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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

25,1 (1984) 

CHARACTERIZATION OF THE GENERATORS OF C0 SEMIGROUPS 
WHICH LEAVE A CONVEX SET INVARIANT 

H. N. BOJADZIEV 

Abstract; Ue consider the problem: Given a Banach space X,a 
closed convex, subset K € X uith nonempty interior and a CD semi­
group Tt (i i 0) on X uith generator A,find necessary and suffi­
cient conditions for A so that T̂ K £ K for every t $£ O.To obtain 
a characterization of such generators ue introduce tuo boundary 
principles uhich are generalizations of the minimum principles 
used in f1] ,£33,1.8.1 to characterize the generators of positive C0 
semigroups on some ordered Banach spaces. 

Kay uords: Convex set,tangent functional,linear operator, 
dissipative operator, CQ semigroup,order unit space,positive semi­
group • 

Classification; 47B44,47B55,47005,47H20. 

I.Introduction. Uhen given a C semigroup T. (t = 0) on a 

Banach space X,an important problem is to connect the properties 

of T. uith those of its generator A.It is uell-knoun,for example, 

that T. is a contraction semigroup iff A is dissipative.Uhen X is 

real and partially ordered by a proper uedge K,an interesting ques­

tion is under uhat conditions on A the semigroup T. is positive 

(i.e. TfcK £ K for every fc 2 0) and also uhen T. is a positive con­

traction semigroup.This problem originates from the probability 

theory uhere positive contraction semigroups on function spaces 

are called Markov serai groups.Thair generators uere characterized 

by Feller ( £9.7,see also Oynkin i?J, 2.20 ). In C13J Phillips 

studied positive contraction semigroups on Banach lattices and in­

troduced the class of the so-called dispersive operators as genera­

tors of such semigroups.They uere defined in terms of an appropri­

ate seminorr connected uith the- positive cone.In this setting a 
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detailed further investigation uas done in the papers C10J ,£15} • 

During the last ten years,other papers appeared.,this tine dsailing 
uith positive CQ semigroups on B* algebras (see £8J ,f4j ,£3J )• 

Some characterizations of their generators uere obtained by means 

of positive tangent functionaxs. 

In the tuo recent papers CU , £5 J, the authors give a mors gene­

ral treatement of the subject,considering positive semigroups on 

real Banach spaces,partially ordered by a cone uith nonempty inte­

rior. 

Houever,it seems that the most natural formulation of the prob­

lem is this: Given a real Banach space X,a closed convex subset 

K -r X and a C semigroup T. (t 2 0) on X uith generator A,under 
uhat conditions (necessary and sufficient) on A does that semigro­

up laave K invariant? 

Uhen. K is a convex uedge,ue obtain the case of positive semigro­

ups and uhen K is the unit ball ue obtain the case of contraction 

semigroups. 

Here ue consider this question uhen K has a nonempty interior 

and give a characterization of A in terms of tangent functionals 

to K.This leads to a natural generalization of the classical maxi­

mum principle (used in the potential theory).Ue also introduce the 

ueak and strong boundary principles uhich generalize the minimus 

principles used in L13,C31, L8J • 

-*• Notations. Throughout X stands for a normsd real line-

ax space uith dual X'.For a convex subset C -=. X ue denote by dC 

its boundary,by IntC its interior and by C«C UdC its closure.If x 

belongs to dC,ue denote by T(x,C) the set of tangent functionals 

to C at x: 

CD T(x,C)-{f6X«:f^0, f(C) £f(x)}. 

Uhen the interior of C is nonempty,for every xa dC the set T(x,C) 
is nonempty according to lemma 7.2 and theorem 7*2 in Cl2l,ch*II • 

for xe X ue also denote: 

(2) d(x,C)» inf (̂fx-ytf : y* ci . 

Ue shall consider a fixed convex set K £ X uith IntM 0 and al­
so a fixed element e6lnt K. Ue denote by q the support function 

of K-e .For the properties of q ue reffer to 112J,ch.II,lemma 7.1 
Ue also consider the set: 
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(3 ) P« [rex*i f (K-e) >. -1 } . 

ttota that as e £ l n t K, 0 * I n t ( K - e ) and hence q i s continuous. 
There exists r > 0 such that q(x) h. r /i x W (x £- X ) . l t fol lous that 
P is a bounded subset of X *: 
I f x € X, q ( x / ( i | x l | ) ) i 1,so i f f € P, ~f (x) £ r ff x If .Taking a l ­
so -Xv, ue obtain f ( x ) £ r I x « .H*nca \ f ( x ) l 6 r h f l , I f l i r . 

Therefore, according to Alaoglu ts theorem (sea L6J , V . 4 . 1 . ) , t h e 
sst P is compact i n the topology of pointuise convergence of nets. 

Throughout ue denote by A a l inear operator uith domain U ( A ) £S. X* 
such that s£D(A).Ue put: 

(4) c«c(A,K,e.)-- sup [ f(Ae>: f £. P \ 

III .The boundary principles. 

Definition 1. Ue say that the operator A satisfies the ueak 

boundary principle (u.b.p.) uith respect to K,iff for every x in 

0(A)ndK there exists f 6 T(x,K) such that f(Ax) £ 0 . 

Nou ue prove: 

Theorem 1 . The fol louing conditions are equivalent: 

(5) The operator A sat is f ies the u.b.p. uith respect to K ; 
(6) For every x € D(A), X £ K«KUdK, there exists r&P ui th 

f (e -x )»q(x -a ) and f(Ax) + ( q ( x - e ) - l ) f ( A e ) £ 0 ; 
(7 ) There exists u s£ c(A,K,e) such that for every x 6 D ( A ) , 

x ? K, there is a f 6 P uith f (e-x)-*q(x-e) and 
f(Ax) + ( q ( x - e ) - l ) u £ 0 ; 

(8) If I > 0, tc(A,K,e) <L 1, x t: D(A) and x-tAx € K,then x £ K; 
(9) There exists u = c(A,K,e) such that if t > 0, tu <-. 1,x€ D(A) 

and x-tAx 6 K, then x 6 K ; 

Proof: (5) ~* (6) : Let x £ D(A)r> (X \ K) .Then x-e 1 K^e 
and hence q(x-e) > I.Put a«q(x-e) . As q( (x-e)/a)=-1, (x-e)/a is 

in d(K-e)* dK-e and y*(x-e)/a+e 6 dK.According to (5) there 

exists f & T(y,K), f(Ay) ĵ  0,i.e. f(Ax) + (a-l)f(Aa) £ 0. For 

f ue also have: f(K) .£ f(e) + f(x-e)/a .As e £ Int K, ue see 

that f(e-x) > 0.Multiplying f by a positive number,ue can assu­

me that f(e-x)*a.Hence f(K-e) £ -1, f 6 P. (6) -* (7) and (8)-> 

(9) are direct, putting u»c(A,K,e). 
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Nou (7) -> (9): Let x e D(A),t > 0,tu-t: 1 (u - as in (7>) and 
x-tAx € K.Suppose x e K and let f be as in (7).Ue have: 
f(x-tAx-e) £ -1,hence -tf(Ax)£ -1 + f(e-x)- a-1 (a-q(x-a) > 1). 
From (7): -tf(Ax) 4 (a-l)tut so tu > 1 - a contradiction.In the 
same uay (6) implies (8), as f(Ae) & c(A,K,e) (f^ P). 

It remains to prove (9) —* (5).First ue fix t > 0, tu *c 1 (u -
as in (9)).Let x 6 0(A) f\ dK.Then x-e e d(K-e) and q(x-a)*1. 
For every s > 1, s(x-e) Z K-a as q(s(x-e)) > T.Hence s(x-«}+ • 
is not in K and (9) implies that y • s(x-e) - stA(x-e) - tAe 
is not in K-a • According to lemma 7.2 in £12],ch.II,or theorem 
0.2.4. in L117,there exists a nonzero f € X• separating K-a 
and y .For f ue have f (K~e) =. fQ(yiB) and as 0 & Int(K-e),ue 

S S S S 3 

obtain fa(y_) ̂  O.Ue can. assume that f
a ( y s ) * ""

1 ano* ao * e p-
As P is compact in. the topology of pointuise convergence of nets, 
the net f uith s in the dounuards directed set (1, <oo) has a 
convergent subnet uith limit ffc 6 P.For convenience ue assume 
that f -> f. poinuise as s -> 1 + . Ue have y -* x-e-tAx (s -* 1+) 
and therefore: 
ft(K-e) > -t. ft(x-e)-tft(Ax) , ft(K) i ft(x)-tft(Ax) and as x€K, 
ft(Ax) g 0 . 

Nou ue let t -J» 0+ (in the dounuards directed set of positive real 
numbers ) and assume as above that f.—> f £ P.We obtain: 
f(K) £ f(x), f(x-e)»-1-hence f*- 0,f ^ T(x,K).From above ua also 

obtain f(Ax) >. 0. The proof is completed. 

We shall introduce also a strong boundary principle fe.b.o.). 
Definition 2. Ue say that A satisfies the strong boundary 

principle uith respect to Ktiff for every x £ d K r ) 0 ( A ) and every 
f£T(x,K) ue have f(Ax) > 0. 
As Int Kf- 0$ T(x,K)j^ 0 for every x£dK and hence the s.b. p. 

"implies" the u.b.p..Ue have also the following criteria: 

Lemma 1. The follouing are equivalent: 

(10) A satisfies the s.b.p. uith respect to K; 

(11) For every x * D(A)»n(X\K) and every f€ P uith 
f(e-x)»q(x-e) ue have f(Ax) + (q(x-e)-1 )f(Ae) >- 0 . 

Proof: (10) —> (11): Let x c D( A) r\ (X \ K) and f6 P,f(e-x)» 
q(x-e)»a > 1. Then y-*(x-e)/a+e £ dK r.D(A) and from f(K-e) £ -1 
ue obtain f(K) >. f(e)-1-f (e)-q((x-e)/a)»f(y) . Hence f €: T(y,K). 
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According, to (10) ue have f(Ay ) > 0 f i . e . f (Ax)+ (a - l ) f (Ae) S 0 . 
Hoy ( 1 1 ) - ? ( 1 0 ) : Let X 6 dKtl 0(A) and f £r T(x fK) .Then x-e 

is i n d(K-«) f hence q(x-e)«1 .For s .> 1 f q (s(x-e) ) ;> 1 f so s(x-e) i s 
not in K-e and y«s(x-e)+e £ (X ^ K}H D ( A ) .Let f e P, f(e-x)»q(x-e)-*1 
be as i n (11).Then f (K) £. f ( « ) - f ( a - x ) » f ( x ) f h e n c e f£T (x f K).From 
(11) ua alao have f(Ay) + (s-1.)f(A») £ 0 fuh ich implies f ( A x ) ^ 0 . 

Lemma 2 . Let X be complete and K be closed.Then A sat is f ies 
the s .b .p . with respect to K i f and only i f : 

(12) lim d(x+tAx f K)/ t - 0 for every x£dKr)0(A) . 
t-» 0+ 

This i s a straigh t foruard corol lary from lemma 7 .3 f ch .V I i n L l 2 j . 
See alao C17J. (Note that our de f in i t ion of tangent functionals 
d i f fers from that on p.53 in L12 J in the d i rect ion of the inequa­
l i t y .Ue uant f 6T(x,K) to be posit ive uhen K is a cone.) 

***• -J-n semigroups leaving K invar iant . I n th is section ue 
assume that X is complete and K i s closed.Let T \ ( t £ 0 ) be a C 
semigroup of operators on X (see L61 -V/T I I .1 . ) and l e t A be i t s i n ­
f in i tes imal generator . In th is case 0 ( A ) is dense in X and as Int K 
j- fj f t h e assumption e&D(A) t1 Int K is no loss of generality .Remind 
that the resolvent (1 - tA )" ' exists as a bounded operator on X and 
maps i t onto 0(A) for a l l s u f f i c i e n t l y small positive t • 

I n £17J Mart in considered the condition (5) and proved that i t 
(and hence (10 ) f ( l 2 ) . ) implies the invariance of K for (1 - tA) ( for 
a l l t > 0 s u f f i c i e n t l y small) and hence for Tfc ( t ^ O ) . H e proved th is 
for general evolution systems. I n the case of C semigroups ue com­
plement h is resul t in the fo l louing theorem. 

Theorem 2 . The conditions (5) f (6) f (7) f (1 0) , (11) f (1 2) and ( l 3 ) f 

(14) (see belou) are equivalent' 

(13) ( l - tA)~1Ki= K for a l l t > 0 s u f f i c i e n t l y small ; 
(14) T K £ K for a l l t ^ 0 . 

I f the condition: 

(1&) For every x6D(A)/1dK there exists f € T ( x f K ) u i th f(Ax) > 0 
holds,then ue have: 

(16) T . x 6 I n t K for a l l t £ 0 and a l l x6 I n t K such that T x is 
* • s 

in 0(A) uhen s > 0 . 

I n par t icu lar : 
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(17) Tt(D(A)/l Int K) £ D(A)/1 Int K for all t £ 0 . 

Finally,if (5) holds and A( e)-*0, then: 

(18) T.K £ K for every t£0,uhere 0 £ s £ 1 and K =sK+(l-s)e . 
L 8 3 S 

Proof. Having in mind theorem 1 and lemmas 1 and 2,ue sae 

that for the first part of the theorem ue need only shou (13)~> 

(14) —*(10). According to the uell-knoun representation: 
Ttx» lim (l-(t/n)A)"nx for every x^X and t £ 0,(13) impliaa 

n-> oo 
(14) . Suppose nou that x£D(A) r l dK and f6T(x,K).If (14) holds, 

Ttx £ K (t £ 0) and therefore f(Ttx) = f(x) uhich implies: 

f(Ax)=f( lim (T.x-x)/t) £ 0 . 
t-> 0+ 

Let nou (15) hold and x £ l n t K be such that T x € 0(A) for a l l 
s > 0.Suppose T.x 6 dK for some t ^ O .Ue may assume that t is the 
smallest positive number uith this property ( i . n . T x e I n t K 
uhen 0 1 s ^ t ) .Let f e T ( T t x , K ) uith f(AT tx) > O.f"or the d i f f e -
rentiable real function h (s ) - f (T x) (O^s .£ t ) ue have h ( s ) ^ h ( t ) 
uhen 0 tk s «-: t.Hence h ' ( t ) * f (ATfcx) -£ 0 - a contradict ion. 

F i n a l l y , l e t A satisfy the u.b.p. uith respect to K and A(a)=-0. 
Then i t i s easy to see that A sat is f ies the u.b.p. ui th respect 
to K for every s betuean 0 and 1.Really, l e t s > 0,s <•> 1 and l e t 
x e dK « sdK+(1-s)e.Then y » (x- ( 1-s)e) /s e. dK and there exists 
f £ T ( y s , K ) uith f (Ay g )£ .0 (uhen x&D (A);then yg6.D(A) too as D(A) 
is a l inear subspace).It follous that f ^ T ( x , K s ) and f(Ax) £ 0 
as Ax»Ay / s . 

The proof is completed. 
Remark. I f (15) holds,then obviously Q£dK.Uhen 0 6 dK condi­

tions (15) and (16) can be modified so that the implication (15) 
-* (16) to hold again.Considerations are l e f t to the reader. 

V. Dissipative operators. Let X be real and normed,let K be 
the unit ba l l in X: K * I x £ X : KxH .= i j and l e t a»0.Then for eve­
ry x 6 X, q(x)s-|xlf .The condition (6) takes the form: 

(61 ) For every x D(A) uith II x If > 1 there exists ferX' such that 
f(K) £ - 1 , f ( x ) = - | xjl (hence II f// =1) and f(Ax) £ 0. 

As A is l inear , the condition f x l ? 1 can be replaced by just 
x^O and taking -x instead of x ue obtain the above condition i n 
the form: 
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( 6 , r ) For every x 6 D(A),x-io there exists f 6 X * ui th «/f// »1 , 
f ( x ) » J|x>/ and f(Ax) 4 0 . 

This i s the uell-knoun d e f i n i t i o n of d issipat ive operators.Uith 
x , f as in ( 6 ' ' ) ue have: 

(21) flx/1 » f ( x ) £ f ( x ) - t f ( A x ) - - f ( x - t A x ) 4 . /Ix-tAx // for every t £ U. 

Conversely, (21) implies ( 6 , f ) according to theorem 9.5,ch. l / in 
L63 or theorem 5 . 1 , c h . I l i n £123 . 

In th is case theorem 2 represents tne uell-knoun result (see 
L6.1, ch .vT I I , coro l la ry 1.14) that a C semigroup T t ( t = 0) on a 

real Banach space is a contraction semigroup i f f i t s generator A 
is d iss ipat ive . 

V I . The case of order un i t space. In th is section ue use 
the terminology of £11 J.The sett ing i s similar to that in £ U , £ 5 1 . 

Let X be a par t i a l l y ordered real l inear space uith proper cone 
K of positive elements. Let e be an order uni t and //, */ - the order 
unit seminorm ,Ue assume that I] A) is a norm ( th is is so, iff the 
ordering is almost Archimedean - see £111,p.12 and p. 116) and 
that K is l i n e a l l y closed ( this is s o , i f f the ordering is Archime­
dean - see £113 ,1 .1 .4,p.1i3) • In this case e 6 l n t K.As usual,ue 
ur i te x £ y (or y £ x) i f f x-y 6 K. The set P (see (3)) consists 
of a l l positive l inear functionals f on X uith f ( e ) | 1 (proof: as 
K is a cone,if f € P , t f (K) £ -1 + f (e) for every t .> 0, hence f is 
positive and as 0 6K, f (e) 4 1; every positive functional i s boun­
ded - see theorem 3.7 .2 ,p.118,£11],so the converse fo l lous)• 

The support function q of K-e is given by: 

(22) q(x)-*inf ( t > 0: te+x £ 0 $ (x 6 X) . 

And x £ 0 i f f q(x)-*0. 
It is easy to see that if xe dK,the set T(x,K) consists of all 

positive linear functionals f ̂  0 uith f(x)=0: If f*T(x,K),ue 

have f(K) £ f(x)/t for every t > 0 ,hence f is positive,as x and 

0 are in K, 0 £ f(x) B= 0,hence f(x)=-0.The converse is trivial.Note 

also that if f «-P, f^O, then /| f// -=f(e)j/0 (see 3.7 .2.,p.118,2.11 J) .It 

follous easily that dK consists of all x£ K for uhich there exists 

fe P,f7-0,uith f(x)»0. 

Ue denote for every x & X: 

(23) p(x)» inf { t 6 R: te-x 2 0 } (R - the reals) . 
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In this setting from theorem 1 ue obtain: 

Corollary 1. For the operator A the follouingi conditions 

are equivalent: 

(24) If x €D(A) A dK,there exists f € P,f/0,f(x)*0 and f(Ax) >- 0; 

(25) If x^D(A) and p(x) > 0 there exists f € P,f(a)«1,f(x)«p(x) 

and f(Ax) •# f(Ae)p(x) ; 

(26) If x6D(A) and q(x) > 0,there exists f 6 P, f(e)»1, 

f(x)» -q(x) and f(Ax)+q(x)f(Ae) £ 0; 

(27) There exists u Z c(A,K,e) such that if x 6 D(A),q(x) > 0, 
there exists f € P, f (e)»1, f (x)» -q(x) and f(Ax)+q(x)u £ 0; 

(28) If t > 0,tc(A,K,e) * 1,x * D(A) and x-tAx £ 0,then x £ 0 J 

(29) There exists u £ c(A,K,e) such that if t >» 0,tu <: 1 ,x € D(A) 

and x-tAx £ 0,then x £ 0 . 

Proof. First ue shou that the condition (6) of theorem 1 

takes the form (26).Let (26) hold and let x«D(A), X€K»K.Then 

q(x) > O.Lat f be as in (26).From f(x)» -q(x) and f(a)«1 ue ob­

tain f(e-x)»q(x-e) > 1 as q(x-e)»q(x)+1 (a diract verification) 

and (6) follows.Conversely,let (6) hold and let x € D(A),q(x)> 0. 
Then q(x-e)*q(x)+1*a > 1 and hence x £ K.Let f be as in (6).Than 

f € P and f(e-x)»q(x-e)»a.Ue have (x-e)/a+e € dK and as f is tan­
gent to K at that point (straightforward),f((x-e)/a+e)«0.Hence 

f(x)+q(x)f(e)»0.As f,/o,f(e) > 0 and dividing f by f(a) ue obtain 

the necessary functional. 

It remains to shou that (25) and (26) are equivalent.This fol­

lows from the observation that if p(x) > 0,then p(x)»qfrx) and if 

q(x) > 0,then q(x)-*p(-x) .The proof is completed. 

We included (25) in the above set of conditions uith a defini­

te aim.It is a direct generalization of the uell-knoun weak maxi­

mum principle,upon uhich ue shall comment in the next section* 

Sometimes it is convenient to consider anothar conditions 

equivalent to those in corollary 1. 

Proposition 1. The conditions (24) - (29) are aquivalent 

to (cf. f.51) r 

(30) q(x-tAx) > (l-tc)q(x) for every xt-D(A) and every t > 0, 

tc -t- 1 (c»c(A,K,e)) ; 
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(31) There exists u £ c(A„Kta) such that: 

q(x-tAx) = (l-tu)q(x) for every xfcD(A),t > 0,tu .c 1 . 

Proof: Let x £ D(A) and t > 0,tc <z 1 .Let q(x) > 0 and f be 
as in (26) (if q(x)»Of (30) holds).Then: 

t(f(Ax)+q(x)c)-f(tAx-x+(l-tc)x) £ O.Ue also have -f(y) ̂  q(y) 

(as q(y)a+y i» 0) for every y «£ X.Uith y«x-tAx (30) follous. 

In the same uay (31) follous from (27).Conversely, (30) and 

(31) obviously imply (28) and (29) respectively. 

Let a»max(c,0) or a-max(u,0) (u - as in (31)).Then for t > 0, 

ta ̂  1 we put s-*t/(l-ta) and (30). (31) take the form: 

(32) q(x-s(A-al)x) £ q(x) for every xeD(A) and every s > 0; 

uhich means that A-al is q-dissipative (cf*£l3 )• 

Corollary 2. Let X be complete and let T. (t=0) be a C se­

migroup of operators on X uith generator A.Then each of the con­

ditions (24) - (32) implies the positivity of T. and vice-versa. 

The form of the strong boundary principle,the form of the con­

ditions (11) and (12) in this case and other details are left to 

the reader. 

VII. The maximum principles. Lat C(fl) be the real Banach 

space (with the "sup" norm) of all real continuous functions on 

a compact topological space PI. Let A (0(A) S=L C(fl)) be a linear 

operator. Consider the condition: 

(33) Far every u£fl and every x € D(A) such that: 
x(u)»sup I x(v) : v € fl j s 0,us have Ax(u) £ 0. 

If A satisfies (33),then its resolvent (i-tA) is defined on 

(i-tA)D(A) and is a positive contraction operator there (uith 

respect to the usual order: x <& 0 when x(u) £ 0 for u *z fl) for 
every t > O.If A is the generator of a C semigroup Tt(t -2 0) on 

C(Pl),the same follous for T. and vica-versa (see Dynkin L 7J, 2.20)« 
It uas noticed that this is true also uhen A satisfies: 

(34) For every x&D(A) such that l»sup/x(v): v€flj > 0 there 

exists u £ fl uith x(u)»l and Ax(u) *=. 0. 

These conditions can be considered uhen PI is locally compact 

and D(A) is C (fl) (the bounded real continuous functions on PI uith 

the "sup" norm,uhich are zero at infinity),as is done in the po­

tential theory,uhere (33) is knoun as the (strong) maximum prin-
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ciple and (34) as the weak maximum principle (see El4j ,[21J ) . 

In £4} the strong maximum principle was generalized for operators 

an non-unital B -algebras and in C 3 J the weak maximum principle 
was generalized for operators on B -algebras uith a unit. 

In the case of operators on ordered linear spaces,the condition 

(25) in the preceding section may be considered as a generalizati­

on of (34).Further generalizations are (6),(7) and (11). 

fill. Sowe additional remarks. Let X be complete and let A 

(D(A)^X) be a single-valued non-linear dissipative operator (uith 

values in X) in the sense ofT2J ,ch.II,§ 3,such that: 

BTA) £ (i-t-A)D(A) for every t > O.Then the limit: 

St*» liro (l-(t/m)A)~nx exists for every x^-D(A) and t > 0, 

and is a contraction semigroup on D(A) (in the sense of L2],ch.III, 

1.1 ;see also theorem 1*3 on p. 104 thera) • 

Proposition 2. Let K be a closed convex subset of D(A) uith 

a non-empty interior and let e£D(A) r) Int K.Then each of the con*-
ditiona (6),(7),(11) implies StK c K for all t ^ 0. 

The proof follows from the observation that (6) implies (8) (or 

(7) implies (9)) in theorem 1 without using the linearity of A. 

The conditions (6),(7),(11) can be modified for multilinear cpe1-

rators and the above proposition can be generalized for such ope­

rators in an obvious way (via theorem 1.3 on p.1.04 in I 23 )• 
If X,K,e are. as in section VI, D(A)-»X and X is complete-,the con­

dition (26). (or (27)) in corollary 1 implies the positivity of S^ 

(t ̂ .0),and if A is odd (i.e. A(-x)*-Ax for x£D(A)),the same fol­

lows from (25) . 

The question when a closed set K is invariant for a given (non­

linear) semigroup (evolution system,flow) was studied by many au­

thors.The most often used condition for the generator which impli­

es the invariance is (12) (with the necessary modifications for 

flows).This condition originates from NagumoCl93 .The progress in 

this subject can be traced in L 121 ,ch.VI;L16],§5; and also I 113 t 

I 183,120l,f22J,£ 231 .See also the references there. 
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