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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,2(1983)

SINGULAR SETS AND NUMBER OF SOLUTIONS OF NONLINEAR
BOUNDARY VALUE PROBLEMS

pAvoL QUITTNER

Abstract: The operator equation F(u)=f connected with the
Dirichlet problem

-Au + g(u) = £ in €2
{ u=20 on 9
is investigated. It is proved (under some assumptions) that the
singular sets S = {f; (Jue¥F(£)) Mu) is not sur;]ective} and
F"(S) are nowhere dense and that the number of elements of
FYf) is finite, odd and locally constant for f@S. Further
there are shown assumptions which guarantee that there exist
right-hand sides f such that card F(£) = 1.

(0.1)

Key words: Fredholm map of index zero, proper, eigenvalue.
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1. NOTATICN AND FRELIMINARIES
Ye shall denote by R the set of all real numbers, by [‘=(“~x
the Lebesgue measure in RE. Por q=(q1,..',qk)€Rk we define
K
lal =zlqil .
i1
Let (X, ll*ll ) be a Banach space, let y€X, ME€R. Then

By(y) = {xeX; lIx-yll =m}. .
Throughout the paper let £0 be a bounded domain in R (N=1)
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with the Lipschitz boundary (see [1] or [3]). Denote by (X, li-Wi)
the Sobolev space Wi *(f) with the norm induced by the scalar
product

N
- & .
(u,v) ,{ Z ml(x)%(x)dx
Purther denote by fl-ll, the norm in ().
We shall write briefly Jfh instead of ‘r{ h(x)ax .

The eigenvalues Rk and the eigenfunctions v, of the
Dirichlet problem for the operator A on £ have the following

properties:
(1c1) "Avk = akvk in -Q
V=0 on 200 ,
(1.2) o<a1<325334...,
(1-3) ak—-b o0
(1.4)  {v%. } is an orthonormal basis in X ,
(1.5) v, are real analytic functions ,
(1.6) v4>0 in Q2.

Definition 1. Let X,Y be Banach spaces, A: X—Y a
continuous linear mapping, F: X—>Y a (nonlinear) operator
of the class C'.

The mapping A is said to be a Fredholm mapping of index O
if Im A is closed and dim Ker A = codim Im A < <o,

The operator F is said to be a Fredholm map of index O if
F'(x) is a linear Fredholm mapping of index O for each xe€X.

The operator F is said to be proper if F X K) is compact

whenever K<Y is compact.

Proposition 1. ILet X,Y be real Banach spaces, let F: X—» Y
be a c1 proper Fredholm map of index O. Then the set
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o={yeY; P’(x) is surjective for each xeF *(y)} is a
dense open subset of Y and for every y€ (? the set P"(y)
is finite and its cardinal is locally constant on .

Proof. See [2] and [6].

The following proposition can be easily proved by induction.

Proposition 2. ILet Nc RY be a nonempty domain, let
v:i LL->R be a real analytic function. Denote

M={xef; v(x)=0} . Then either Gy(M)=0 or M =M.

2. FORMULATION OF THE PROBLEM

An element u€X is the weak solution of (0.1) if

(2.1) fgg—‘;ig—:i + fg(u)v =ffv

holds for each veX.

We shall suppose that g: R—R is a continuous function

satisfying (for N=2) the condition

(2.2) le(t)] = c(1+1t1%) ,
where ¢ and 2@ are positive constants, d€(N-2)< N+2 .
Using the imbedding theorems (see [1,3]) and the continuity
of the operator of Nemyckij (see [ 8]) we get that the mapping
vr»> [g(u)v is a continuous linear functional on X. By the
Riesz theorem it can be represented by an element G(u)eX ,
ice.  (G(uw),v) = Sfelwv for each veX.
Similarly for f€W' Q) (= the dual space to X) we find
a representative feX; (f,v) = ffv for each veX.

In what follows we deal only with 'f (as an element of X) so
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that we shall write only f instead of T.
Clearly, the problem (2.1) is equivalent to the eguation
(2.3) Flu) = ,

where the operator F: X-»X is defined by F(u)= u+G(u) .

3. PROPERTIES OF OPERATCR F

Using the imbedding theorems and the continuity of the

operator of Nemyckij it can be proved the following assertion.

lemma 1. Let i be a natural number, let geci(n) and
let (for N=2)
(z.1) 1eD)] = c(+151%) ,
shiere €20 and (K+i)(N-2)<N+2 .

“her G 1is a compact operator of the class ¢t and

(Gd’(u)(u.l,...,ui),V) = fgd’(u)u1...uiv .

Corollary. Let the assumptions of Lemma 1 be fulfilied.
“.en T is a Fredholm map of index O.

Troof. F’(u) is a compact perturbation of the identity for
11y u€eX.
Lemma 2. Let 1liminf E@)-—R, . Then F is coercive.
. Wi+

Troof, There exist €>0 (€<3d) and K>O0 such that

i

\
ﬁiL > -3+ for It|> K. Since lg(t)l£ M on {-K,K), we get

Jhu) = Nul®+ Sewu = ull*+ Seu + fg(u)u =
lul<K lulak

=t - K@) + (-2+€) [u? > %1"“"1' K@),

v P ig coercive.
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Lemma 3. Let the assumptions of Lemmas 1 and 2 be fulfilled.
Then F is proper.

Proof. Let KcX be compact. Choose a seguence {un}QF"(K).
Since F is coercive, {un} is bounded and we may assume

G(un) — h. Further F(un) €X so that we may assume F(un)—’ f.

Then w = F(uﬂ)-G(un) ~» f-h , i.e. F~YK) is relatively

compact. F~!(K) is closed, since F is continuous.

In case thet FeC'(X) we shall denote
B = {ueX; F’(u) is not surjective}, S = F(B), (= X-S.

The elements of the set @ are called regular values of F.

Construction. Iet g satisfy the assumptions of Lemma 1,

let g’(t)>-A,,, for each +€R and let ‘ﬁ.mini’ 55t-'91>-;(,M .
-» o0

Put X = {(ueX; ulv; for i=1,...,k} and denote P: X-»X

the orthogonal projection. Let us consider the problem

~

(3.2) U+ m(ﬁ+§ieivi) =1,

~ o~ ~ ~ .
where 8; are fixed real numbers, f€X and ueX is an unlnown.

Demote  F(W) = Fe(¥+Fe,v) , F(@) = Wi .
Then G: ;-’X is a compact operator of the class Ci and
similarly as for P, we get that F: ¥—»X isa proper Fredholm
map of index O. The set B ={%e%; F/(§) is not surjective }
is empty, since for u,ve€X, ¥#0 we have
(F/(W)%,%) > 151*- 3, [F2 =0 .
3y [5] we get that ¥: X—»X is a global diffeomorphism so that
the solution U of (3.2) can be written in the form

q = h(s1,...,sk,?)

/here h is of the class ¢ (ty ibe implicit function theor=r
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and for fixed BireeesBy h is a diffeomorphism of X onto X.
~ ~ Rk

Thus the problem F(u)=f (for u= u+£nivi, f= £+Ztivi)
i=4 I=q

is equivalent to the problem

{ PF(u) = PL
(F(“)’vi) = (f'vi) i=1,..4yk
or
(3.3) { A= h(e.‘,...,sk,'f)
ti=Fi(e1,....sk) i=1,...,k

where

Fi(Byp000ymy) = Fi(av...,ek,f) =

=8, + (G(j%sjvj-&- h(s1,...,sk,§)),vi) .

Further

ueB & det(?—ﬂé—):c .

In what follows we shall observe the notation introduced above.

4. THE STRUCTURE OF THE SOLUTION SET FOR THE COERCIVE
OPERATCR F

Theorem 1. Iet gec1(R), liminf *53§:-§l>-;\‘l and let (for N=2)
It > co

<

lg’(t)] = c(1+1t1%), where «= 0, (o¢+1)(N-2)<N+2 .

(i) Then © is a dense open subset of X, for every f € (O the
set F~Y(f) is finite, its number of elements is 0dd and
locally constant.

(i1) If US© is a domain, then F~U) = Gyu...UG,, where
Gy (i=1y...,k) are pairwise disjoint domains, F(Gi) =T and
card(F(£,)nG,) = card(¥(£,)NG;) for any f,,f,€U.
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If U is simply connected, then I'/Gi is a homeomorphism.

Proof.
(i) According to Proposition 1, Lemmas 1,2 and 3 it remains
to prove that oard FYf) is odd for f€ O,

Choose f€©, For Y e€<0,1) we define
Fy: X—>X: uv> u +»G(u). Analogously as in Lemma 2 we get
that there exist positive constants ¢ and € such that
(Fy(u),u) =Slull*~ ¢ for each ve<0,1? and ueX.
Consequently, there exists P >Ufll such that F"(f)SBP(O)
and f¢ F,(aBP(O)) for any v € <£0,1> . By the homotopy
invariance property of the Leray-Schauder degree we get
1= deg(Fo,BP(O),f) = deg(F1 ,BP(O),f) = deg(F,BP(O),f).

- 3
Let F£) = {u;,...,u,}. Since 1 = deg(F,Bp(0),f) = J'lz‘i(uj),
where i(uj)=t1, k has to be an odd number.

(ii) Let Us® be a (nonempty) domain. Then F(U) =’g(}i ’
where Gi are pairwise disjoint domains.

First we show that F(G;) is closed and open in U,

By the implicit function theorem F/Gi is a local homeomorphism,
hence F(G;) is open. Choose fe i‘_(E;)nU. Then there exiet

u € Gy, F(un)—’ f. Since F is proper, we may assume u, -» U.
Then F(u)=f, G; is closed in F(U), thus ueG;, feF(G,),
i.e. F(G;) is closed in U.

Consequently, F(Gi)=U for any Gi;é g 8o that F_'(U)=1QG1
(since F'(f) is finite for fe© ).

Using the implicit function theorem and the properness of F
one can easily prove that card(F"(f)nGi) is a continuous
function on U so that ca.rd(F"(f)nGi) is locally constant.

If U is simply connected, then F/Gi is a homeomorphism by [5,7].
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Remark 1. Let the assumptions of Theorem 1 be fulfilled and

let, moreover, g’(t)>-a,,, for each t€R. Then

|3
X =Im F/(u) + {‘%civi; c € R} for any ueX.
Applying (6] (Théoreme 1.1) to the mapping

L3
P: R X = Xt ((egyeenpop)yu) s Flud+ Zeyv;

we get that the set ©O%f= {(c1,...,ck)€Rk; t+Fe.v. € 0}
fry) 11

is dense and open in RE (for any fe€X).

Remark 2. Let g satisfy the assumptions of Theorem 1, let
g/(t) = -2, for each te€R and suppose there exist t 70,
8 w0 such that g’(%))> -4, g’(s )>-4. Then B&{0}
so that the function F, (from Construction in §3 with k=1)
is e homeomorphism (since ¥, (R)=R and F;(s);éo for s#£0).
Thus F: X -»X is a global homeomorphism (cf. [5]).

5. THE SINGUIAR SET B

Example 1. Let N=i, Q=(a,b), let g satisfy the assumptions
of Theorem 1 and, moreover, g(t) = -At for [t|= M. Then
{ueX; lul= ¥ in.Q}eB. Since the imbedding XeI%®(L) is

continuous, B contains a neighbourhcod of 0 in X.

Theorem 2. Let i and g satisfy the assumptions of lemma 1,
let uyeB. Denote V =Rer F/(uy), Vy= vV-{0}.
(i) Let i22 (so that FeC?(X)) and let

Quexn)(Vvev,) (P uy) (vyu),v) £ 0 .

Then there exists E€>0 such that {u0+tu; Itl<etnB = (uo}.
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(ii) Let i=3, let F¥(uy)(v,v)=0 for each v€V and let
3w e 1) (Fu, e X)(Vve V) (F*ug) (v, vyuq)yuy) #0 .
Then u,¢ int B.

Proof.
(i) Suppose the contrary, i.e. there exist s €R and w.€X
- ’ -
such that s,~» 0, lw il =1, F'(ugrsuw, =0.
Then F’(uo)wn = (F’(uo)—F'(u0+snu) Jo = 0(s,)
. 7 _
(i.e. ||P (uo)wnll < CSn), thus w = zn+O(sn), where z €V,

llzn|l=1 . Since dim V<00, We may assume W ->ZzZ€V,.

Define t(s) = (F’(uy+su)z,2), then t7(0) = S &"(uguz? # 0.
Cn the other hand,

‘c(sn) (F'(uo+snu)z,z) = (F'(u0+snu)(z—wn),z) =

((F'(u0+snu) - F’(uo))(z-wn),z) = o(s Mz-w ll = o(s ),
which gives us a contradiction.

(ii) Suppose there exist w €X and s €R such that s =0,
w € Ker F'(u0+snu1), fw =1, (F”(uo+snu1)(wn,wn),u2) = 0.

Then again W= zn+0(an), z,€ V0 and we may assume w, - zeVO.

Define T(s)

(F¥(ugtsu,)(z,2)yu,), then T/(0) # 0. Neverthe—

less, T(Sn)

L}

((F(ugts uy)-F (ug)) ((zy2)=(w 4w ) yu,) -

= (Fug)(w W )yu,) = o(s),

since llF”(uO+snu1)—F”(uo)ll = O(sn), llz—wnll =0(1) and
(F”(uo)(wn,wn),uz) = (F"(uo)(zn+0(sn),zn+0(sn)).u2) =

= (F"(uo)(zn,zn),uz) + (F”(uo)(zn,uz),o(sn)) + o(s) = o(s ).

Thus we have a contradiction and therefore in each neighbourhood

U of wu, there exists GO such that
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(!'(uo)(w,w),uz) A0 for each w€Ker F’(ﬁ'o) -{o}.
Using (1) we get Uy€int B so that also u,¢ int B.
g(t)=« arotg(t), «&€R. We shall prove

Example 2. Let Ks3,
that the set B is nowhere dense.

Since B is empty for « 2 0, we may assume K <0,
Let uy€B. Denote V = Ker F’(uy), Vo= V-{0}.

If fg"(uo)vzuo A0 for each V€ Vos then uy¢ int B.
Suppose  [g"(uy)vPuy = 0  for some veV,. Since

2
g'(vy) = - -ﬁ;.‘;.-ga, we get uyv=0. Por any weX we have

0 = (Flaglvym) = (wm) + [ = (wmm) + [,
thus «= -2, , v=v,. Using Proposition 2 we get uy®0.
Bence F"(u))(z,2)=0 and (M(u,)(z,2,v),v)= -/ 24z2v? £ 0
for any z €V, thus uy¢ int B.

Remark 3. If B is nowhere dense, then the set FYs) is

nowhere dense.

6. EXISTENCE OF RIGHT-HAND SIDES WITH A UNIQUE SOLUTION

Lemma 4. Let X ©bve a real Banach space, let G: X-»X be

a compact c! map, lG(x)ll = K for each x€X. Put F = Id+G,
B = {x€X; F/(x) is not surjective} and (O = X-F(B). Let B
be bounded. Then y€(? and card F'y) =1 for each yeX

whose norm is sufficiently large.
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Proof. It is clear that for F the assertions of Theorem 1
are valid. Since B is bounded, we have F(B)CBM(O). Choose
y€X, lUyll>M+4K. We shall prove that card F(y) = 1.

Denote U = int(B4K(y)) and choose X € Fly). 12 xeFUy)
then Nx-x Il = 2K and F(Byp(x ))cU, thus FYU) is a domain.

Since U is simply connected, F is a homeomorphism of F (U)

onto U. Consequently, card F (y) = 1.

Theorem 3. Let geC1(R), let g,g’ be bounded, g’(t)> - Aes

for each t€R and let liminf g/(t) > -4, . Then
tl> oo

(IR, £>0)(VfeX) (Nfll>K & UPLl<elfh) => fe®@, card F (£) = 1.

Proof.
1.3
1. We show Z.6,v,€0 for = (t;,...,%)€R" sufficiently
i1
large.

k ~
Suppose there exist u, = ‘Z_sg"vi +u, € B such that
=1

Flu ) = it‘"’v [+ = co Then Hu Il > o0

Upt = &%V . U :
Since ?fn+ PG(un)= 0 and g is bounded, the sequence ('u‘;l} is
bounded and hence (8| > co .

Choose w,_ €& Ker F'(un), W ll= 1. Ve may assume W, —=w (s0

n
> s¢m
i s
that w —>w in I°(Q) ) and l;;—;l-»si, i=1,44.9ke

K

Denote Vv = \}';si 4+ By Proposition 2 the set {xeQ; v(x)=0}
=1

has measure zero.

s ’ 2 2 ’

Since fg (un)wn = -llwnll = ~1 and g’ is bounded, we have

(6.1) fg'(un)w"—>—1 .
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~

(3 s:{") v,
Further un= ls (n)l(v.'.zn), where zn= E‘(‘B(—m‘ - si)vi +l;(-'-‘-)'l -» 0.
Since liminf g/(t) > -4, , there exist %>0 (%<3, and
(t{=> oo
M>0 such that g/(t)> -A+7%  for ItI=M.
i’ for any N<Q

There exists d>0 such that Nf w? < br%

measurable, @N<G& , and there exists >0 such that the
measure of the set Ay={x;lv(x)l<2%} is less than g .
The measure of the set Ay= {x; lzn(x)lév'} is also less than

gfor n>n. For |s‘"’l>% and x¢AUA, We have

lun’(x)l= M, hence
Se'(u)w? "aqu{JV:: + (-3,+7) w2 > - 2%—4 + -'—aﬁa—:zllwﬂ" =

v

-1 + %‘ N
which gives us a contradiction (according to (6.1)).

- 1.3
2. We show that card Ff(’Ztivi) =1 for t sufficiently large.
]

Define H: R-» B¥: g+ (F,(s,0),...,F(s,0))
(F; are functions from Construction in §3).
Then H is a C1 map, H =Id + D, where D is compact and
bounded (on RX). The set By = {s; E”(s) is not surjective }
is bounded (since H(By) is bounded). Using Lemma 4 we get
our assertion.
3. N¥e prove the assertion of the theorem.

. ) , ie P2,
Suppose there exist fne X, fn ~» oo , TE] -2 0

such that £ @ O or card F"(fn) £ 1.

*
7e may assume f €O (ctherwise we choose f € Sﬂ(fn,(Id—P)fn)).
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Then there exist u €3, F(un)= f,. We have

~ K
_ n) =5 (n).
(E W5l
Since o —> 0 and ufn"<> oo , we get I—ta;-l -—» 0,
n
(]
4] » 00, 18™] > 0o , T—‘%’_' — 0 (g is bounded).
8

Now we get a contradiction analogously as in the first part

of the proof.

Example 3. Let N=3, g(t) =«Larctg(t), « € R.
Using Remark 2 we get that the operator F(:)= F(e,*) is
a global homeomorphism for « = -A,. Trom Ljusternik-Schni-
relmann theory it follows that card FY0) = 2k+1  for
o« € (=449~ Ay ). Nevertheless, by Theorem 3 there exists f
such that card F'(£) = 1.

Further suppose o >-13, .
Tet us consider £ = O in Conmstruction (§3) and denote
K(s,«) = F{(s). Then K(0,-3,) =0, 2&(0,«) = sv2 > o0.
By the implicit function theorem for each s in a neighbourhood
of O there exists an unique e(s) in a neighbourhood of -3,
such that K(s,(s)) = 0. We get «%0) =0, o"0) < o0.
In e way analogous to that in the first part of the proof of
Theorem 3 one can prove that assumptions o / -2, , K(sn, o(n)=0
imply s - 0. Thus for ®€(-2,-€-3 ) there exist exactly
2 solutions s,(« )< 0<s,(«) of the equation F{(s)=K(s,e« )=0.
Since card F—;(O) = 3, there exist t1(o( )<0<t2(e<) such that
the equation F(u) = v, (which is equivalent to the equation
F, (8) = t) has exactly
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(i) 3 solutions for tE(t1(-¢),t2(°<))
(ii) 2 solutions for te(t1(o(.)1t2(°<)}
(iii) 1 solution for t¢<ty(ec)stp(<)P .
Further tv,€ O iff t¢{t,(e«),t()}.

7. FROBLEM IN RECONANCE

Let g(t) = -4, t + g1(‘b) satisfy the assumptions of Lemma 1.
Let  Am.y € Am = Amy = *++ = Amep < Amipss  (Where p=0 and
20=0 for m=1). Denote W the linear hull of Vs e e s Vpypi
let Q: X-»W ©be the orthogonal projection. Put
Ve ={feX; |(f,w)| = % [ |wl for each 0£weW}.

Then vae =Wt e Wo, where Wo is an open neighbourhood of O
in W; W= {few; [(£,w)| < Siwl for each O £ weW} .

The following assertion can be proved.
~

Theorem 4. Let &, be bounded and g1' lower bounded. Let

liminf g1(t)t >0 or limsup 31(1;)1; < 0.
Iti—=>oe Iti-» 00

(i) For each M>0 there exists @ >0 such that for any fe€X
with (Ifli<M and Qfll £® +there exists a solution of the
problem F(u) =f .

(ii) Let 1liminf |g1(t)[ =2 >0. Then for any f&Vy there

Itl »oo

exists a solution of the problem F(u) = £ ; the set

(9,.: onv,‘ is dense and open in V, and for f€ O,
the number of elements of F"(f) is finite, odd and locally
constant.
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