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TOPOLOGICAL CATEGORIES WITH BOTH EPIREFLECTIVE AND
COREFLECTIVE PROPER SUBCATEGORIES
Eraldo GIULI

Abstract: It is known that some familiar topological
categories - for example the category of all topological spa~
ces and the category of all uniform spaces - have no proper
subcategories which are both epireflective and coreflective,

In this paper we produce a class of topological catego-
ries which contain the category Rere of all reflexive relati-
ons as proper, both epireflective and coreflective subcatego-

All these categories are cartesian closed and have other
nice properties.

Key words: Topological category, epireflective subcate-
gory, corelflective subcategory. ’

Classification: 18440

1. It is shown in ([6]) that the topological category
Top of all topological spaces has no proper subcategory which
is both epireflective and coreflective (i.e. closed under the
formation of products, subspaces, coproducts and quotient spa-
ces). The same statement is true for the categories Mer of all

merotopic spaces (17])), Unif od all uniform spaces ([5]) and

Born of all bormological spaces ([11).

The category Simp of all abstract simplicial complexes
([91) is an example of a topological category with a proper
subcategory which is both epireflective and coreflective., In
fact the subcategory §lgp° of all o-dimensional simplicial
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complexes (which coincides with the subcategory Discrete(Simp)
of all discrete Simp-objects) is obviously closed under the
formation of products, subspaces, coproducts and quotient spa-
ces. Moreover it is shown in [1] that Simp is the unique sub-
category of Simp with the previous properties.

Examples of topological categories (in the sense of Herr-
lich [2]) with a proper, non trivial (i.e. £ Discrete) both
epireflective and coreflective subcategory were firstly given
by HuSek in [5] and [10].

Example 1 ([5] Example 2). Let X be the full subcatego-
ry of the category Unif whose objects are all uniform spaces
(X,%), U uniform neighborhoods of diagonal, with the proper-
ty that the intersection of equivalences from U belongs to
N . If Y is the full subcategory of X generated by all (X,u )
such that MU e U +then Y is non trivial, and both coreflec-
tive and bireflective in X.

Example 2 ([10] Example 6). Let X be the full subcate-
gory of the categor& Top whose objects are all locally connec-
ted spaces. Then X is a topological category because it is a
coreflective subcategory of the topological category Top. The
full subcategory Y of X composed of all spaces the collection
of open and closed sets of which coincides is a non triviel,

both bireflective and coreflective subcategory of X.

The aim of this paper is to describe a class of topolo-
gical categories which have proper, non trivial, both epire-
flective and coreflective subcategories. In particular each
of these categories contains as full subcategory with the pre-

vious properties the category Rere of all reflexive relations
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described in [3]. It is also shown that all these categories
are gtrongly topological (i.e. they are cartesian closed and
final epi-sinks are hereditary) and no universal topological

categories in the sense of Marny ([81).

2. Here topological category means concrete category
(X,U) over the category Set of all sets which is initially com-
plete and well-fibred (i.e, it is small-fibred and every con-
stant map UX —» UY underlies some X-morphism).

For definitions and results on cartesian closed topologi-
cal categories see [2]. All undefined terminology is that of
141,

2.,1. Definition. Let A be a non empty set. A denotes the
category whose objects are couples (X,F) where X is a set and
F is a subset of the set Set(A,X) of all maps of A into X con-
taining all constant maps, and whose morphisms of (X,F) into

(Y,G) are the maps h:X—» Y such that hofe G for each fe P,

2.2, Proposition. A is a topological category.

Proof, The class of all A-structures in a set X is a set
and every constant map is an A-morphism. Thus A is well-fibred.
Let X be a get, (Yi'Fi)ieI a family of A-objects and (hi:X——>
—> Y;).1 @ family of maps. Then the set F = {f:A —» X:

:(hje f)e P, for each i€ 1} is the initial A-structure in X
with respect to (X’hi’(yi’Fi)ieI) uniquely determined by its
defining properties. Thus A is initially complete,

2.3 (1) An epi-sink (hy:(X;,P;) —> (¥,F)), g is final iff
feF holds whenever there exist i€ I and fie Fi guch that

hi° fi = £,
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(2) x:(X,?»)—> (Y,G) 15 an embedding (and (X,F) is a sub-
space of (Y,6)) iff f is injective and F = {f:A—>X: ko £ G}.

(3) If ((Xy,Py))e7 15 a family of A-objects then the fa-
mily of maps f:A —> 1y Xy satisfying the condition that each
component Py £ belongs to F; is the product structure ;_T‘TI Py
and the family {kio f:1€I and fe P}, where k,:X; ——’f}'léll Xj
are the canonical injectionas, is the coproduct structure 4,“2"‘[ xi.

(4) q:(X,P)—»> (¥,8) is a quotient morphism (and (Y,G) &
quotient space of (X,F)) iff G = {qeﬁfﬁr.

(5) (X,P) is discrete iff F = Set(a,X).

(6) (X,P) is indiscrete iff F = {all constant mapsi.

2.4. Theorem. A is a strongly topological category, i.e.
(a) A is cartesian closed.

(b) Pinal epi-sinks in A are hereditary.

Proof. (a): It is to be shown ({21 Theorem 2 (1)e&>(6))
that, for each final epi-sink (hy: (X3,Py) —> (X,1)) 1 and A-
object (Y,G), the epi-sink (hyx 1y:(X;x Y,Fy»G) —>
—> (XnY,FG) )iE.I is final.

Let m be an element of Fx G. Since the component my belongs
to P (2.3.(3)), by 2.3.(1) there exist i¢ I and f ;6 F; with
Wy = hy e f,, Since the component my belongs to G (2.3.(3)) then
the map <f1'"‘:{>"“" Xy» Y belongs to Py;% G and hy e (<!1.m¥))=
= 8,

(b): Let (hi: (xi,ri) —9(1,?))1‘1 be a final epi-sink in
A and X" & subset of X with k:X —>» X the inclusion map. Furt-
her let P~ be the subgpace structure in x’, and, for each 161,
let Pi' be the subspace structure in h'il(x e X;. It follows
from 2.3.(2) and 2.3.(1) that the epi-gink (hi/hzl(x.):

-1 2 ’ . .
:(h] (X7),P) — (X",F)), 1 is final,
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2.5. Remark., If A is a two-point set then the catvegory A
coincides with the caiegory Rere of all reflexive relations
described in [3].

The subcategory SRere of all symmetric reflexive relati-
ons properly contains the trivial subcategory Discrete(Rere)
of all discrete Rere-objects. Moreover the functors T,l,:Rere —
—> SRere which respectively send each reflexive relation F in-
to the smalleast symmetric relation containing F and into the
largest symmetric relation contained in P, are left and right
adjoint of the inclusion functor J:SRere —» Rere.

Thus SRere is a proper non trivial subcategory of Rere

which is both bireflective and coreflective.

For each surjective map q:A—> B let Aq denote the full
subcategory of A whose objects are all (X,F) satisfying the
following condition: for every fe¢ F there exists g:B—> X such
that geq = £,

2.6, Theorem. For each surjective map q:A —>» B the cate-
gory _A_q is an epireflective and coreflective subcategory of A.
Moreover, if |A|>2 and q is not injective, then _A_q is a pro-

per and non trivial subcategory of A.

Broof. Let (X,F) be an A-object. If cF = {f€ F: there
exists g:B—» X with go q = 1}, then the A-morphism c:(X,cF)—»
~—» (X,F), which is the identity map on the underlying set X,
is the coreflection of (X,F) in Aq. Let rX be the quotient of
X given by the equivalence relation generated by x R y iff
there exist a,b€ A and £¢ F such that fa = x, fb = y and qa =
= qb (i.e, rX is the largest quotient set of X such that, for
each f€ F there exists g:B—» rX with geq = rof, where

- 485 -



r:X —» rX is the quotient map). Then r:(X,F) —» (rX, ro P) 1ias

the epireflection of (X,P) in _L_q.

2.7. Remarks. (1) PFor each surjective map q:A—» B the
functor Q:B — A defined by Q(X,F) = (X,Feq) is a full embe-
dding and QB = A q* Then the theorem above says that the fune-
tors ?1 ,PzzA-—-—r B, defined by P1(Y,G) = (Y,{h:B —> Y:he qaG})
and P,(Y,6) = (rY¥,{h:B —» ¥: there exists f<F with hogq =
= re t}), are respectively left and right adjoint of %the func-
tor Q.

In particular if B is a two-point set (that is B = Rere)
then each surjective map q:A—» B induces a full embedding Q:
:Rere —> A as well as an epireflective gnd coreflective sub-

category.

(2) IZ1A\Z3 and q:tA—> B is not injective then gq is
not bireflective in A. It follows from (1) and Remark 2,5 that
every A, with |AlZ 2 has & proper and non trivial, both bire-

flective and coreflective subcategory (namely SRere).

(3) To-objecta in Rere (i.e. objects (X,F) such that
each Rere-morphism of a two-point indiscrete object into (X,F)

is constant) are the reflexive antisymmetric relations., Fur-
thermore it follows from [2] Prop. 5 that a reflexive relati-
on belongs to the bireflective hull I’.Eof_tg_:gg of the subcatego-
ry Tom of all To-ob;)ects iff the largest symmetric relati-
on which is contained in it is an equivalence relation. Since
it is very easy to find relations without the property above
then Rere is not universal in the sense of Marny ([81).
(4) For each set A with |Alz 3 the topological category A

is not universal. In fact if A would be a universal topologi-
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cal category, then using a characterization by Marny (L8]) an
A-object (X,F) would be indiscrete iff Ry = {(x,y)& X»X: the
subspace {x,y} is indiscrete} = X=X, But if we choose (X,F)
with |X}123 and F = {f:A—> X: [Imf]|£2%, then (X,F) is not
indiscrete, and Rx = XxX,

(5) The previous characterization of the class Ind of
all indiscrete objects still holds for the category Rere even
if Rere is not universal.
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