66 H then a.,bc = b.ac,
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10,17, Example. Consider the following three-element
groupoid @ = {a,b,0}; aa = ba = ca = &, ab = be = cc = ¢,
ac = bb = ob = b, By 10,16, Ge A and G is left permutable. Mo~
reover, it is easy to see that p(G) = ar(G) = u(G) = id; v
v {(b,e),(c,b)} . Hence u(G)*idG.

10.18, Lesma. Let n be a non-negative integer and let
Ge A be uP~torsionfree. Then v(G) = w(G) = ¥(G).

Proof. We show by induction on n that ¥(G) = w(G).
With respect to 10.12(i), we can assume that n> 2, Denote by ¢
the natural projection of G onto H = G/nn"l((}) and by g that
of @ onto K = G/¥(G). Aceording to 10.4(iii), every block of
un'l(G) is a semigroup of right zeros, and hence un'l(G)E v(G).
Using this, we see that there is a projective homomorphism h
of H onto K such that g = hf.
Now, let (a,b)e w(G). Then, by the induction hypothesis,
(£(a),f(b))e ¥(H), and so (g(a),g(d))e ¥(K). Consequently,
(a,b) e (V:¥)(G) = ¥(G).

10.19. Proposition. F:u = w = W:v? for every positive
integer n.

Proof., Let Ge A and let f denote the natural projection
of G onto H = G/u™(G). Let (a,b)e w(G). Then (£(a),2(b))e w(H) =
= ¥(H) by 10.18, and hence (a,b)c (F:u?)(G).

10,20, Corollary. v :u™ = w = u™sv® for all positive in-

tegers n, m,
11, An application. A congruence r of a groupoid G is

said to be e~invariant (resp. a-invariant) if it is invariant

with respect to all endomorphisms (resp. automorphisms) of G.
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The groupoid G is said to be e-simple (resp. a-simple) 1f it
is non-trivial and idG, Gx G are the only e-invariant (resp.

a-invariant) congruences of G.

11l.1, Pyroposition. Let A be a non-empty absiract class
of groupoids and r a semipreradical (resp. & preradical), If
Ge A is a-simple (resp. e-simple) then either r(G) = idG or
r(G) = GxG,

11.2, Proposition. Every e-simple distributive groupoid
is either idempotent or a semigroup with zero multiplication.
Conversely, every non-trivial semigroup with zero multiplica~
tion is an e-simple distributive groupoid.

Proof. Let G be an e-simple distributive groupoid. The
set I of all idempotents of G is an ideal and it is easy to
gee that r = (I><I)uj.dG is an e-invariant congruence of G, If
r = GxG then I = G and G is idempotent.

Suppose that r+Gx<G, Then r = 1dG’ I contains only one element
and G is a semigroup nilpotent of class at most 3. Put K = GG
and 8 = (KxK)u 1dG. Again, K is an ideal of G and 8 is an e-
invariant congruence, If 8 = Gx G then G = GG and G is idempo-
tent, a contradiction. Thus 8 = idG, K contains Just one ele-

ment and G is & semigroup with zero multiplication,.

11.3. Corollary. Every a-simple distributive groupoid is
either idempotent or a two-element semigroup with zero multi-
plication,

11.4. Proposition. Let G be an e~-simple distributive i-
dempotent groupoid. Then exactly one of the following four ca-
ses takes place:

(1) u(G) = Gx G = v(G), G is botkr 1aft and right-ideal free
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and @ 1is cancellative.

(11) wu(@) = 1dy = v(G) and G is a semilattice.

(111) w(G) = i4g, v(G) = @xG, G is right-ideal-free and G
is left pexmutedble.

(1v) v(@) = 1d,4, u(G) = @xG, G is left-ideal-free and G is
right permutable.

Proof. By 11.1, u(@),v(G) ¢ {1d4,G=G7, If u(G) = 14, =
= v(G) then € is a semilattice by 10,2, 10.4(ii) and its dual.
If u(G) = idG end v(G) = Gx G then G is left permutahle by
10.,4(i1) and G is clearly right-ideal-free, Suppose that
u(G) = Gx @ = v(@), Then G is both left and right-ideal-free
and G is regular (see [1)). However, the regularity of G imp-
lies that p(G) is an e-inveriant congruence of G, If p(G) =
= Gx G then G is a semigroup of right zeros, and, since it is
left-ideal-free, it is trivial, a contradiction. We have pro-
ved thet p(G) = idG, and hence G is righ't cancellative. Simi-
larly, G is left sancellative,

11,5, Lemma. Bvery non~trivial semigroup of right seros
is an a-simple distributive idempotent groupoid.

11,6, Lemma, (1) If G is a finite a-simple semilattice
then every non-gero element of G is an atom,

(ii) The three-element chain is an e-simple semilattice.

11.7. Proposition. Let G be a finitely generated e-simp-
le distributive igroupoid. Then exactly one of the following
five cases takes place:

(i) G is a finite semigroup with zero multiplication.
(11) G is a finite semigroup of left zeros.

(11i) G is a finite semigroup of right zeros.
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(iv) G is a finite semilattice.
(v) G is a finite gussigroup.

Proof. With respect to 11.2, we can assume that G is
idempotent, Denote Ly A, B and C the classes of left-zero se-
migroups, right-zero semigroups and semilattices, resp. Then
m,(G), mp(G) and mx(G) are e-invariant congruences of G and
we cen assume that nA(G) - mB(G) - nc(G) = GxG, Since G is
finitely generated, G possesses a non-trivial simple factor-
groupoid Q and we see that'Q is a finite quasigroup. Denote
by V the variety generated by Q. Then V is locally finite and
GeV, In particular, G is a finite quasigroup.
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