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COMHENTATIONES MATHEMATICAE ONIVERSITATIS CAROtANAE 
24,2(1983) 

SINGULAR SETS AND NUMBER OF SOLUTIONS OF NONLINEAR 

BOUNDARY VALUE PROBLEMS 

PAVOL QUITTNER 

Abstract: The operator equation F(u)=f connected with the 

Dirichlet problem 

-Au + g(u) = f in SL { (0,1^ I u = 0 on 9SL 
is investigated. It is proved (under some assumptions) that the 

singular sets S = {f; QueP'^f)) /(u) is not surjective} and 

P (S) are nowhere dense and that the number of elements of 

P~*(f) is finite, odd and locally constant for f£S. Further 

there are shown assumptions which guarantee that there exist 

right-hand sides f such that card F~(f) = 1. 

Key words; Predholm map of index zero, proper, eigenvalue. 

Classification: 35J65 

1. NOTATION AND PRELIMINARIES 

,'/e shall denote by R the set of all real numbers, by M~M* 

k \ k 
the Lebesgue measure in R . For qs=(q.,,... ,q,)eR we define 

kl -ilqj • 
i»i x 

Let (X, II* II ) be a Banach space, let yeX, MeR. Then 

!3M(y) = { x e l j ||x-y|| -- M ] . 
N 

Throughout the paper let XL be a bounded domain in R (N-*1) 
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with the Lipschitz boundary (see [l] or [3]). Denote by (X, II-II) 

the Sobolev space W^*(Jl) with the norm induced by the scalar 

product 
( U ' T ) " / I ^ x ) ^ x ) a x ' 

Further denote by f| • || "&-© norm in L*(il). 

We shall write briefly fh instead of Jh(x)dx . 
JCL 

The eigenvalues ^ k and the eigenfunctions vk of the 

Diriehlet problem for the operator A on XL have the following 

properties s 

(1.1) -Avk - \ v k in -& 

vk m 0 on 3il f 

(1.2) 0 < ^ < A2 * ̂ 3 ** ... , 

(1.3) Ak —*. ^o , 

(1.4) (vicl is a n orthonormal basis in X , 

(1.5) Vj. are real analytic functions , 

(1.6) v.j>0 in il . 

Definition 1. Let X,Y be Banach spaces, A: X-*Y a 

continuous linear mapping, P: X—*Y a (nonlinear) operator 

of the class C . 

The mapping A is said to be a Predholm mapping of index 0 

if Im A is closed and dim Ker A « codim Im A < «>. 

The operator P is said to be a Predholm map of index 0 if 

P/(x) is a linear Predholm mapping of index 0 for each xeX. 

The operator P is said to be proper if P %K) is compact 

whenever KcY is compact. 

Ironosition 1. Let X,Y be real Banach spaces, let P: X-*Y 

be a C proper Predholm map of index 0. Then the set 
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C7«{ycY| F'(x) is surjective for each xcF'^y)} is a 

dense open subset of Y and for every y€C? the set F'^y) 

is finite and its cardinal is locally constant on O • 

Proof. See f2] and f6]. 

The following proposition can he easily proved by induction. 

Proposition 2. Let J2cR be a nonempty domain, let 

v:-GL-*R be a real analytic function. Denote 

M = {x€i-t; v(x)=0} . Then either ^ ( M ^ O or M = £L . 

2. FOKM0IATION OF THE PROBLEM 

An element u€X is the weak solution of (0.1) if 

<2-i> f % p A * Jg(u)v -ftv 

holds for each veX. 

We shall suppose that g: R-*R is a continuous function 

satisfying (for N=2) the condition 

(2.2) |g(t)| tf c(1+|t|*) , 

where c and a€ are positive constants, dt(N-2)=* N+2 . 

Using the imbedding theorems (see fl,3]) and the continuity 

of the operator of Nemyckio (see [8]) we get that the mapping 

v i—s*/*g(u)v is a continuous linear functional on X. By the 

Riesz theorem it can be represented by an element G-(u)6 X , 

i.e. (G(u),v) = fg(u)v for each v€X. 

Similarly for f€Vfu(!2) (= the dual space to X) we find 

a representative f€X; (f,v) = J fv for each vcX. 

In what follows we deal only with f (as an element of X) so 
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that we shall write only f instead of f. 

Clearly, the problem (2.1) is equivalent to the equation 

(2.3) F(u) = f , 

where the operator F: X~*X is defined by F(u)-= u+Gr(u) . 

3- BIOPERTIES OP OPERATOR F 

Using the imbedding theorems and the continuity of the 

operator of Nemyckij it can be proved the following assertion. 

Lemma 1. Let i be a natural number, let g€C1(H) and 

let (for N-s2) 

C D le<i}(t)i g cd+ltr) , 

Ahcre oCS-0 and (oC+i)(N-2) < N+2 . 

Then G is a compact operator of the class C1 and 

( G ^ H u H u . j , . . . ^ . ) ^ ) = /g^>(u)u1...uiv . 

Corollary. Let the assumptions of Lemma 1 be f u l f i l l e d . 

~r..en F i s a Predholm map of index 0. 

Troof. F ' ( U ) i s a compact per turbat ion of the iden t i t y for 

a*iy u e X . 

Lemma2. Let liminf &S '>~(K* . Then F i s coercive. 
ltl-*oo X 

Iroof. There ex i s t €>0 (t<ty and K>0 such tha t 

--lli- 3K - ^ + £ for I t l * K. Since l g ( t ) U M on <-K,K>, we get 

, : ; , u ) = i |ul |Z+/g(u)u « llul/V / g ( u ) u + / g ( u ) u fe 

IUl«K lul iK 

* .hilf- ZKplfL) + i-^+E) fuz -* | |(ulf- MK<u(.a) , 

'^ r K i s coercive?. 
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Lemma 3. Let the assumptions of Lemmas 1 and 2 be fulfilled. 

Then P is proper. 

Proof. Let KcX be compact. Choose a sequence {\}$?"1(K)« 

Since P is coercive, (ul is bounded and we may assume 

G(u ) - * h. Further F(un) € K so that we may assume -Ku^) -* -?• 

Then û -* Ftu^-CKt^) ~* f~n > i»e' F"i(K) is relatively 

compact. F""* (K) is closed, since F is continuous. 

In case that PeC (X) we shall denote 

B - {ueXj F'(u) is not surjective} , S = F(B), #=- X-S. 

The elements of the set (P are called regular values of F. 

0onstruetion. Let g satisfy the assumptions of Lemma 1, 

let g'(t)>-ak^ for each t€R and let liminf fi|^>-^k4.1 • 
Itl -•<» 

Put X = {u€Xj uiv. for i=1,...,k} and denote P: X -* X 

the orthogonal projection. Let us consider the problem 

(3.2) u + PG(u+£s.v.) = f , 

where s . are fixed real numbers, f eX and ueX is an unknown. 

Denote G(u) = PG(u+£s .v.) , F(u) = u+G(u) . 
}*.} x x 

Then G: X~*»X is a compact operator of the clas3 C and 

similarly as for P, we get that P: X-*X is a proper Fredholm 

map of index 0. The set B == {u€X; F'(u) is not surjective } 

is empty, since for u,v€"X, v#0 we have 
(F'(U)V,T) > Hvll*- ZkHf%z = 0 . 

3y [5] we get that F: X—-»*X is a global diffeomorphism so that 

the solution u of (3.2) can be written in the form 

u = h(s1f...,sk,f) 

/here h is of the class C1 (ly Lhe implicit function theory 
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and for fixed s . . t . . . , ,8, h is a diffeomorphism of X onto I. 

Thus the prohlem P(u)=f (for u-= ̂ +2.8.^,
 f=t t+Z.^^Jj) 

is equivalent to the prohlem 

.FF(u) m Pf 

($(v),v±) « (f,^) i«1
f
...

f
k { 

f U ш h(s
1f
...

f
S, 

(3.3) < л ł 

' \ a "^i^s1§•••** 

u « h(s.,f ...fskff) 

fsk) i=-1f...fk 

where 

P.ĵ vs.1 f... fs.jc) ss P^s . ., • • •,s-^f) s 

s s i + (G(ÍLs.jV;.+ h í s . . , , . . ^ , ? ) ) ^ ) 

Purther 

U€B ** det(fl^) = ° • 

In what follows we shall observe the notation introduced above. 

4. THE STRUCTURE OP THE SOLUTION SET POR THE COERCIVE 

OPERATOR P 

Theorem 1. Let geC1(R)t liminf fi4^>-A. and let (for H--2) 

|t|-*oo X 1 

lg'(t)| -s c(1+|t|*)t where oC2- 0, (<rf+1 )(N-2) <N+2 . 

(i) Then (P is a dense open subset of Xf for every f 6(5 the 

set P~^(f) is finite, its number of elements is odd and 

locally constant, 

(ii) If USC? is a domain, then P~4(U) = ( . - ^ . . . U ^ , where 

C3-. (i=1,...fk) are pairwise disjoint domains, P((x.) « U and 

card(PH(f1)oGi) « c a r d ^ f ^ n ^ ) for any f . . f f 2 e U . 
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If U is simply connected, then F/Gi is a homeomorphism. 

Proof. 

(i) According to Proposition 1, Lemmas 1,2 and 3 it remains 

to prove that oard "f\f) is odd for f c O . 

Choose f€(9. For VC<0,1> we define 

Fy: X-»X: u *—* u + vG(u). Analogously as in Lemma 2 we get 

that there exist positive constants 6 and 0 such that 

(Fy(u)fu) -*5..u.f- C for each V6<0,1> and ueX. 

Consequently, there exists P > H.fH such that F~*(f )SB-p(0) 

and fflPy(aBp(0)) for any V 6 < 0 , 1 > , By the homotopy 

invariance property of the Leray-Schauder degree we get 

1 = deg(F0>Bp(0)ff) m deg(P1fBp(0),f) « deg(FfBp(0)ff). 

Let FH(f) = {u..,...,^}. Since 1 - deg(F,Bp(0)ff) « 2Li(u..)f 

where i ( u . ) = ± 1 f k has to he an odd number. 
J 

(ii) Let U S D be a (nonempty) domain. Then F"*(U) « U G . f 

where G. are pairwise disjoint domains. 

First we show that P(G.) is closed and open in U. 

By the implicit function theorem F/G. is a local homeomorphism, 

hence P(G.) is open. Choose f€ F(Gi)oU. Then there exist 

u neG., F(\i )-*f. Since F is proper, we may assume u^-* u. 

Then F(u)=-f, G± is closed in F*1(U), thus u € G i f fcF(G i) f 

i.e. (̂G--}) i s closed in U. 
it 

Consequently, F(G.)=U for any G.j^ 0 so that F""(U)=-U&4 
X x ^,.1 X 

(since FH(f) is finite for feO ) . 

Using the implicit function theorem and the properness of F 

one can easily prove that card(F* (f )flG.) is a continuous 

function on U so that card(F~ (f )nG.) is locally constant. 

If U is simply connected, then F/G . is a homeomorphism "by [5,7]« 
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Remark 1. Let the assumptions of Theorem 1 he fulfilled and 

let, moreover, g/("fc)>-^<
 f o r each t€R. Then 

X ~ Im F'(u) + { 2-C^} c ^ R} for any ueX. 

Applying [6] (Theoreme 1.1) to the mapping 

r:R kxX~*X : ((c.,... ,ck) ,u) *-*> ?(u)+ £c±v± 

we get that the set OK**Z {(c1 cJcE k{ f+ £c.v. € C? } 

is dense and open in R " (for any f €X). 

Remark 2. Let g satisfy the assumptions of Theorem 1, let 

g'(t) a. -/l4 for each t€R and suppose there exist ̂ ^ 0 , 

sn^0 such that s'(\)> ~**t g'(sn)>-'If • -^en B€{0} 

so that the function F- (from Construction in §3 with k=1) 

is a homeomorphism (since F̂ (R)=R and F|(S)^0 for s^O). 

Thus F: X -*X is a global homeomorphism (cf. f5]). 

5. THE SINGULAR SET B 

Example 1. Let N=1, il=(a,h), let g satisfy the assumptions 

of Theorem 1 and, moreover, g(t) = - \ t for |t| = M. Then 

{ueX; |u|-s M inJljfiB. Since the imbedding XcL°°(iZ) is 

continuous, B contains a neighbourhood of 0 in X. 

Theorem 2. Let i and g satisfy the assumptions of Lemma 1, 

let u0eB. Denote V = Ker F/(uQ), VQ= V-{0] . 

(i) Let i=2 (so that FeC2(X)) and let 

(3ue:i)ttrvev0) (F"(UQ)(V,U),V) ̂  o . 

Then there ex i s t s €>0 such tha t {uQ+tuj l t l<€}oB = { u 0 } . 
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(ii) Let i=3, let F4r(u0)(v,v)=0 for each vCV and let 

(3u1€X)(3u2€X)(VvCV0) ( F ^ U Q H V ^ U . , ) , ^ ) t 0 . 

Then u Q^ int B. 

Proof, 

(i) Suppose the contrary, i.e. there exist sn€ R and wn€ X 

such that sn~» 0f llwnl| = 1,
 p'(uo+snu^wn = 0# 

Then p'(u0)wn = (F
/(u())-P'(u0+snu) )wQ = 0(sn) 

( i . e . i(P'(u0)wn l | = Cs n ) , thus wn= z n +0(s n ) , where z n £ V , 

Hz II--1. Since dim V < o o , we may assume w
n ~* z e V Q . 

Define t ( s ) = ( F ' ( u 0 +s u )z , z ) , then t ' ( 0 ) » / g " ( u 0 ) u z 2 £ 0. 

On the other hand, 

t(sn) = (F'(u0+snu)z,z) = (P'(u0+snu)(z-wn),z) = 

= ((P'(u0+snu) - P'(u0))(z-wn),z) = 0(sn)llz-wnll = o(sn), 

which gives us a contradiction. 

(ii) Suppose there exist w 6X and s eR such that s -*• 0f 

wn6Ker P ' ^ + s ^ ) , l|wn«= 1, (F' ^ U Q + S ^ Kw^wJ.Ug) « 0. 

Then again w = z +0(s ) f z € VQ and we may assume w -+ z€VQ» 

Define T(s) = (F^u^su., )(z,z).Ug), then T'(0) *- 0. Neverthe

less, T(sn) = ((F
//(u0+snu1)-P

//(u0))((zfz)-(wnfwn))fu2) -

- (F//(u0)(wn,wn)fu2) = o(sn), 

since Hl?"(u0+a^)-f"(vLQ)l\ = 0(sn), tfz-w /I » o(1) and 

(P/,(u0)(wn,Wn),U2) = (P
//(u0)(zn+0(Sn)fZn+0(Sn)),U2) m 

= (I,//(u0)(zn,zn)fu2) + (F
/'(u0)(zn,u2),0(sn)) + o(sn) « o(sn). 

Thus we have a contradiction and therefore in each neighbourhood 
TJ of u0 there exists uQ such that 
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( V ^ Q H W , * ) , ^ ) / O for each wCKer P'tu^) - { 0 } . 

Using ( i ) we get UQ4 in t B so that also UQ* in t B. 

Example 2 . Let N-*3, g(t)-»i( arotg( t ) f •CCR. We shal l prove 

that the se t B i s nowhere dense. 

Since B i s empty for «c -* 0 f we may assume «c< 0 . 

Let U Q C B . Denote V » Ber P ' (u 0 ) f V0« V~foh 

If /g^t-QTv^UQ / 0 for each v€VQ f then UQ^ int B. 

Suppose fgM(ix0)v
2UQ » 0 for some v€VQ . Since 

2UQ 
g (VLQ) a - i m ~ r p f w© «et UQVSO. Por any weX we have 

0 - (P'fu^v.w) - (vfw) + / ^ S - (VfW) + / *vw f 

thus U « -Ak , ••Vj,* Using Proposition 2 we get U Q » 0 . 

Hence P/Sf(u())(zfz)=0 and (Pw(u())(zfzfv)fv)= -fz<zxvx £ o 

for any Z€VQ9 thus U Q ^ int B. 

Remark 3. If B is nowhere dense, then the set P \S) is 

nowhere dense. 

6. EXISTENCE OP RIGHT-HAND SIDES WITH A UNIQUE SOLUTION 

Lemma 4* Let X he a real Banach space, let 0: X-*X be 

a compact C map, ||G(x)ll & K for each xcX. Put P = Id+G, 

B m {x€Xj F'(x) is not sur jective} and O = X-P(B). Let B 

he hounded. Then y € # and card F~*(y) = 1 for each y eX 

whose norm is sufficiently large. 
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Proof. It is clear that for P the assertions of Theorem 1 

are valid. Since B is hounded, we have P(B)cBM(o). Choose 

yeX, {{yd >M+4K. We shall prove that card PH(y) = 1. 

Denote U == int(B.K(y)) and choose xQcP~
f(y). If xcPH(y) 

then llx-x0H -i 2K and P(B2K(x0))cU, thus Ff(U) is a domain.. 

Since U is simply connected, P is a homeomorphism of P"'(U) 

onto U. Consequently, card P~ (y) = 1. 

•i 

Theorem 3> Let geC (R), let gfg' he hounded, g'(t)> -\+4 

for each t€R and let liminf g'(t) > -/L . Then 
lt|-*o© 

(3K»£>0)(Vf€X) (| |fi |>K & HPfll-cellfll) -i> feO, card P*1(f) = 1. 

Proof. 

1. We show 2 . *-.•-. € 0 for t = ( t - , . . . , t , ) € E k su f f i c i en t ly 
j M a- i \ K 

l a rge . 

Suppose there exist u„ = 21 s;:1 v. + vi e B such that 

F(unJ = . ^ i S . » lt{"*|-**>- Then HuJI -* oo . 

Since u + PG-(u )= 0 and g is hounded, the sequence {SL } is 

bounded and hence (s<n>| -» oo . 

Choose w € Ker P'(u ), l|w || = 1. We may assume w-*-w (so 

2 si° 
that w -* w in L (XL) ) and --=--- —> s., i=1,.. .,k. 

| s ( n ) | J-

Denote v = Sis.v.. By Proposition 2 the set |x€!2; v(x)=o} 
\*\ -- -*-

has measure zero. 

Since fg'ivLyJwJ: = ~l|w II = -1 and g ' i s hounded, we have 

(6.1) / g / ( u n ) w i - » - 1 . 
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Further u
n
=|s<«>|(v+3

n
), where z ^ I ( ^ -

 e ±
 )r

±
 + — . -> C 

Since liminf g'(t) > - A
4
 , there exist ^>0 ( "*< a*) and 

itl-*©© 

M>0 euch that g'(t)> -R
4
+^ for |t|-*M. 

There exists d»0 such that f w
2,
 < .5-5--I— for any NCJI 

measurahle, A*N<d , and there exists V>>0 such that the 

measure of the set A..= <x$ |v(x)| •* 21>} is less than §• . 

The measure of the set Ag= {x; |z
n
(x)l * V*} is also lees than 

j for n as n . For |s
<n)
l>^ and x^A^Ag we have 

(u^Cx)! = M, hence 

jV(u
n
)w* * - a ^ / w * + <-*,+*> A * > - ̂ - + ̂ S l l w M

1
 * 

= -1 + ̂  , 

which gives us a contradiction (according to (6.1)). 

2. We show that card P (Jit .v.) = 1 for t sufficiently large. 

Define H: B
k
-* B

k
: s «-• (P., (s,0),... ,F

k
(s,0)) 

(F. are functions from Construction in §3). 

Then H is a C map, H = Id + D, where D is compact and 

hounded (on R ). The set Brr = {s; H'(s) is not surjective } 

is hounded (since H(BTJ is hounded). Using Lemma 4 we get 

our assertion. 

и-*nл 
3. Ne prove the assertion of the theorem. 

Suppose there exist ± &Xf II fII-* 00 , ^ :• —^ u 

" n" 

such that fn4 O or card F"*
1
^) £ 1. 

•7e may assume fn$& (otherwise we choose fn6 Sn(f ,(Id-P)f )). 

382 -



Then there exist u n€ B, F(un)= fn. We have 

fn - ?n + * * ? S > ™* " *n + £•*% • 

Since p-±j- -* 0 and li f j l -* oo , we get j - ^ - - * 0 , 

| t ( n ) | - * oo , I s (n> l - * oo , ---JaL _ * o (g i s bounded). 

Is(n)l 

Now we get a contradiction analogously as in the first part 

of the proof. 

Example 3. Let N=3, g(t) =oCarctg(t), .C € R. 

Using Remark 2 we get that the operator F(»)= F(«c,0 is 

a global homeomorphism for «< as - ̂ . . From Ljusternik-Schni-

relmann theory it follows that card "f (0) 2- 2k+1 for 

•C€ (~r\K>H ,-Jlk ). Nevertheless, by Theorem 3 there exists f 

such that card FH(f) = 1. 

Further suppose ©C > - ̂  . 

Let us consider ¥ = 0 in Construction (§3) and denote 

K(s,ac) - F((s). Then KtO,-*,,) = 0, ||(0,*O = / v * > 0. 

By the implicit function theorem for each s in a neighbourhood 

of 0 there exists an unique oc(s) in a neighbourhood of - ^ 

such that K(s,oC(s)) = 0. We get <'(0) = 0, «c"(0) < 0. 

In a way analogous to that in the first part of the proof of 

Theorem 3 one can prove that assumptions oC / - ^ , K(s , ©C )=0 

imply s -* 0. Thus for «<•€ (-fy-C,-^) there exist exactly 

2 solutions s1 (»C )< 0<s2(«c ) of the equation F^s) s K(s,°C )=0. 

Since card F^(0) 5a 3, there exist t1 (oC )*0<:t2(<* ) such that 

the equation F(u) = tv- (which is equivalent to the equation 

F.j(s) « t) has exactly 
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(i) 3 solutions for t € (t1 («c),t2(«C )) 

(ii) 2 solutions for t € <t.j («. ) ,t2(<* ) } 

(iii) 1 solution for t* <t1 (oc ),t2(«c)> 

Further t v ^ O iff t 4 (t1 («O >t2(oC )}. 

7. PROBLEM IN RECONArTCE 

Let g(t) = - # m t + g . j ( t ) satisfy the assumptions of Lemma 1. 

L e t K~i < *m "* <**u< = • • • = AM+P < Am+p-M (where p=0 and 

^ o=0 for m=1). Denote W the linear hull of vm,. ••»
v
m+ j 

let Q: X-*W he the orthogonal projection. Put 

V 3 e={f€X; |(f,w)| * de/lwl for each 0 ^ w € W } . 

Then V^ » W1,-t- ae W , where W Q is an open neighbourhood of 0 

in Wj W0« (f€W; l(f,w)| <* f \w\ for each 0 £ w e w } . 

The following assertion can he proved. 

Theorem 4. Let g1 "be hounded and g^ lower "bounded. Let 

liminf g-j(t)t > 0 or limsup g . i ( t ) t < 0. 
|tl~»©-» * lti-*o© 

(i) For each M > 0 there exists f > 0 such that for any f € X 

with llfll-s M and HQfll * 9 there exists a solution of the 

problem F(m) «• f . 

( i i ) Let liminf | g 1 ( t ) | * 0€>O. Then for any fCV^# there 

It! -*#o 1 

exists a solution of the problem F(u) =- f $ the set 

C ^ zs (PAVI* is dense and open in V^ and for f € O^ 

the number of elements of F (f) is finite, odd and locally 

constant. 
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