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COMMENTÂTiONES M A T H E M A T I C A E U N I V E R S I T A T I S C A R O L I N A E 

24,2(1983) 

ON THE RING OF THE VARIETY OF ALGEBRAS OVER A RING 

PAVOL ZLATOS 

Abstract: Using the tools of the commutator theory we 
can assign to every congruence modular variety V of univers­
al algebras a ring R(V)f reducing the study of many properti­
es of algebras in V to the study of modules over R(V)# In 
the present paper R(V) is computed for the varieties of all 
algebras and all commutative algebras over a commutative ring 
A. 

Key words: Congruence modular variety, commutatort ring 
of a variety, algebra over a ring. 

Classification: Primary 08B10f 13C99f 16A06 

Secondary 08A30, 16.A89 

In [2J f for every congruence modular variety V of univer­

sal algebras, a ring R(V) is constructed in such a way that 

each block of an Abelian congruence of any algebra in V natu­

rally becomes a module over R(V)# In particular, each Abelian 

algebra in V becomes a module over R(V). (All rings and algeb­

ras over rings are assumed to be associative* Throughout the 

whole paper - except the last section - a ring always means 

a ring with unit 1 which has to be preserved by ring homomor-

phismsf a module over a ring A is always a left, unitary mo­

dule over A and an algebra over a commutative ring A is al­

ways a left, unitary algebra over A.) 

Further, V is congruence distributive iff R(V) is tri-
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vial, I.e. R(V) can serve as a measure of nondistributivity of 

V. The construction of R(V) preserves the equivalence of vari­

eties as well, i.e. if V and W are equivalent varieties (equi­

valent means "having the same terms" - see e.g.13] 9Appendix 3) 

then the ringsR(V) and R(W) are isomorphic. This fact will be 

employed quite often in the present paper. 

For the variety Mod A of modules over a ring A9 one obtains 

the expected isomorphism R(Mod A)^A as immediately follows by 

an easy computation from the definition of R(V). In any variety 

V the Abelian algebras constitute a subvariety Va, R(Va) is in 

general a homomorphic image of R(V) and the variety Mod R(Va) is 

equivalent to the variety obtained from Va by picking one element 

a': 0 in each algebra in Va. This enables us to reduce many questi­

ons on Abelian varieties to the study of varieties of modules 

(see 12" for applications as well as for all the notions carry­

ing the predicate "Abelian"). 

Prom the fact that R(Mod k)s£A naturally arises the questi­

on what does R(V) look like for the varieties Alg A and CAlg A of 

all algebras and all commutative algebras, respectively9 over a 

commutative ring A. This question is answered in the following 

Theorem. Let A be a commutative ring. Then 

(i) R(CAlg A)afAtxl and 

(ii) R(Alg A)S-AtxfyJ. 

The authors formulated the following problem in [2]: 

"Compute R(Groups) and R(Commutative rings)." 

The answer to the second question is a part of the Corolla­

ry to the Theorem, since the variety of oommutative rings 
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is equivalent to CAlg Z and so does the variety of all rings 

to Alg Z (Z is the ring of integers). 

Corollary, (i) R(Commutative rings)«-Z[x) end 

(ii) R(Rings) S 2Mxf j} . 

The tixpt question of the problem was answered by B. Si-

vak 161 who computed R(V) for a large class of varieties of 

groups. In particular, he proved R(Groups) « Z[xfx 3. 

1. Preliminaries. We follow the terminology and denota­

tion of [2Jf cf. also [31. For fundamentals concerning the 

commutator theory either 12] or L4V can serve as the most fa­

cile guide. Instead of repeating the general definition of the 

ring R(V) of a congruence modular variety Vf we are going to 

describe its construction only for V s possessing terms +f -

and 0 of usual arities defining the group structure on every 

member of V. This special case enables us to give a slightly 

easier definition, nevertheless, sufficient for our purpose. 

The isomorphism with the product of the original definition 

in [2J can be easily verified. 

Let P(x,y) be the free algebra over two generators x and 

y in V. Cg(x,y) is the principal congruence identifying x and 

yf and P(V) is the coset of 0 in Cg(x,y)f i.e. P(V) consists 

of all binary terms r satisfying the identity r(x,x) - 0 in 

V. Let us introduce a binary operation O on P(V) by 

r • s - r(s + yfy) 

(The noncommon symbol for the multiplication O is used to 

distinguish it from the ordinary ring multiplication.) One 
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can easily verify that -0 is well definedf associative, has 

e m x - y as unit and satisfies the right distributive law 

with respect to the addition +. Now let K be the restriction 

of the commutator congruence [Cg(xfy)f Cg(xfy)J to the set 

P(V). The fact that K preserves + and - is trivial. From the 

properties of the commutator (see [23) it follows that K pre­

serves 0 , too. Hence, K is a congruence of ̂ P(V)$ +f -f 0f 

0- t e> . We refer to [23 again for the proof that the additi­

ve group of the quotient P(V)/K is already Abelian and the left 

distributive law is also satisfied. Hence, by factorization of 

P(V) modulo K a ring R(V) -<R(V), +f -f 0f 0 f e> together 

with the canonical homomorphism p«P(V)—> R(V) is obtained. 

Let A be a commutative ring. A[x3 is its polynomial ring 

in one variable xf A[xfy3 is its polynomial ring in two commut­

ing variables x and yf i.e. A[xfy3 consists of all formal fini­

te sums of the form *S a(if:j).x .y«* where a(if-j)cA. A<xfy> de­

notes the polynomial ring over A in two noncommuting variables 

x and yf i.e. A<xfy> consists of all formal finite sums of the 

form !Sa(w).wf where a(w) € A and w runs over the set -fxfyj* 

of all finite words in the two-element alphabet x, y. The cru­

cial fact is that the free commutative A-algebra with two gene­

rators is isomorphic to A[xfy] and the free A-algebra with two 

generators is isomorphic to A<xfy>. 

We presuppose some standard knowledge on tensor products 

of modules and algebras over a commutative ring (see e.g. 1 1 } ) . 

The tensor product sign ® always denotes the tensor product 

over a fixed commutative ring A. The omitting of the index A 

in ® A hardly can cause any confusion. We summarize all the 

facts needed in the following 
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Lemma. Let A be a commutative ring. 

(a) Atx]<g> A[y] £- A[xfy]. 

(b) A[xJ is frte as an A-modult over -Cx}* and so is 

A<xfy> over -Cx,y$* hence both art A-flat. 

(c) Let i:M#—> Mf j*H*—• H bt injtotivt homomorphisms 

of A-modulesf with Mf H
# flat. Then i ® 3*M'e> H#-> 

— > M ® H is infective, too. 

(d) Let f:M-—>Mwf g:H—>H
W bt sur^totivt homomorphisms 

of A-modules. 

(i) f ® g:M @ H—>MW ® Htt is surjeotivef too, and 

its kernel is generated by all elements u 0 v e 

G M <S> N such that u € Ker f or v e Ker g. 

(ii) If both Mf H art A-flat then Ktr f ® g « 

=- Ker f ® H + M © Ker g since both summands 

can be considered as subnodules of M ® H. 

The Ltmraa will be employed in the next section without any ex­

plicit referring to it. 

2. Proof of the result. The idea of the proof consists 

in producing some homomorphisms between Abelian groups, some 

of thtm equipped with a multiplication O possessing a unit 

eltmtnt t and in additional definition of <> on the remaining 

ones in such a way that tht considered homomorphisms will pre­

serve both 0 and e. Then by factorization one obtains the de­

sired isomorphisms. 

Though (i) oan be dtductd by an easy reasoning as a co­

rollary to tht proof of (ii)f wt prtfer to give first tht ine­

rt transparent proof of (i) separately, and only after it mo­

dify its idea to tht raort gtntral cast (ii). 
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Proof of ( i ) t The free oommutative A-algebra with two 

generators i s isomorphic to A[xfy3# The congruence Cg(xfy) i s 

represented by the principal ideal (x - y) which serves also 

as a carrier of P(Calg A)f and the commutator tCg(xfy) fCg(xfy)3 

corresponds to the principal ideal ( (x - y ) . ( x - y ) ) . The map­

ping ftAtxfyj.-~> P(CAlg A) given by f (r) - r . (x - y) i s a ho-

momorphism of Abelian groups. Let us define <> on Atxfy3 by 

r ^ 0 - r ( f (0) + y f y ) . 0 . 

Then ^ is a binary operation on A[x,y] with unit e • 1 and 

both <> and e are preserved by f• The composition p«f is a 

surjective homomorphism of Abelian groups preserving 0 and 

e with kernel (x - y). Howf the group endomorphioa r h-» r(xfx) 

of Atxfy3 has the same kernel and its range is Afxl. But 0 

coincide© with the common multiplication on Atx3 and both <> 

and e are preserved by this endomorphism. This completes the 

proof (see Diagram 1). 

Atxfy3 ? -->. P(CAlg A) 

i j -
Atx3 ^ R(CAlg A) 

Diagram 1. 

Proof of ( i i ) s The free algebra on two generators over 

A i s isomorphic to A<xfy>. The mapping g*A<xfy>x A<x fy>—• 

—-> P(Alg A) given by g (r f e ) « r . ( x - y ) .0 i s A-bllinear hen­

ce inducing a group homomorphiem fiA<xfy> © A<xfy>—>P(Alg A). 

Let us define O on A<xfy> <g> A<xfy> by extenoion of 

r ® s O t ® u - r(g( t f u) + y f y)»t ® u.o(g(t f u) + y # y ) 

forced by the right distributive law and by 
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r < g > s O ( t ® u + v ® w ) m 

r (g ( t f u) + g(v,w) + y f y ) . t ® u . s (g ( t f u) + g(vfw) + y fy) 

+ r (g ( t f u) + g(vfw) + y fy).v€> w.s (g ( t fu) + g(vfw) + y f y ) . 

<> i s again a binary operation on A<xfy> ® A<xfy> with unit 

e « 1 and both O and e are preserved by f. The composition 

p o f i s a surjective homomorphism of Abelian groups preserv­

ing O and e as wel l . I t s kernel i s the ideal (x - y) <3> 

€> A<xfy> + A<xfy> ® (x - y) i . e . the same as the kernel of 

the group endoraorphism of A<xfy> <g> A<xfy> given by the exten­

sion of r <g> s i—> r(x fx) ® s (y ,y ) . I t s range i s ACx3 ® ACy3 con­

sidered as a subalgebra of A<xfy> <g> A<xfy>. But O ooineides 

with the common multip l ication on ACx3 ® ACyJ and i s preser­

ved by the endomorphism as well as e. The isomorphism ACx3 <2> 

<g> Alyl -== ACxfy3 completes the proof (see Diagram 2 ) . 

A<xfy> 7< A<xfy> 

\lr ^ ^ - C _ 
A<xfy>€> A<x,y> — = ^ . P(Alg A) 

ALx3 e Aty]^^=ALxfy3=^=,R(Alg A) 

Diagram 2. 

Remark. One can ask whether (ii) cannot be proved in an 

essentially simpler manner avoiding the use of tensor products, 

since neither the formulation of the problem nor the result 

contain a reference to it. 

3. Filling some gaps. In this last section we are going 

to acquit our debt consisting in ignoring of some classes of 
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rings» modules and algebras. In most cases we reduce them to 

the preTious results. The facts stated below (except (C)) fol­

low either from the observation that equivalent varieties have 

isomorphic rings or from an easy computation (including ( O ) 

modifying the proof of the Theorem if necessary. 

(*) Bimodulea. Let A and B be two rings (with unit). 

The Tariety Mod A-B of (unitary) A-lef t B-right bimodules is 

equivalent to Mod A (H>ZB, hence R(Mod A-B) s£ A €>ZB. 

(B) Algebras over noncommutative rings* Let A be a ring 

(with unit). Let C be its largest commutative quotient. (One 

has to faotorize A modulo the ideal generated by all elements 

of the form a.b - b.a in A.) The varieties Alg A and Alg C 

are equivalent, hence R(Alg A) -= C[xty3. Similarly in the ca­

se of commutative algebras over A one obtains R(CAlg) -= Cfx3« 

(C) Algebras without unit. Let A be a oommutatiTe ring 

with unit. Let Alg'A (CAlgA) be the Tariety of all (oommuta­

tiTe) unitary algebras oTer A in general without unit. Then 

R(Alg'A) ££ R(Alg A) -̂  ACxty] and R(CAlg'A) fit R(CAlg A) & A M . 

The isomorphism indicated follows from the fact that the prin­

cipal ideal (x - y) in A<xty> (ACx.yJ ) is contained in the ide­

al (x) 4* (y) the last being isomorphic to the free algebra over 

two generators in Alg'A (CAlg'A). Details are left to the rea­

der. 

(D) Modules over rings without unit. Let A « <A|+t-t0t.> 

be a ring (in general without unit) and Md A is the variety of 

(in general nonunitary) modules over A. Let Z*A be the exten-
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sion of A to a ring with unit. The additive group structure 

is defined componentwise and <1,0> serves as a unit for multi­

plication given by 

<fra,a>.<n,b> « <mn,mb + na + a.b> 

(see e.g. I5J). Again the equivalence of varieties Md A and 

Mod Z?<A of unitary modules over ZxA implies the ring isomor­

phism R(Md A) = ZxA. This shows that the transition from Md A 

to Mod R(Md A) presents the effect of unitarization, 

(E) Algebras over rings without unit. Similarly as in 

the previous case the variety Ag A of (in general nonunitary) 

algebras over A is equivalent to the variety Alg ZxA of uni­

tary algebras over ZxA. The same argument works in the commu­

tative oase. Hence R(CAg A) £ (ZxA)[x] and R(Ag A)£ (Zx A)£x0y.l, 

Some further results can be obtained combining (A) - (E). 
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