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C O M M E N T Â T i O N E S H A T H E M A T I C A E U N I V E R S I T A T I S C A R O U N A E 

24,2(1983) 

UNIFORM WEIGHT OF UNIFORM QUOTIENTS 

MIROSLAV Hl)§EK,JAN PEUNT 

Abstract: Uniform weight of uniform quotients is estimated and 
it is shown that the estimation cannot be improved.In particular, 
examples of nonmetrizable uniform quotients of metric spaces are 
given. 

Key-words: uniform space,quotient,uniform weight,metric space 

Classification: 54E15 , 54C10 

The uniform weight of a uniform space is the smallest cardi

nality of a base for uniform covers or of a base for uniform vi

cinities of diagonal.We shall look how the uniform weight behaves 

by uniform quotients.This question reduces to investigation of 

quotients of metric spaces.Some cases when a uniform quotient of 

a metric space is metrizable as a uniform space are treated e.g. 

in CC3,CHi],CM].An example that a uniform quotient of a metric 

space is not pseudometrizable is given in CM],however,we were not 

able to check all the details.The similar examples presented in 

this paper are simple and the spaces used have additional nice 

properties:in the first example,the local character of the quoti

ent space is uncountable and the domain space is discrete,in the 

second one the quotient map is at most 2 to 1 and the uniform 

quotient is also a topological quotient,hence,it is metrizable 

as a topological space. 

Ordinal number is understood here as the set of smaller 

ordinals,initial ordinals are cardinals (thus n+1 is the set 

{0,1,...,n),but because of better understanding we shall denote 
— .4 that set by n).By B we denote the set of all mappings on A into B, 
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Thus % is the set of all mappings on U into « and we shall 
endowed it with the pointwise order: f<g if fn&gn for all nc*». 
The cofr*») is the smallest cardinality of a cofinal set in *« 

and it is consistent with ZFC that cof(w«) equals to any cardinal 

which is not gre ter than 2* and has uncountable cofinality,£He3. 
Uniform spaces are given by means of the set of uniform 

covers,and if u is a uniformity then E(u) denotes the corres

ponding set of uniform vicinities of the diagonal in x*X.A pseudo-
metric d on X is called uniformly continuous on (X,u) if the 

uniformity Induced by d is smaller than u (i.e.,d is a uniformly 

continuous function on (X,u)*(X»u)). 

In the sequel,qt(X,u)m^(I,v) is a uniform quotient mapping 

between uniform spaces,i.e.,v is the biggest uniformity on X 
making qi(X,u)-~+(X,v) uniformly continuous.The uniformity v may 
be described by means of uniformly continuous pseudometries d 
on (I,v) (d»(q*q) is uniformly continuous on (X,u)),or as the 

set of covers of Y,initiating a normal sequence in the image 
q(u).We shall describe the quotient in a way more convenient for 

our purposes,using the technique described e.g. in [DRJ. 

For r>0 and a uniformly continuous pseudometrlc d on (X,u) 
we denote Md(r)*{(qa»qb)\a,b€X3d(a,b)<l/r}t if / is an increasing 

mapping «~»«-(0),then Md(f)*v{Md(f(pO))»Wd(/(pl))•...*Md(f(pn))I 
nc«,p is a permutation on n} (sometimes,the index d will be omitted). 

THEOREH. .The collection (#,(/) |/cw(w-(0)) ie inoreaaing,d ia a 

uniformly continuous paeudometrio on (X,u)} ia a base of (X3v). 

Proof. .Get KcE(i?) and take a sequence (K)cE(t>) such that 
V*VnQ*VDi*••••yDrt *or each nc« and each permutation p on n (e.g. 
take a uniformly continuous pseudometrlc e on (Y,v) such that 

(a,I>)cK provided «(a,J>)<l and define Vn*{(a,b) \e(a3b)<2~n~1}). 
Thus V*Md(f),where d is a uniformly continuous pseudometrlc on 
(X,u) such that (qa,qb)€V provided d(a,b)<l,and / is an increasing 

map on * into «-(0) such that tfj(/n)cKn.It remains to show that 

the collection {MAf)} is a base for a uniformity?the only non-

trivial part is to show that for each d,f there are e,g such that 

Md(f)*M^(g)*M9(g).To do that,it suffices to put e*d,gn*f(2n+2) x 

Md(g(pO))*... Md(g(pn))*Md(g(pQ))*...*Mj(g(pn)) c Md(ftt(p0)+2)* 
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Hd(f(2(pn)+2))*Md(f(2(pO)+l))*...*Md(f(2(pn)+D). 

COROLLARY 1. If the uniform weight of (Xtu) is Ktthen the uniform 
weight of its quotient (Itv) ia leae or equal to K-cof(ww). 

Proof. Clearly,if f<g then M^(f)^MAg).It e is a uniformly con

tinuous pseudometric on a pseudometric space (X ,d ) , then Mg(f)* 
M,(g) for some convenient g (since for each n there exists m 

such that d(atb)<l/m implies e(atb)<l/n). 

COROLLARY 2. Aeeumo that X ia a uniform epaoe with uniform weight 
not emailer than cof (**»). 1/ X has a monotone baeetthen any uni
form quotient of X hae a monotone base,too. 

Proof. A uniform space is said to admit cardinal tc if tc-many 

uniform covers have a common uniform refinement.A uniform space 

X has a monotone base iff X admits any cardinal smaller than 

its uniform weight.Since every quotient of X admits the cardi

nals admitted by X,our assertion follows from Corollary 1. 

In fact,we have proved more,namely that if X is the space 

from Corollary 2,then its uniform quotient is either uniformly 
discrete or has the same uniform weight as X has. 

We shall show now that the estimation given in Corollary 1 

of the uniform weight of (Itv) cannot be improved,i.e.that a 

uniform quotient of a metric space has uniform weight equal to 

EXAMPLE 1. There is a complete countable metric space X which 

ie topologioally discrete and has a uniform quotient I such that 

every point of I has local character equal to eof(%). 

Denote X»(0)uu{n(«-(O)) |nc«) ,X*a*X ,q the projection X onto X. 

The metric d on X is defined as follows (by a=,y*n for y€ (a>-(0)) 
Jk+1 we describe the situation when 3c («~(0)),3 extends y and 

3(fc+l)««,by z*0*n we mean sc («i-(Q)) ,3(0)=n) 

( l / n i f y^-y.*ntx~*Qtx*i 
d((xity )t(x2$y2))*d((x2ty )t(x ty±))4 2 1 2 1 

u otherwise. 

The metric d is complete and induces the discrete opology on X 

On X,we take the quotient uniformity along qs(Xtd)-~ \For yeX 

and nc«-(0) ,£/(n)(|/) = {s€X|either &*y*k and k>n or yss'V and k>n) 

hence M(f)(0)*{z€l Uc'<(w-(0)) ,s(n) >f(n) for each nsfc-fcc. . . 
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Suppose now that {M(f)l0)\f€F} la a local base at 0 in X and 

|l*|<cof(*'fti).Then there is g€U(»-(0)) which is not bounded from 

above by any /cF.We can find f€F such that M(g)(0)*M(f)(0) and 
ST 

and new with gn>fn.Take now such a *c («-(0)) that M(k)*fk+l 
for all fca»nithen M€M(f)(0)-M(g)(0),which is a contradiction. 

Indeed,if M€M(g)(0),then there Is {u.}^eY such that u=0,uk*u 
and (uj,«jaf.)c.¥(0r(pO) for -t<fc.For each /sn there exists izk 
such that Mi+i*ui*MtJ)#hence there exists an injection • :>*"—*£ 
with *(j)>g(+j).Since both f,g are increasing and 0w*xn,we have 

+n<n,consequently $i>.n for some i<n,but then *i*fi+l>g(+i)>fn, 

hence fi>fn,which is not possible.The same procedure works for 

other points ycJ. 

The map q from Example 1 cannot be expected to be finite-
to-one and the space X cannot be the topological quotient of X. 
We shall now construct another example,where the map q is at 
most 2 to 1 and is also the topological quotient,but the cardi

nality of X is uncountable.lt follows from one result of arhan-
gelskij in [A3 that the quotient space X is metrlzable as a to
pological space. 

EXAMPLE 2. There ie at moat 2 to I mapping q defined on a Baire 

space D* euoh that uniform weight of the quotient along q is 

cof( »).The quotient epaoe ie topologioally metritable. 

Let D be a cofinal set in **(«-(0)) endowed with the uniformly 
discrete uniformity and X-Du" be endowed with the Baire metric 

Choose a countable subset (o } in D and for every /e0,n««, 

defin. an.bn
ftXi , ± f U l 

an(i)'(f 1£ Ui bn(i)'K. if Kiifn 
' lo if i>l * S n 

°2n ^ 2 n + 1 if i>fn . 
The quotient map q:X—+l is defined by means of the equivalence: 

fffl qa*qb if either a*b or there is /€0,nc« such that either a*a~ , 
b*b* or a*bn

f,b*an
f
¥l. Since M(n)*{(a,b)€X*Y\ there are x,y€X with 

qx*a,qy*b,x^*y^ for all £sn},the pair (qaisqaZ) always belongs 

to M(f). 
Suppose that the uniform quotient I of X has a base {M(f)\f€F} 
of cardinality less than cof(*«) and take g€*m such that g<f for 
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no /eF.We may suppose that gO and all /0 for /eF are bigger 
than 1.There is some /eF such that M(g)*M(f) and ne«-(0) such 

that #n>/n.We shall show that (qa^qa1^ )/tM(g),which contradicts 
n+1 the previous facts.If (qafiqa~ )ctt(£),then there are points 

u.ejf for i*k and a permutation p on k such that "0S<*£,«^S(-J # 
(<?u. ,<yu. 1)elf(g(pt)) for all i<k. Since grO>l,for every tsn+l 
there is •ink such that qu..*qa\ and the mapping •:n+l-*£' pre-

•t / 

serves ordering;moreover,for every tin there must be a tyi such 
that +i*tyi<$(i+l) and gptyizfi (since (qu..,qu.,.^^)^(qaL

f,qa\ )e 

e .V(g-(p^t ) )» i¥(^(p( l+^£)) )» . . .*Af(f l r (p(^( t+l ) - l ) ) ) ) but that'is 

impossible because there is at most n-1 points in £ in which g 
has value less or equal to fn. 

At the end we would like to add a remark concerning the 

behaviour of uniform pseudoweight by quotients.Similarly as 

pseudocharacter in topological spaces,uniform pseudoweight of 

a uniform space (X,u) is the least cardinality ic for which there 

exists vcu with IVI=K and such that the meet of v coincides with 
that of u - for separated spaces it means that nE(i>) is the 

diagonal.We shall now provide an example showing that there is 

no simple connection between uniform pseudowelghts of a space 

and its quotient. 

EXAMPLE 3. For eaoh cardinal K there i§ a uniform quotient 
q:X-~+X aueh that X ha8 countable uniform paeudocharacter and 
uniform paeudoeharaoter of X ie not amaller than K. 

Let K be an infinite regular cardinal and Y be the uniform space 
with the underlying set K*2 and with the base of uniform covers 

{(y)|j/e7}u{((a»0)>(a,l))|a>.3} for Seic. 

Uniform pseudoweight of J is ic.We shall show that X is a uniform 
quotient of a space having countable pseudoweight. 

For each cofinal set S in K we may find a monotone sequence {$ } 
such that each S is cofinal in S,nS =0.Let Xc be the uniform 

n n o 

space with the same underlying set as X has and with the base 
of uniform covers 

{(y)\y€X}v{((a>0)*(a*l))\a€Sn>a>&} for {Beic.neu,. 

Uniform pseudoweight of X~ is a,and the uniformity of X is the 
biggest uniformity contained in the uniformities of the above 

spaces Af̂ .Thus X is a uniform quotient of the sum of spaces X„. 

339 



R E F E R E N C E S 

CA] Arhangelskij A.V.: The conditions for the preservation of 
metrizability in quotient mappings»(Russian),Doklady 
Akad.Nauk SSSR(164(1965)9-12 

LCl Cech E.: Topological spaces (revised edition by Z.Frolik, 
M.KatStov),Academia Prague 1966 

[DR3 Roelcke w.,Dierolf S.: Uniform structures on topological 
groups and their quotients, McGraw-Hill Co.New York 
1981 

[He] Hechler S.H.: On the existence of certain cofinal subsets 
of ***, Proc.Symp.Pure Math. 13.11. Los Angeles 1967 
Amer.Math.Soc. Providence 1974,155-173 

CHi] Himmelberg C.J.: Quotient uniformities and uniformly 
pseodoopen maps,Bull.Inst.Math.Acad.Sinica 2(1974) 
357-369 

Cм] Marxen D.: Uniform quotients of metric spaces,Fund.Math. 
108(1980)67-75 

Mathematical Institute 
Charles University 
Sokolovská 83 
18600 Prague 
Czechoslovakia 

Mathematical Institute 
Czechoslovak Academy of Sciences 
Žitná 25 
11567 Prague 
Czechoslovakia 

(Oblátům 7.4. 1983) 

340 


		webmaster@dml.cz
	2012-04-28T09:14:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




