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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
25,1 (1984)

CHARACTERIZATION OF THE GENERATORS OF C, SEMIGROUPS
WHICH LEAVE A CONVEX SET INVARIANT
H. N. BOJADZIEV

Abstract: We consider the problem: Given a Banach space X,a
closed convex subset K € X with nonempty interior and a Cg semi-
group Ty (% = 0) on X with generator A,find necessary and suffi-
cient conditions for A so that T4K & K for every t = 0.To obtain
a characterization of such generators we introduce two boundary
principles which are generalizations of the minimum principles
used in [1],[3],[8] to characterize the generators of positive C,
ssmigroups on some ordered Banach spaces.

Ka% words: Convex set,tangsnt functional,linear operator,
dissipative operator, C, ssmigroup,order unit space,positive semi-
group.

Classification: 47844,47855,47005,47H20.

I.Introduction. When given a C_ semigroup T, (t=0) on a
Banach space X,an important problem is to connect the properties
of !t with thcse of its generator A.It is well-known,for example,
that T
real and partially ordered by a proper wedge K,an interesting ques-
tion is under what conditions on A the semigroup Tt is positive

t is a contraction semigroup iff A is dissipative.When X is

(i.s. TtK € K for every t = 0) and also when Tt is a positive con-
traction semigroup.This problem originates from the probability
theory where positive contraction semigroups on function spaces

are called Markov semigroups.Their generators were characterized

by Feller ( [9],see also Oynkin L7], 2.20 ). In L13] Phillips
studied positive contraction semigroups on Banach lattices and in-
troduced the class of the so-called dispersive opsrators as genera-
tors of such semigroups.They were defined in terms of an appropri-
ate seminorr conmected with the. positive cone.ln this setting a
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detailed further investigation was done in the papers [10] ,[15] .

During the last ten years,other papers appeared,this time dealing
with positive Cp semigroups on a* algsbras (see [8) ,[4] ,[3] ).
Some characterizations of their generators were obtained by aeans
of positive tamgent functionaus.

In the two recent papers [1] , (5],the authors give a mors gene-
ral treatement of the subject,considering positive semigroups on
rsal Banach spaces,partially ordered by a conas with nonempty inte-
rior.

However,it seems that the most natural formulation of the prob~-
lem is this: Given a real Banach space X,a closed convex subset
K &€ X and a C° semigroup Ft (t 2 0) on X with gensrator A,under
what conditions (necessary and sufficient) on A does that semigro~
up leave K invariant? )

When K is a convex wedge,we obtain the case of positive semigro-
ups and when K is the unit ball we obtain the case of contractiom
semigroups.

Here we consider this question when K has a nonempty interior
and give a characterization of A in terms of tangent functionals
to K.This leads to a natural generalization of the classical maxi-
mum principle (used in the potential theory).We also introduce the
weak and strong boundary principles which generalize the minimum
principles used in £13,03], (8] .

I1. Notations. Throughout X stands for a normed real line-
ar space with dual X'.For a convex subset C & X we denote by dC
its boundary,by IntC its interior and by C=C vdC its closure.lf x
belongs to dC,us denote by T(x,C) the set of tangent functiomals
to C at x:

(1) T(x,C)=ffexr:rdo, £(C) Z F(x)}.
When the interior of C is nonempty,for every x & dC the set T(x,C)
is nomempty according to lemma 7.2 and theorem 7.2 in £121,ch.Il .
For xe X we also denote:

(2) d(x,C)= inf fUx-yy : ye C}§.

We shall consider a fixad convex set K £ X with IntKf § and al-
80 a fixed element e €Int K. We denote by g the support functiom
of K-e .fFor the properties of q we reffer to [12],ch.II,lamma 7.9
We also consider the set:
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(3) P= frex': f(k-e)2 -1F.

Note that as ec¢Int K, O& Int(K-e) and hence q is continuous.
There exists r > 0 such that gq(x) £ r/ix!l (x & X).It follows that
P is a bounded subset of X':

If x € X, g(x/(xfxll)) £ 1,80 if f € P, -F(x) £ 1 x| .Taking al-
s0 -x, we obtain P(x)} £ rixll .Hence [Ff(x)l = rcixl , AfUE ¥ .

Therefore, according to Alaoglu‘s theorem (ses [6] ,v.4.1.),ths

a3t P is compact in the topology of pointwise convergance of nets.

.

Throughout we demote by A a linear operator with domain D(A) & X
such that e €D(A).Ws put:

(4) c=c(A,K,e)= sup { P(Re): P & P §

ITI.The boundary principles.

Definition 1. We say that the operator A satisfies the weak
boundar rinciple (w.b.p. with respect to K,iff for every x in
D(AYndK there exists f & ¥(x,K) such that Ff(Ax) 2 0 .

Now we prove:
Theorem 1. The following conditions are equivalent:

(5} The operator A satisfies the w.b.p. with respect to K ;
(6) For svery x € D(A), x € K=K UdK, there exists f & P with
f(e-x)=q(x-a) and f(Ax) +{q(x-e)}-1)F(Ae) = 0 ;
(7} There exists w 2 c(A,K,e) such that for every xe& D(A),
x & K,there isa fPe&P with f(e-x)=q(x-e) and
f(ax) + (g(x=-e)-1)v Z 0 ;
(8) 1f L >0, tc(A,K,8) < 1, x & D(A) and x-tAx € K,then x & K;
(9) There exists w Z c(A,K,e) such that if t >0, tw < 1,xe D(A)
and x-tAx € K, then x e K ;

Proof: (5) —> (6): Let x &€ D(R)n (X\K).Then x-a & K-e
and hence gq(x-8) > 1.Put a=gq(x-s). As q((x-e)/a)=1, (x-e)/a is
in d(K-e)= dk-e and y=(x-8)/a+e ¢ dK.According to (5) there
exists f & T(y,K), f(Ay) = 0,i.e. f(Ax) + (a-1)f(Ae) = 0. For
f we also have: f(K) 2 f(e) + f(x-e)/a . As e & Int K, we see
that f(e-x) > O.Multiplying f by a positive number,we can assu-
me that f(e-x)=a.Hence f(K-8)Z -1, Fe& P. (6) —> (7) and (8)—
(9) are direct, putting w=c(A,K,e).
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Now (7) = (9): Let x & D(A),t > O,tw< 1 (v - as in (7)) and
x-tAx € K.Suppose x € K and let f be as in (7).We have:
f(x-tAx-e) 2 =1,hence =tf(Ax)}2Z -1 + f(a-x)= a~1 (a=q(x-a) > 1).
From (7): -tf(Ax) £ (a-1)tw, s0o tw 2 1 - a contradiction.In the
same way (6) implies (8), as f(Ae) £ c(A,K,8) (fe& P).

It ramains to prove (9) —> (5).First we fix t >0, twe 1 (w -
as in (9)).Let x &€ D(A) N dK.Then x-e ¢ d(K-e) and q(x-e)=1.
For every s > 1, s(x-e) & K-a as q(s(x-e)) > %.Hence s(x-a)+ e
is not in K and (9) implies that Vg = s(x-a) - stA(x-s) ~ tAs
is not in K- . According to lemma 7.2 in [12],ch.Il,or theorem
0.2.4. in [11],there exists a nonzero L X' separating K-a
and y_.For f_ we have fs(f-s) 2 f (yg) and as 0 & Int(k-8),we
obtain fs(ys) < D.We can assume that fs(ya)- ~1 and s0 f_ € P.
As P is compact in the topology of pointwise convergence of nets,
the net f_ with s in the dounwards directed set (1, ©°) has a
convergent subnet with limit ft € P.For convenience we assume
that f’s-> ft poinuise as s -> 1+. We have Yg x-g-tAx (s - 1+)
and therefore:

ft(i-e) 2 -1= f’t(x-e)-tft(ﬂx) , ft(l-() z ft(x)-tft(Ax) and as x€K,

f‘t(Ax) Z0.

Now we let t -» 0+ (in the downuards directed set of positive real
numbers ) and assume as above that f,— f & P.Ue obtain:

f(K) =2 f(x), f(x-e)=-1,hence f# 0,f € T(x,K).From above we also
obtain f(Ax) Z 0. The proof is completed.

We shall introduce alsoc a strong boundary principle @.b.g.).
Definition 2. We say that A satisfies the strong boundary
principle with respect to K,iff for every x € dknD(A) and every
fe€ T(x,K) we have f(Ax) = 0.
As Int K @, T(x,K)£ g for svery x € dk and hence the s.b. p.
"implies"™ the w.b.p..We have also the follouwing criteria:

Lemma '1. The following are mquivalent:

(10) A satisfies the s.b.p. with respect to K;
(11) For every x € D(A)NA(X\K) and every f € P with
f(e=-x)=q(x-e) we have Ff(Ax) + (q(x-e)-1)f(Re) = O .
Proof: (10) = (11): Let x&D(A)A(X\K) and fe& P,f(e~x)=
q(x-e)=a > 1. Then y=(x-e)/a+te &€ dkND(A) and from f(K-e) 2 -1
we obtain f(K) 2 f(e)-1=f(e)-q((x-e)/a)=f(y). Hence f & T(y,K).
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According %o (10) we have f(Ay) Z 0,i.e. P(Ax}+(a-1)f(Re) = 0 .
Mow (11) = (10): Let x e dK N D(A) and f €& T(x,K).Then x-e

is im d(K-e),hance q(x-e)=1.For s > 1,q(s(x-e))> 1,80 s(x-8) is

not in K-e and y=s(x-e)+e € (X~K}N D(A).Let fe& P,P(a=x)=q(x~e)=1
be as in (11).Then f(K) = f{e)~-f(a-x)=Ff(x),hence £ & T(x,K)}.From
(11) uwa also have f(Ay)+(s-1)f(Ae) = O,uhich implies f(Ax)= 0 .

Lemma 2. Lat X be complete and K be closed.Then A satisfies
the s.b.p. with respect to K if and only if:

(12) lim d(x+tAx,K)/t =0 for every x ¢ dkND(A) . .
t> 0+

This is a straightforward corollary from lemma 7.3,ch.VI inL12].
See also [17]. (Note that our definition of tangent functionals
diffe’a from that on p.53 in[12] in the direction of the inequa-
lity.We want fe'ﬁ(x,K) to be positive when K is a cone.)

Iv. C, semigroups 1eaving K _invariant. In this section we
assume that X is complete and K is closed.Let Tt(tétn) be a Co
semigroup of operators on X (see [6]1 ,VIII.1.) and let A be its in-
finitesimal generator.In this case D(A) is dense in X and as Int K
# P ,the assumption e e€D(A)NInt K is no loss of generality.Remind
that the resolvent (I—i:A)"1 exists as a bounded operator on X and
maps it onto D(A) for all sufficiently small positive t .

In [177 Martin considered the condition (5) and proved that it
(and hence (10),(12)) implies the invariance of K for (I-tA)-1 (for
all t >0 sufficiently small) and hence for Tt (tz0).He proved this
for general evolution systems. In the case of CD semigroups we com-
plement his result in the follouing theorem.

Theorem 2. The conditions (5),(6),(7),(10),(11),(12) and (13),
(14) (see below) are squivalent’

(13) (I-tA)qKéK for all t >0 sufficiently small ;
(14) T,KEK for all tZ0 .

If the condition:

(15) For every x& D(A) N dK there exists fe& T(x,K) with f(Ax) > O
holds, then we have:

(16) T,xelInt K for all t Z 0 and all xeInt K such that Tx is
in 0(A) when s > 0 .

In particular:
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(17)  T(0(R)A1 1nt K) € D(A)NInt K for all t Z0 .

Finally,if (5) holds and A(e)=0,then:

(18) wtxsexs for every t Z0,whers D0£s8<1 and KS=SK+(1—s)e .

Proof. Having in mind theorem 1 and lemmas 1 and 2,we sae
that for the first part of the theorem we nsed only shou (13)->
(14) — (10) . According to the well-knouwn representation:

T, x= ni}:)(l-(t/n)A)‘nx for every x¢X and t = 0,(13) implies

(14) . Suppose mow that x € D(A) NdK and f e T(x,K).If (14) holds,
Tyx € K (t = 0) and therefore f(Ttx) Z f(x) which implies:
f(Ax)=fF( lim (T, x-x)/t) Z 0 .
t-> 0+

Let now (15) hold and x €Int K be such that T xeOD(A) for all
s > 0.Suppose Ttxe dK for some t >0 .We may assume that t is the
smallest positive number with this property (i.e. Tsx é Int K
when 0£s < t ).let fe T(Ttx,K) with F(ATtx) > 0.For the diffe-
rentiable real function h(s):f(Tsx) (0zs = t) we have h(s) > h(t)
when 0£s < t.Hence h'(b)=f(Ath) £ 0 - a contradiction.
Finally,let A satisfy the w.b.p. with respect to K and A(s)=0.
Then it is easy to see that A satisfies the w.b.p. with respect
to Ks for svery s between 0 and 1.Really,let s > 0,8 <« 1 and let
x € dK = sdK+(1-8)8.Then yss(x-(1-s)e)/s & dK and there axists
f‘éT(ys,K) with f(Ays);o (when x € D(A); then yseD(A) too as D(A)
is a linear subspacs).lIt follous that fe T(x,Ks) and F(Ax) = O
as AxaAys/s.
The proof is completed.
Remark. If (15) holds,then obviously 0 € dk.When 0 € dK condi-
tions (15) and (16) can be modified sao that the implication (15}
— (16) to hold again.Considerations are left to the reader.

V. Dissipative operators. Let X be real and normed,lst K be
the unit ball in X: K={ xe X : Ixl £ 15 and let e=0.Then for esve-

ry x € X, g{(x)=4x1ll .The condition (6) takes ths form:

(6') For every x D(A) with | xl > 1 there exists f& X' such that
F(K) 2 =1,f(x)= = | x)Il (hence Ifll =1) and f(Ax) = 0.

As A is linear,the condition || x{ > 1 can be replaced by just
x#0 and taking -x instead of x we obtain the above condition in

the form:
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(6'') For every x € D(A),x#0 there exists feX' with Ufj =1,
f(x)= lixi and f(Ax) £ 0 .

This is the well-known definition of dissipative operators.With
x,f as in (6'') wae have:

(21) fnxn =f(x)< f(x)-tf(Ax)=Ff(x-tAx) < I x-tAx | for every t = O.

Conversely, (21) implies (6'') according to theorem 9.5,ch.V in
L6] or theorem 5.1,ch.1l1 in [12] .

In this case theoram 2 represents tne well-known result (see
L6], ch.VIII,coroliary 1.14) that a Co semigroup Tt (t 2 0) ona’
real Banach space is a contracticn semigroup iff its generator A
is dissipative.

Vl. The case of order unit space. In this section we use
the terminology of [111.The setting is similar to that in [1],[5].
Let X be a partially ordered rsal linear space with proper cone

K of positive elements.Let e be an order unit and Il. !l - the order
unit seminorm.We assume that /|.! is a norm {this is so,iff the
ordering is almost Archimedean - see [11]1,p.12 and p. 116) and
that K is lineally closed (this is so,iff the ordering is Archime-
dean - see [111,1.1.4,p.13). In this case e e€lInt K.As usual,we
urite x 2 y (or y £ x) iff x-y € K. The sst P (see (3)) consists
of all positive linear functionals f on X with f(e)< 1 (proof: as
K is a cone,if fé&P , tf(K)Z -1+f(e) for every t »0O,hence f is
pasitive and as 0€K, f(e) £ 1;every positive functional is boun-
ded - see theorem 3.7.2,p.118,L11],80 the converse follows).

The support function q of K-e is given by:

(22) q(x)=inf{t > 0: te+x 209§ (x € X).
And x Z 0 iff q(x)=0.

It is easy to see that if x € dK,the set T(x,K) consists of all
positive linear functionals f# 0 with f(x)=0: If f&T(x,K),use
have f(K) = f(x)/t for every t > 0 ,hence f is positive,as x and
0 ate in K, 0 2 f(x) = 0,hence f(x)=0.The converse is trivial.Note
also that if feP,f#0,then I fll =f(e)£0 (see 3.7.2.,p.118,L11]).1t
follows easily that dK consists of all xé&K for which there exists
fep,fA0,with f(x)=0.

We denote for every x & X:

(23) p(x)= inff{t € R: te~x Z0 3% (R - the reals) .
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In this setting from theorem 1 we obtain:

Corollary 1. For the operator A the following conditions
are oquivalent:

(24) 1f x€D(R)AdK,there exists f & P,ff0,F(x)=0 and r(Ax) = 0;

(25) 1f x&D(A) and p{x) > 0 there exists f & P,f(a)=1,f(x)=p(x)
and f(Ax) £ f(Ae)p(x) ;

(26) 1f xeD(AR) and q(x) > O,there exists f & P, f(a)=1,
f(x)= =-q(x) and fF(Ax)+q(x)f(Re) = D;

(27) There exists w = c(A,K,e) such that if x € D(A),q(x) > O,

there exists f € P,f(e)=1,f(x)= -q(x) and f(Ax)+q(x)uw = 0;
(28) 1f t >0,tc(A,K,8) < 1,x € D(A) and x-tAx = O,then x = 0 ;

(29) There exists w = c(A,K,e) such that if t > 0,tw < 1,x € D(A)
and x-tAx = 0,then x =2 0 .

Proof. First we show that the condition (6) of theorem 1
takes the form (26).Let (26) hold and let x €D(A), x EK=K.Then
q(x) > O.Let f be as in (26).From f(x)= -q(x) and f(e)=1 we ob-
tain f(e=x)=q(x-e) > 1 as q(x-8)=q(x)+1 (a direct verification)
and (6) follows.Conversely,lst (6) hold and let x € D(A),q(x)}> 0.
Then q(x-e)=q(x)+1=a > 1 and hence x & K.Let f be as in (6).Then
f € P and f(e-x)=q(x-e)=a.Ws have (x-e)/a+te € dK and as f is tan-
gent to K at that point (straightforward),f((x-s)/a+e)=0.Hence
f(x)+q(x)f(e)=0.As f#0,f(e) > 0 and dividing f by f(e) ue obtain
the necessary functional.

It remains to show that (25) and (26) are squivalent.This fol-
lows from the observation that if p(x) > 0,then p(x)=qf~-x) and if
q(x) > 0,then q(x)=p(~x).The proof is completed.

We included (25) in the above set of conditions with a defini-
te aim.It is a direct generalization of the well-known weak maxi-
mum principle,upon which we shall comment in the next section.

Sometimes it is convenient to consider another conditions
equivalent to those in corollary 1.

Proposition 1. The conditions (24) - (29} are equivalent
to (cf. [5]):

(30) q(x=-tAx) = (1-tc)q(x) for every x «D(A) and svery t > O,
tc <« 1 (c=c(A,K,8));
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(31) There exists w = c{A,K,a) such that:
q(x-tAx) 2 (1-tu)q(x) for every xeD(A),t > 0,twc< 1 .

Proof: Let x € D(A) and t > O,tc'< 1.Let q(x) > 0 and f be
as in (26) (if q(x)=0, (30) holds).Then:
t(P(Ax)+q(x)c)=f(tAx-x+(1-tc)x) = O.We also have =-F(y) = q(y)
(as q(y)ety Z 0) for every y & X.With ysx-tAx (30) Pollous.
In the same way (31) follows from (27).Conversely, (30) and
(31) obviously imply (28) and (29) respectively.

Let a=max(c,0) or a=max(w,0) (w - as in (31)).Then for t >0,
ta < 1 we put s=t/(1-ta) and (30),(31) take the form:

(32) q(x-s(A-al)x) = q(x) for every xe D(A) and every s = 0;
vhich means that A-al is q-dissipative (cf.L[1]).

Corollary 2. Let X be complete and let T, (t20) be a C_ se-
migroup of operators on X with generator A.Then sach of the con-
ditions (24) - (32) implies the positivity of T, and vice-versa.

The form of the strong boundary principle,the form of the con-
ditions (11) and (12) in this case and other details are left to
the reader.

VII. The maximum principles. Let C(M) be the real Banach
space (with the "sup" norm) of all real continuous functions on
a compact topological space M. Let A (D(A) € C(M)) be a linear
operator. Consider the condition:

(33} For every uéM and svery x € D(A) such that:
x(u)=sup {x(v): ve m§ = 0,us have Ax(u) £ 0.

If A satisfiaes (33),then its resolvent (1-ta)"" is defined on
(1-tR)D(A) and is a positive contraction operator thers (with
respect to the usual order: x = 0 when x(u) = 0 for ue M) for
every t > 0.If A is the generator of a CD semigroup T,‘(t Z 0) on
Cc(m),the same follows for T, and vice-versa (see Dynkin [ 71,2.20).
It was noticed that this is true also when A satisfies:

(34) For every x € D(AR) such that l=sup {x(v): veM3 > 0 there
exists u & M with x(u)=1 and Ax(u) £ 0.

These conditions can be considered when M is locally compact
and D(A) € c%(M) (the bounded real continuous functions on M with
the "sup" norm,which are zero at infinity),as is done in the po-
tential theory,whers (33) is known as the (strong) maximum prin-
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ciple and (34) as the weak maximum principle (see [14] ,[21] ).

In [4] the strong maximum principle was generalized for operators
on non-unital 8*-algebras and in [ 3] the weak maximum principle
was generalized for operators on B*;algebras with a unit.

In the case of opsrators on ordered linear spaces,the condition
(25) in the preceding section may be considered as a generalizati-
on of (34} .Further generalizations are (6),(7) and (11).

VIII. Some additional remarks. Let X be complete and let A
(D(A)c X} be a single-valued non-linear dissipative operator (with
values in X) in the sense of [ 2] ,ch.II,§ 3,such that:

0(A) € (1-tA)D(R) for every t > O.Then the limit:

Sy u= 1£nw)(1-(t/n)A)'“x exists for every x&D(A) and t > O,
n=>
and is a contraction semigroup on D(A) (in the sense of [2],ch.III,
1.1 jsee also theorem 1.3 on p. 104 there).

Proposition 2. Let K be a clesed convex subset of D(A) with
a non-empty interior and let e € D(A) N Int K.Then each of the con-
ditioms (6),(7),(11) implies S,K € kK for all t= 0.

The proof follows from the observation that (6) implies (8} (or
(7) implies (9)) in theorem 1 without using the linearity of A.

The conditioms (6),(7),(11) can be modified for multilinear cpe-
rators and the above proposition can be generalized for such ope-
rators in an obvious way (via theorem 1.3 on p.104 in[ 2]).

If X,K,e ara as in section VI, ETE3=X and X is complete,the con-
dition (26) (or (27)) in corollary 1 implies the positivity of 5,
(t 2 0),and if A is odd (i.e. A(~=x)=-Ax for x & D(A)),the same Pol~
louws from (25).

The question whem a closed set K is invariant for a given (non-
linear) semigroup (evolution system,flow) was studied by many au-
thors.The most often used conditiomn for the generator which impli-
es the invariance is (12) (with the necessary modifications for
flows).This condition originates from Nagumo [19] .The progress in
this subject can be traced inL[ 127 ,ch.vI;[16],§5; and alsoc [ 171,
[18],l201,[22],L23] .See also the references there.
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