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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,4 (1983)

ON MAXIMUM PRINCIPLES AND LIOUVILLE THEOREMS
FOR QUASILINEAR ELLIPTIC EQUATIONS AND SYSTEMS
Bernhard KAWOHL

Abstrect: In the study of elliptic systems of partial dif-
ferential equations it is customary to prove maximum principles
for the modulus lul of a . vector valued solution U and Liouville
theorems for the vector U. This note contains maximum principles
for u and a Liouville theorem for 1R\

Key words: Quasilinear elliptic equation, meximum principle.
Classification: 35B50, 35J45, 35455

The classical maximum principle states the following: If
u: ) —» R is a classical solution of en elliptic second or-

der differential equation, then u attains its maximum on the

boundary 8Q. . The girong version of the maximum principle

even reads: If u attains its maximum in the interior of Q ,

then u is constant.

The claessical Liouville Theorem says: If u: R®—» R is
a bounded solution of an elliptic second order differential e-
quation, then u is constant.

The validlty of these theorems is well known for linear
and quasilinear differential equations 14,5,6,8,111,

For elliptic systems the natural question arises which of
the two quentities !dl| or ¥ serves as an appropriate generali-
zation of u. To the author s knowledge, up to now classical ma-

ximum principles have been examined for lul [5,14] and Liouville
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theorems for the vector fumotion @ 1[6,11,12).
This note contains, among other results:

a) & strong maximum principle for \ul,
b) a maximum principle for the components of '1?, and
¢) a Liouville theorem for IR under weaker assumptions than

the ones which guarantee such a theorem for o,
Our investigations were motivated by the following examp-

les.
Example 1 [11]., ILet x € R, ul(x) = sin x,, uz(x) =
= cos x,. The vector u(x) = (ul(x) ,u2(x)) is a bounded, real

analytic solution of the system

1
~Aut - u IVul?, 1 = 1,2, on R%

max {1, |Vul} x
Example 2 [6]: Let xc¢ R® and ul(x) = ﬁ—

x
eeeyny nZ 3, Then the vector u(x) is a bounded weak solution

for 1 = 1,...

of the system

i
~Aul = 2;‘ l [Vul?2, 1 = 1,...,n, on RZ.
+lu

Example 3 [6]1: Let x ¢ R® and ui(x) = x; (1+ |x
i =1,...yn3 n2J. Then the vector u(x) is a real analytic boun-

-4

’

ded solution of a system of type

-bul . ol g(x,Vu), & = 1,...,n, on RZ,

with [ul lg(x,w)| < 19ul?,

We use the following assumptions end notations. Let
O c R®, n-2, be a (not necessarily bounded, but open) domain
with Lipschitz contimuous boundary 9f. . We consider a system
of uniformly strongly elliptic quasilinear differential equati-

ons in Q
> i k Yo k = 1ye0.,N
- §’1 (Aij(x.u,Du))uxi)xj = f (x.u,Du ’ = lyeeeylNe

+,
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In shorthand we shall write it as

R
(1) ~afv (A(x,u,50) Vu*) = £5(x,u,Du).
|
'We suppose that system (1) has a weak bounded solution, i.e., &
vector function u = (ul,... ,un) with components ufe H%;i(.ﬂ.)n
AL9(N), such that the following relation holds for any test

veotor e [C(0)) LA

J, Atxyu,00) vo* voF ax = fp £5(x,u,00) §¥(x)ax,
k=1,...,N
Por the question of existence and regularity we refer to [1,2,
5,111. The LY(0) )=norm of u is denoted by M. The coefficients
L”(x,u.p) are assumed to be symmetric, i,e.,

A“(x.n,p) = Lji(x,n,p) for 1,j = 1,...,n and x,u,p ¢ O,
B,(0), R,

and to be bounded. Furthermore, we require the ellipticity con-

ditiom that there exist A, w & R’ such that

"
A \5\2 ‘4,,22’4113(1,11.;;) 1 §3 = ytf\z for x,u,p, § € 2 ,
B (0), R™¥, R®,
Finally the functions ‘1;‘1-“-?’ and fk(x,u,p) are assumed to

be measurable in x ¢ {L and continuous in ue¢ B"(o) and p ¢ RO¥
for i,j = 1l,.c.,n and k = 1,...,N.

From time to time we shall make one or more of the follow-
ing assumptions:

(A1) The right hand side £ = (£1,...,f¥) has "quadratio growth
in p", ise. there exists a positive number a such that
l£(x,u,p)] < alpl? gor x,u,pe N, By(0), R

(A2) There exigts a real number A* < A such that

u £(x,u,p) £ A¥ | pla for x,u,p € 2, By(0),

R7Y,
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(A3) The coefficients Aid(x.u.p) are Lipschitz continuous in
their arguments.

Notice that the common assumption A¥ < A , which is known
to be optimal in a different context, is weakened in (A2). Let
us also point out that we do not require any smallness conditi-
on e.g8., 0f typea M < A .,

Maximum principles. Our first result shall be a maximum
principle for the modulus of u, Therefore we apply the princi-
pal part of system (1) to the function lul? and obtain

N
(2) -atv(a(x,u,00) ¥ (1ul?) g B (2u"15Cx,0,00) - 2avwl?)
L [2a*-2) IVul®< 0, 1f (A2) holds,
1 2 sign u Du D(u?), if N=1l and (A1) holds.
In both cases lu\2 solves an elliptic differential inequality

and therefore the following theorems are a consequence of ma-

ximum principles for differential inequalities.

Theorem 1. Let u be & bounded weak solution of system (1).

Suppose that . is bounded and that (A2) holds. Then the fol-
lowing maximum principle holds:

i) sup lu\ssau‘{ | ul, where sup means the essential suprenorm.
Purthermore, 1f u€ ¢2(0)nC°(Z1) and if (A3) holds, then the
strong meximum prineciple holds, i.e,

i1) \ul is constant provided |u| attains its maximum in O .

Theorem 2. Suppose N=1, assumption (A3) holds asnd
weC2(2)AC%(T) is a solution of the differential inequality.

\div(A(x,u,Du) Dul<a |Dul®

Then the strong meximum principle holds, i.e. lul is constant
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if |u| attains its maximum in Q.

Proof: Theorem 1i) follows from Stampacchia’s maximum
principle [9, p. 39). Theorem 1ii) and Theorem 2 are a conse-
quence of Hopf ‘s strong maximum principle [4, p. 34]. Por Theo-
rem 2 one hag to interpret the right hand side of (2) as a li-
near term in 1.'>(lul2 ) with locally bounded vector-coefficient

a sign u Du.

Remark: Theorem 1 applies in particular to the examples
above, Furthermore, Theorem 1 implies that the homogeneous Di-
richlet problem for system (1) has only the trivial solution
u= 0 in [B}2(0)nL®(anm

Let us now try to prove maximum principles for the compo-
nents uk of u, This will not be possible without suitable as-
sumptions on the structure of the right hand sides of syétcm
(1). Since we shall concentrate oﬁ an arbitrary but fixed com-
ponent u* in the sequel, let k € i1,...,§] be fixed., As the si-
tuation demands we shall require one of the following assump~

tions.
(A4) There exists & number a’ ¢ R’ such that

lfk(x,u,p)l P e.'lpkl2 for x,u,p € Q, By(0), RO,

Notice that the requirement "(A4) holds for every k=l,...,N"
is considerably stronger than (Al). This is why Theorem 31)
contains an apparently stronger result. Other suitable assum~

ptions are sign-conditions on tk:.

(A5) sign u* sign t¥< 0 for x,u,p ¢ Q , By(0), R,

or

(A6) sign uk sign szo for x,u,p ¢ Q , Bu(o), R..nn.
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Assumption (A6) is easily verified for examples 1 amd 2, Kow we

can formalate the following results comcerning the component \zk;

Theorem 3.
1) Le% u be a bounded weak solution of sysiem (1) op & bounded
domain O . Under essumptions (A3) snd (A4) the component u® st-
taing 1ts mexiual wotulus on 90 , L.s. sup lu‘l = mup lu*l .
If furthermore we 6?(2)AC°(R), then the strong maximum prin-
ciple holds for uk: uk is constant in Q , if hlkl attains its
maximum in Q

1i) Part i) remaims valid if (A4) is replaced by (AS5).

i11) Let uwF¢ 62(Q)AC%(T) be a nonnegative component of & so-
lution to system (1) on & bounded domain Q and suppose that (A3)
and the sign-condition (A6) holds. Them u® attuing itg minjigum
on 80 snd the strong minimum principle bolds for u': a* is
constent in Q , if u, attaing its minimum in 0 . .

Broof: Part i) follows from the observation that u* is a
solution of the differential inequality laiv(A(x,u,Du) vub)| <
4 all Vu|2, and from Theorem 2. In case ii) we have
~aiv(A(x,u,00) ¥ ((w5)%) £ 0, 1.e. 1u¥| attains 1ts meximum on 2Q..
For iii) one has to use the nonnegativity of uk and assumption
(A6) to conclude -div(A(x,u,Du) vuk)| Z0, whenoe the desired re-

sult follows.

In view of the examples sbove, assumption (A6) appears to
be sensible. If assumption (A6) holds for all components k =
= 1,...,N we have the following corollary.

Corollary 4: Let ueC2(0)nC%(H) be a solution of system
(1) on a bounded domain O . Suppose (A3) holds as well as the
sign condition (A6) for every k=l,...,N3 and that none of the
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componenty o of « chengeg sign in Q . Then for each k=l,...

el ® P St s 10XL sttadne 1te miniwum on the boundery,

and _the rtisng miniwam principle holds: |uw¥| is constent in Q,

ST s

it lukl attaing its minioum in Q .

Romarkg: The nonnegativity of uk, which was required in

Theorem 31iii), can sometimes be verified. As it was kindly
pointed out to the author by Professor J. Frehae, systems ot
type (1) oceur in stochastic impulse control and there the
sign of nk i known to be positive. In general, however, it is
hard to verify the assumption of Corollary 4 that no component
of u changes sign. In spite of this apparent disadvantage, Co-~
rollary 4 has an interesting converse: If a nonconstant compo-
nent u¥ of a solution u to system (1) attains its minimum in
£, then u* has to change sign in £ . This is indeed the ca~

se for the examples above.

Liouville theorems. Such theoreme have been derived for
gsolutions to nonlinear end quasilinear elliptic systems [ 3,6,
T+8,10,11,12,13] and their importence lies in their close re-
lation to the regularity question for solutions to system (1).

The following theorem is & special case of a result by M, Meier

[11)aend can be interpreted as being analogous to Theorem 2.
Theorem 5 [11]: Let w be a weak bounded solution of the

differential inequality (N=1)

(3) -aiv(A(x,w, VW) Vw) < & 1 Vwi? 1a R2,

Then w is constent.

As an immediate consequence we obtain a Liouville theorem

for the modulus of the solution u of system (1), which paral-
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lels Theorem 1. All one has to do is to look at (2) again,

Corollery 6: Let u be a weak bounded solution of system
(1) in Ra and suppose that (A2) holds. Then |u| is constant.

Remarks: This is the case for example 1, Liouville theorems
for the vector function u are stated elsewhere [3,6,8,10,11,12,
13], e.g. under assumption (Al) in RP with n>2 [11].

Acknowledgement: It is my pleasure to thank Prof. O. Johmn
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