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POSITIVE SOLUTIONS OF SOME QUASI-LINEAR ELLIPTIC PROBLEMS

PAveL DrRABek

Abstract: In this paper we prove the existence of posi-
tive solution ue C2*({ ) of the quasi-linear elliptic prob-

lem
= ZD,(a; i(u(x))Du(x)) + a_(u(x))u(x) = g(x,u(x)), xe Q,;
{ 11,3 3 °
u(x) = 0, xe30,
where gt O < R ¥—> R 1is a sublinear function.

Key words: Quasi-linear elliptic equations, positive so-
lutions, Schauder fixed point theorem,

Classification: 35J65

1. Introduction. In this note we prove the existence of

positive solution ueca‘“(i_).) of the quasi-linear elliptic pro-

blem

) {- ZDi(aij(u(x))Dju(x)) + ao(u(x))u(x) = g(x,u(x)),xeQ,
u(x) = 0,x< 384,

where gt O =< R*—> R is a ¢l-tunction satisfying sublinear
condition (see Section 4).

The purpose of this paper is to obtain analogous results
as for semilinear elliptié problems with sublinear nonlineari-
ty (see e.g. Amann [2]).

The main idea is to use some results from the linear the-
ory of elliptic problems combined with the Schauder fixed
point theorem, the continuity of Némycki] ‘s operator in Holder
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spaces and the result of Kramer [9]. Boccardo [3) proved the
existence of a positive eigenfunction for a class of quasi-li-
near operators using a similar method but he was working in So-
bolev spaces.
Let 2c RY¥ be a bounded domain with smooth boundary AL

and satisfying ocondition
(S) there exists M >0 such that for every pair of points x,ye¢
e L. there exist points N TR YRR M 4 such that the
segments with endpoints z,,z, 4 (i=0,1,2,040 4n=1) are subsets
of O and

-1

L§4 | y-24,4) < Mix-yl.

Remark 1, PMPor details about domains satisfying condition
(S) see Kufner, John, Pudik [7). We need this condition to be
true imbedding ¢5*1(T ) & cE#*(TL) (see [7, Thm. 1.2.14]).

We suppose that real funotions 84, 50852 R — R satisty
the following assumptions:

a33(8) = ayy(8) YseR, ;
(2) xlgl?< Zaij(,)§igjé(5)§|2 v¢eR,Vs e R,
0<a (8) < o Yse R,

where o, 3,7 are some positive constants.

Moreover let
(3 a6 62(R), aye c'(R).

Assume that g: O ~RY"—> R 1s a C'—function. We put
X -{uccz""(ﬁ-); u =0 on30% with the nomm of czv“'(_(—i).

Y = '), 2 = C°*(Z) (see [7] for usual Hlder space no-
tation).
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2, Some suxiliary assertions. The purpose of this se.

tion is to prove some auxiliary results which we shall need
in the following sections.

Let weY be fixed. +#e shall denote

L(w)v = = ZDi(aij(w(x))de) + a (w(x))v,
Put &} (x) = agy(w(x)), ay(x) = a,(w(x)), x € {L . From (2)
it follows

a]y(x) = &f;(x Vxel,
. 2 N xed
@7 «lg?eZ el 0§, §54pIE1° YVee R, Vxel,
Oéa:(x).é'a" Vxe I_)_.,

where the positive constants o, {3. 7 are independent of welY.

Remerk 2, Using assumption (3) and the author ‘s result
[4, Thm 1), we obtain that a'i'de Y, ageZ for all weY. Henoe
we are able to apply the Schauder s theory and the 1LP-theo™
for the Dirichlet problem
L(wu=2£in OQ ,
) {

u =0 on 382,

fe 2, for each fixed we Y, Namely, the Dirichlet problem (4)
is uniquely solvable and satisfies the a priori estimates:
(5) ] u\\xe cilgl,,

(6) \\u\\wz'pm).e ol\f\\Lp(Q).

where the constant ¢>0 is independent of £c Z and we Y (see

Agmon, Douglis, Niremberg [1, Thm 7.3, 15.2]).

Remark 3. Let weY be fixed. We shall write L instead
of L(w) in this remark. Let us denote by j(m), resp. of'j(m).
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the positive eigenvalues of the eigenvalue problem with an in-

definite weight:
{ Lu = «m(x)u in {1,

(7
u=0on 35,
resp.
- «Au = I’m(x)u in Q ,
(8) {
u=0on 3,

where m is a C'-function in 51 , m#0. If m(x)>0 in Q,cQ,
meas {),>0, it is known (see e.g. de Figueiredo L[5, Prop.1,10])
that (7), resp. (8), has a sequence of such eigenvalues, with

a variational characterization. Moreover ,(m), resp. d;(m) .
is simple and the corresponding eigenfunctions are of the same
sign in £ . Lastly m<m in £ implies © (@) < “y (m), resp.
d'd(ﬁ) < d"j(m), and (u,j(m), resp. or:_](m), is a continuous func-
tion of m in the norm of LN/Z(D_) (see [5, Prop. 1.12A and

1.12B73).

Lemma 1, For each weY it is

(“y (m) €Locdy(m),(B+y/d (1)) S (m)].

Proof. Let us denote by uy, resp. vy, the first positive

eigenfunction of (7), resp. (8). From the variational charac-

terization of ,(m), d'.l (m) and integration by parts we obtain
fq(m [ m)ug (01 2ax = [ g (Owg (D ax = o f) 1Vuy ()| Zax =
z o0 dy(m) f m(x) |, (x)) 2ax.

On the other hand we obtain
dq(m [ m(ol vy (0 2ax < [ Tvy ()vy(x)ax 2B [, ) Vv (0] Pax +

+ ol v12ax e (B + /(1) Fym) [ m(x) vy (x)] 2ax
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and the lemma is proved. Q.E.D.
Let 0 &« @ <o) (m). We are interested in a priori esti-
mates of the solution u(w)e X of

(9)  Liwu(w(x) = gwn(x)u(w)(x) + £(x), x € 2,

where fe Z is given.

Lemma 2., There exigts a constant ¢ >0 independent of weY

and fe 2 guch that
(10) Nu(x)lg £eleh,.

Proof. Using Riesz-FPréchet representation theorem it is
possible to write the equation (9) in the operator form
(1) u- utu =%,

where T:Wl'z(_Q )-——)Wl'z(ﬂ.) is linear symmetric compact ope-
rator and « has a positive distance from the spectrum of T

(see Lemma 1), It follows from Teylor [8, Thm 6.4C) that

] = to ¥
Pl gy eonet TEh 2

with e constent independent of we Y end Te Wi'z(ﬂ.). Since ¥

is a representant of £, we obtain

(12) I u(wll < sl .
uw wl'zm) LZ(Q_)

Hence using Sobolev imbedding theorems (see [7]) the right
hand side of (9) is in LP(Q) for some p >2. Applying the es-
timate (6) and imbedding theorems we obtain that the right
hand side of (9) is in LP1(Q) for P> Ps Proceeding further
we obtain that the right hand side of (9) is in 2. Lastly, ap-

plying the estimate (5) and the inequality “f“Lz @ =

< const. | fllz we obtain
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Nu(wliy < entﬂz,

with a aonstant independent of we Y and fe 2. Q.E.D.

Remark 4. If we denote i (L(w) - (um)'1:Z—-—>x then
1"1f = u(w) for £ end u(w) from (9). Lemma 2 tells us that
UL'1\I 4 const. with a constant independent of weY, where

lIL"ll denotes the usual operator norm.

Lemma 3. Lﬁ
(13)  Llwyu(w, ) (x) = wm(x)u(w )(x) + £ (x) in il and
w,~>win ¥, £ —> f in Z. Then u(w,)—> u(w) in X, for
n—> 0.

Proof., Prom the assumption (3) and the author ‘s result
[4, Thm 2] we obtain

a‘id("n) —> ai;j(') in Y,a.o(wn)——> a.o(w) in Z,
Henoce

% °1j"’n’°;]' ——«)% aij(w)de in ¥,
a.o(wn)v'-»ao(w)v in 2

for each veX. Gonsequentiy
(14) L(wy)v—> L(w)v in Z

for each veX, Using (14), Remark 4 and denotation L' =

= (L(w,) - (.4.1:1)"1 we obtain
Nu(my) - umlly = h1g'e, - 17721y

1My, - ey ¢ Wi (e - DIy <
£oonat, (1D,(17') - L0, + U2, - 2)) —>o0.
Q'E.D.

Remark 5, There is proved in [4, Thm 2] that a neces-
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sary and sufficient condition for the continuity of Némycki] ‘s
operator 6‘13( « 1Y —Y, resp. & ( . ):1Z—>2Z, is (3). This
is the reason why using this method of the proof there is not
possible to weaken the condition (3).

Let mec1 ({1) be the weight function satisfying the assum-
ptions stated in Remark 3. We are ready, now, to prove the fol-

lowing useful assertion,

Lemma 4, Suppose that «,(m)>1 for all weY, feZ, £>0
in ©Q , Then the problem
{ L(v)v = m(x)v + £ in Q& ,

(15)
v=0o0n 30

has the solution ve€ X such that v>0 in ( and outward normal
derivative —g)—v)-<0 on O5L .

Proof. According to [5, Thm 1.14, 1.17], for each fixed
weY there exists the unique solution v(w)e X of the linear
problem
(157 { L(w)v(w) = m(x)v(w) + £ in Q,

v(w) = 0 on 30

suoch that v(w)> 0 in ) and —aav—v‘!)-<0 on 3l , We ghall de-
fine the operator S:Y—> X by the way S(w) = v(w), where v(w)
is the unique solution of (15).

Let us suppose that W, W in Y. Applying Lemma 3 we obtain
v(w,)—> v(w) in X, This means that S is continuous from Y in-
to X, According to [7, Thm 1.2.14, 1.5.10] we have the compact
imbedding X &G Y and hence the restriction § = S|X:X— X 18
completely continuous operator. Applying Lemms 2 we obtain the
existence of a sufficiently large ball in X centred at the
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origin which is mepped by §' into itself. Schauder fixed point
theorem implies the existence of at least one v& X such thet

S(v) = v, 1i.e. v 18 the solution of (15). Since v is also the
solution of (157) with w = v it is v>0 in O ,
ol . Q.E.D.

The following result is due to Boccardo [3, Thm 1].

ov
av<° on

Lemma 5. For each positive real number r, we can find a

positive eigenvalus ¢ with the corresponding positive eigen-
function ue X such that

L(u)u = in Q
(16) { e ’
u =0 on 9Q
end |lul 2 = X,
LE(0)
Remark 6.

More precisely, by a direct application of
[3, Thm 1] we obtain a positive eigenfunction ue Z. But under
our assumptions on the coefficients of the differential opera~
tor L Remark 2 immediately implies that ucX.

The following assertion will be very important in the

proof of our main existence theorem.

Lemma 6. There exists a constant k>0 (independent of
ueX end r>0) such that

\lu“xé kr,

where ue X, flull 7_ = r is the solution of the eigenvalue
problem (16).

Proof of this lemma is based on the bootstrap argument
used in the proof of Lemma 2 and the uniform estimates (5)

and (6) plaey the key role in proving this assertion.
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3. Subsolution, supersolution and the existence of the

solution

Definition. A function -‘-1-602,&(5_) is said to be a super-
solution of (1) if

L(w)uxg(x,u) in O,
uzo on 2% .
A function geczfi’(ﬁ) is said to be a subsolution of (1) if
L(uwuzg(x,u) in O,
u<0 on 30,

Let us formulate, now, the assertion which is proved in more

general setting in Kremer [9].

Lemma 7. Suppose u£iu (infl ) are sub- and super-soluti-
ons of (1). Then there exists at least one solution u(x) ¢
€ ¢2(1) ot (1) satisfying

u(x) €U(x)£u(x) in 2 .

Remark 7. The result of Kramer [9] is the generalization
of the well known result of Kazdan and Warner for semilinear

elliptic problems (see e.g. Fudik [61).

4., Existence of positive solutions. In this section we

shall prove the existence of a positive solution for quasili-
near elliptic problem (1) with sublineer nonlinearity g(x,s).
Let the function g satisfy the following conditions:
(17) There are constants g > 0, s > 0 such that
g(x,8)Z g, Vel , ¥YO<s<s,.
(18) There are continuous functions g, yc: L —> R, with

¢(x) 20 such that
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g(x,8) =g, (x)s + c(x) Yxe R, Vazo,

Theorem 4. Suppose that the function g satisfies (17)
and ‘182. Let

(19) d;(so)‘m.
(20) I gy >3 -

Then the Dirichlet prooiem (1) has a positive solution.

Remark 8. An analogous theorem for semilinear elliptiec

problems was firstly proved by Amann [2].

Proof of Theorem 1. Choose the C'~functions 8 _, S:0—

—> R such that ¢(x)>0,

(21) g(x,a)éﬁw(x)s + 8(x) Vxell , ¥szo,
&w(x°)>0 for some x & . and
le, - &, <€
o™ Sali/2 (g
for such emall € > O that the continuous dependence of o (m)
on the weight function m (see Remerk 3) would imply J (Elx) >
>1 . According to Lemma 1 it is @ (£5)>1 for all weY.

oC

Hence using Lemma 4 the problem
L{wu =8 _u+0in Q
(22) { ® ’

u =0 on 3Q

has the solution GeX and W>0 in £ , outward noimal derive-
tive —g—;‘-—;‘-<0 on 20 . Hence the expressions (21) and (22) show
that @ is a supersolution of (1).

The assumption (19) implies that «,(g,)<1 for all we¥,
Then according to Lemma 5 the eigenvalue prodblem
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L{uw)u = g u in
(23) { (a' (] ?
us=0on 3
has a positive eigenfunction ue€X corresponding to the eigen-
value &, <1 and llul , = rs According to Lemma 6 the number
L
r>0 can be chogen such small that u<s, and u<u in O .

Then using (17) we obtain
L(wu = ,8,u<g&(x,u)

which shows that u is a subsolution of (15), There are fulfil-
led all the assumptions of Lemma 7 and there exists a solution
u€X of the problem (1). Note that this solution is such that
u(x)zu(x)>0 for all x e & . Q.E.D.

Remark 9. Consider the eigenvalue problem
(24) { - ZDi(aij(u(x))Dju(x)) + aj(u(x))u(x) = Af(x,u(x)),
xell, u(x) =0, xecdl

where £: 3> RY—» R 1s a C'~function, and let us suppose that
£.(x) = 1in int HZ:8) ¢ () « 1im eup (Zu8)
s—> 0y 8 bt 8>+ s
are contimuous functions. Then if
(1) Io(x) = + oo (in particular if f(x,0)>0) and £, (x)«
<0, the problem (24) has a positive solution for all A > 03
(ii) Io(x)s +00 and f, (x°)>0 for some point xoe.ﬂ.,
the problem (24) has a positive solution for all

0 <A o(,d;(ﬂ
< .
xF Lo ™®?
(111) 0<e £ (x)<+ o0 in T and £, (x)£0, the pro-
blem (24) has a positive solution for all
B (1) +
2 1( 1"
X
xelL ©
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(iv) 0 <& < fo(x)<+ oo in & and f, (xo)>0 for some

x, € O, the problem (24) has a solution for all

1]

[2]

£3]

[4]

[5]

[6]

[n

[8]

[9]

The proof of (i) - (iv) follows immediately from Theorem 1.
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