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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

25.1 (1984) 

A NOTE ON CONTINUITY PRINCIPLE IN POTENTIAL THEORY 
J. KRAL 

Abstract: In this note a proof is given of a continuity 

property of Evans-Vasilesco type for general potentials of 

signed measures* 

Key words: potentials of signed measures, continuity prin

ciple, domination principle 

Classification: 31 C 99, 31 D 05 

Let X be a locally compact Hausdorff topological space 

and let K be a continuous function-kernel on X , i.e. an exten

ded-real-valued positive continuous (in the wide sense) function 

on X x X which is finite off the diagonal A * { E x , x 3 ; x € X ) 

and strictly positive on A . Given a Radon measure u * 0 on X 

we denote by 

Kp, : x H* JK(x,y)d^(y) 

its potential. Let us recall that K is termed regular (cf. [ 4 ] ) 

if it satisfies the following continuity principle: 

(C) If (A, •* 0 is a Radon measure with a compact support spt^t 

such that the restriction of K ^ to spt #, is finite and con

tinuous, then K^t is necessarily finite and continuous on the 

whole space X • 

In applications one often has to consider potentials of 
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signed measures} given a signed Radon measure V with the 

Jordan decomposition V « V -V" f then its potential is de

fined as Ky » Kf - Kv~ provided the difference is meaning

ful everywhere on X • Because of possible "cancellation of dis

continuities" it may happen that KV is finite and continuous 

even though KV , KV* are discontinuous (*f • £ 11,110 3 )• Thus 

the classical Ivans-Vasilesco theorem does not permit the con

clusion that a Newtonian potential of a signed measure y must 

be continuous everywhere provided its restriction to spt V is 

continuous. In a discussion on the occasion of the conference 

" 5»Tagung uber Problems und Methoden der Mathematischen Physik " 

(held in Karl-Marx-Stadt in May 1973) B. W. Schulze raised the 

question of validity of the extended Evans-Vasilesco theorem for 

Newtonian potentials of signed measures. Using refined tools of 

abstract potential theory I. Netuka was able to supply in[lo] 

a proof of the corresponding result valid for potentials on har

monic spaces satisfying the strong domination axiom (cf»[53)» 

It is the purpose of this note to give an elementary proof of a 

related continuity property of signed potentials for kernels K 

obeying the following domination principle: 

(D) If / t ^ 0 and M,2 * 0 are compactly supported Radon 

measures with finite potentials such that ^ A T ^ ^(f'o o n sP*/*i 

then Kit,* K/*p o n * n e wno^-e space X • 
«c~n 

Remark. The classical Riesz kernel [x,y]i-» Ix-yl 

on the Euclidean space X * Rn satisfies (D) provided 

0 <•*, * 2 <n (cf.[ll] , [ 7 3 and Theorem 1*29 in[93 )• 

The reader is referred to[ 6 J ,17 J ,[ 12 3 for general inves

tigation of potential kernels on locally compact spaces. 
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The following result was presented by the author in the Analy

sis Seminar (held in Prague in October 1975; the proof has been 

included inQ8 J , p. 245). 

Theorem 1. Let K be a strictly positive continuous function-

kernel satisfying (D) and suppose that V is a compactly supported 

signed Radon measure with a finite potential K V• If the restrict

ion of K V to spt y is upper semicontinuous, then KV is upper 

semicontinuous on the whole space. 

The proof is based on the following two known simple lemmas. 

Lemma 1. Any continuous function-kernel K enjoying (D) ia 

regular. 

Proof. Cf. C7j f Corollary 1.3»10 and proof of Proposition 

1.3.8. 

Lemma 2. If K is regular and (f* is a compactly supported 

Radon measure such that K ̂  is finite on spt ft* , then there 

exists an increasing sequence of Radon measures A n * A such 

that the potentials K ^ n are finite and continuous on X and 

converge pointwise (as n f oo ) to K^t on X . 

Proof. Cf. Proposition 4 in Chap. II in C 3 1 or Lemma 1.2*4 

in[?] . 

Proof of Theorem 1. If y* ia trivial, then Ky » -IV" 

is upper semi continuous on X • Assume V* (X) > 0 , fix z € X 

and 6 > 0 . Lemma 2 guarantees the existence of an increasing 

sequence of Radon measures ft, * y with finite continuous poten

tials such that 

(1) 0 < K{in t KV* as n f - o 

as well as the existence of a Radon measure AL with a continuous 
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potential such that 

(2) p* V , K(V~ - ^ ) ( z ) < l K / c 1 ( z ) . 

Consequently, 

(3) K ( y + ^ - ^ n ) * -K(V~ - ^ ) * 0 < £ K ^ 1 

and upper semicontinuity of the restriction of KV to spt y 

implies that also the restrictions of K(V+£fc- ft ) to spt V are 

upper semicontinuous. In view of (3), for n large enough 

K(V +/fc - / O * £ KAi o» spt y or , which is the same, 

(4) K(V + +^t) *t*fx • K^ n + KV"" . 

Noting that spt (V* + ffu ) c spt V we conclude by (D) that (4) 

holds everywhere on X . We have by (2),(1) 

~K^(z)< SK^Cz) - KV~(z) t 

K ^ U ) * Ky*(z) . 

Hence we get for f » £ X ^ - Kjb + K^ 

f (z ) < Ky (z) + 2^K^t1(z) . 

Since f is continuous, there is a neighbourhood V of z such 

that 

x€V ** f(x) < Ky (z) + 2£K£I(z) 

which together with (4) gives 

X6 V -» KV(x) < Ky(z) + 2£Ky*(z) 

and the upper semicontinuity of KV at z is established. 

Remark. The above theorem may fail to hold for regular 

kernels not fulfilling (D) (cf. example 9 in C8.3 , pp.246-248). 

R. Wittmann (cf• Cl3J ) has recently proposed a new approach 
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to continuity properties of signed potentials which avoids kernels 

and works in the framework of cones of functions* His scheme may be 

desribed as follows: 

Let* X be a locally compact Hausdorff topological space and 

P a convex cone of non-negative continuous functions on X contai

ning a strictly positive function. Denote by S the convex cone of 

all (finite) functions which are pointwise limits of increasing 

sequences in P • Let Q C X be a compact set and suppose that 

PQ C P is a convex cone posessing the following property: 

(DQ) ( P € P Q 9 q€ P , p - q on Q) -» p £ q on X . 

(Clearly, (DQ) implies the same property with any qcS.) Denote 

by P? the linear space of all functions f on X for which there 

exist sequences f p n ] $ (%,} *a P Q and an 8 € S sucn "tlaat 

(i) ' P n " <-n- * s CncN), 

(ii) lim ( p n - q A ( x ) « f(x) , xe X . 
n-*«o 

Then the following Wittmann's theorem holds: 

Theorem 2. Any fc P? is already continuous throughout X 

if only its restriction to Q is continuous. 

This theorem can be used to get the following corollary of 

Theorem 1: 

If K y is a finite non-trivial compactly supported signed po

tential whose restriction to spt V = Q is continuous, then Ky 

is continuous on the whole space. 

We denote by P the cone of all finite continuous potentials 

K^t of compactly supported Radon measures fu - 0 and by PQ the 

cone of all K^ec P with spt fi c Q . Clearly, (D) implies (DQ)» 

By Lemma 2 there are sequences Pn*-y» >
 qn€PQ w*tn Pn ^

 K v > 

qn f KV~ , so that ( pR- qn | *_K(V* + V**) 6 S . Theorem 2 then 
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impliea continuity of KV on X. 

R.Wittmann's proof of Theorem 2 is based on an application 

of the Hahn-Banach theorem as employed by H.Bauer in [ t ] . It 

is perhaps of interest to note that the direct approximation tech

nique used for the proof of Theorem 1 above may also be used to 

provide the following alternative of the proof of Wittmann's 

theorem. 

Proof* Let f be given by (ii), where p n f q n ^ P Q enjoy 

(i) for suitable scS ; we may clearly suppose that 8 is strict

ly positive on X . Let us equip the space of continuous functions 

g on Q with the norm 

II g||Q « inf [ X_ * 0 ; I g I & A s on Q } . 

The resulting normed spaceCg(Q) has dual Cg(Q) which is represen

ted by those signed Radon measures V» V"*" -V" on Q , for which 

f is (v + V~) - integjpsble over Q * The conditions (i), (ii) 

mean that the sequence fpn -
 qn}n*l converges weakly to f in 

CQ(Q) . Consequently, there is a sequence [un| , formed by finite 

convex combinations of the elements (pn-qn) which converges to f 

in Cg(Q); we may thus assume that llun - f|ls < 2"*-* (n€N). Apply

ing the same reasoning to the sequence 

C5) (Pn - *n).T«lc 
i k) *° 

we get for any k€ N a sequence \\i ) , of convex combinations 

of elements of (5) which converges to f in C„(Q) and satisfies 
s 

(6) llu* - f 1 s < 2~k~2 , n€N . 

Put un » an , n€N . The sequence ( u
n ] n »i converges to f 
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pointwise on X , because u, is a convex combination of ele

ments of (5) and (ii) holds. It follows from (6) that 

|un- un+-J 8 < 2~
n whence, in view of the definition of the 

norm lf..#JL "s » 

(7) un - 2~
n s t f , un + 2~

n s i f (n+oO) 

on Q . Since uR =- p*- q* for suitable p* , q*€P Q , (DQ) » 

implies that the sequence (u - 2~ns] is nondecreasdng on X 

and the sequence (u + 2~nsj is nonincreasing on X , so that 

(7) holds on X . Note that, for any P ^ P Q and ere S the fol

lowing implication is true: 

(8) f £ <r- p on Q 4 f --{T- p on X . 

Indeed, the inequality un- 2~
n3-0""- p can be rewritten in the 

form p* + p-£ C + 2~ns + q* which, according to (PQ) , holds 

on X whenever it holds on Q . Using (7) one gets (8). Let 

now z be an arbitrarily fixed point of X . We have by (7) 

un(z) < f(z) + 2~n+1s(z) , 

whence we conclude by continuity of un that for suitable neigh

bourhood Vn of z 

(9) X € V n *=> un(x) < f(z) + 2~n+1s(z) . 

There is a sequence r-K€P such that r^t 3 (kt*o). Note that 

f < un + 2~
n+1s 

on Q by (7). Since the restriction of f to Q is continuous, for 

sufficiently large k 

f < u n + * " * \ 

on «, whence by (6) 
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f * un • 2~n+1 rk on X . 
n 

We have thus by C9) 

x € Y - • f C x ) * fCz) + 2~n+1sCz) + 2~ n - f l r, Cx) f 

n 

limsup fCx) -* fCz) + 2"*n4,1sCz) + 2~ n + 1 r^ Cz) * 
x - # z n 

* fCz) + 2~n*2sCz) 

for any n€ N . This proves that f is upper semicontinuous 

at s • 

Remark. Note that local compactness of X was not needed 

in the above proof. 
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