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25,2 (1984)

REMARKS ON CERTAIN UNIFORM COVERING PROPERTIES
Jan FRIED and Aarno HOHTI

Abstract: A uniform space is called &'-discretely refin-
able IZ every epen cover of the space has a €-uniformly dis-
erete refinement. This paper deals with some special covering
properties connected with G ~discrete refinability. We give a
characterization of & -discrete refinability and show that 6 -
discretely refinable, uniformly countably paracompact spaces
are supercomplete.

Key words: 6 -uniformly disorete, paracompact, uniform-
ly paracompact, hypercosero-set, supercomplete.

Classification: 54E15

1. Introduction. As paracompactness is one of the most
important and fruitful concepts of genmeral topology, it is
natural to consider paracompactness in uniform spaces. (See
[51,06],[10], and [18],) In this paper we shall consider 6 -
discretely refinable spaces that were studied in [6] amd [9].
The results concern the relation of 6'-discrete refinability
to other covering properties.

We refer the reader to [14] for information on uniform
spaces, If o eand » are uniformities on X, then “/y de-
notes the collection of all covers of X with a refinement
of the form {Uyn V%! where &Ui} € “ and {v%} € YV for each
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i. The precompact reflection of “X will be denoted by pt+X.
The fine uniformity (resp. the fine space) associated with a
completely regular space X is denoted by 3°(X) (resp. F X).
A uniform space is uniformly paracompact if every open cover
U of X has a uniformly locally finite open refinement, or,
equivalently, the cover 7 <% oconsisting of all unions of fi-
nite subsets of V' is always uniform. (See [18].) Analogous-
1y & space X is uniformly countably paracompact if every
countable open cover of X has a uniformly locally fimite open
refinement. A space is uniformly pars-Lindelof if every opem
cover of the space has a uniformly 'locally oountable open re-
finement, 4

A collection U of subsets of X is called & -uniformly
disorete if it is a countable union of its uniformly discrete
subcollections. A uniform space ¢X is called 6 -discretely
refinable if every opem cover of X has a 6 -uniformly discre-
te refinement.,

The symbol C(wX) (resp. C(X)) denotes the set of all uni-
formly contimous (resp. contimuous) real-valued functions oa
@X (resp. on X) end C u . (resp. C:) denotes the uniformity
on X with the sub-basis

22'1(‘!/,): U is a uniform cover of R, 6 C(uX),

‘ (resp. f¢C(X))3.
A hypercozero-set of the first class has the form U¥* , &
being a 6 -uniformly discrete family ranging in
coz(wX) ®4coz f:2€C(wX)}. (See [8), page 56.)
The collection of all hypercozero-sets of the first class will
be denoted by h“)oos(@.x).
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2, Two chapracterizations. Z. Prolik proved that a uni-
form space 'wx is € -discretely refinadle if and only 1if,
any two closed and disjoint subsets of X x X can be sepa-
rated by members of h{1cos(uX x A X). Our first remark
is concerned with replacing h“) cos - normality by an eqive-
lent covering condition. In the following lemma, m denotes
the metric-fine coreflection and -v“) denotes the Ginsberg-
Isbell derivative of a uniformity » , »(V) = 2/, |

Lemma 2,1.: Let « X be a uniform space. Them
h“)oos(p.x) = cos((m )“’I).

Proofs Pirst recall that mu 1is a point-finite uniformd-
ty and hence (I(J-)(1) is a uniformity. To show that
hu)ooz(y.x)c ooz((-y-)(”x), it is enough to show that
Ha= U{Haus L?sool((-y.)(”x). provided {H.t is & uniform-
ly discrete family ranging in coz(wX). Take for each a€A
2,6 C(@X) such that H = cos f,. Clearly £ = = 2_1is uni-
formly contimmous on (-y)(”l. Thus, He oos((let)(”x). sin-
ce H = coz £,

On the other hand, let H¢ coz((-g.)(”l). By (8] there
is a sequence {%U 1 of elements of (a)(") such tnat

He U4U fU:0 6 U ana 8t(U, Uy )c Blin 6 @} -
We may and shall suppose that U _ are of the form
Up ={"nVsW e W Ve V1

W Vy being & -uniformly discrete completely cos(&X)-
additive covers, since such covers form a basis in m ¢ X.
Define for W € W,

§-utwnnmve YV, ,WnvcEl

It is clear that for each » ﬁ,w e ‘W’n} is a 6 -uniformly
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diserete family ranging in cos(¢LX). Thus, nch(”oos((u.x).
since H =« ULU {Wi¥W & tha €cal.

We say that a uniform space X satisfies the condition
(k) 1if for every pair A, B of closed and disjoint subsets of
X there is a sequence % % in (-lr(” such that

N {8t(a, ’un):n e @¥nNL 8t(B, 'll.n)sn ewt =g,

Remazk: The spaces satisfying the ocondition (K ) are nor-
mal, Indeed, if A, B are closed disjoint subsets of X and the-
Te exists a normal sequence i % with the intersection pro-
perty given above, then A and B have disjoint closures in the

pseudometric space corresponding to this normal sequence.

Lemma 2,2.,: Let X be a uniform space. Then X satisfies
the condition (K ) if end only if, any two disjoint closed sub-
sets of X can be separated by hypercosero-sets of the first
class.

Proof: Yor sufficiency, one can easily see that X is a
normal space and h(”eoz(y.x) = 005(3'X). Denote by Dt X the
distal modification of « X, generated by all finite-dimensio-
nal uniform covers of X, Since X and D « X have the same u-
niformly discrete families and coz(uX) = coz(D w X), 1t is
slear that (M oos(ux) = 0 cos(d  X). Following the proot

of Lemma 2.1 ome can prove that h(1)ooz((»x)c coz((Dg.)(”I).
Let A and B be closed disjoint subsets of X. It is easily seen

that the cover U =fX - A,X -~ Blcm(De) "X, Thus there ex-
ists & uniformly contimuous mapping f: (D)X —(M,9) into
some metric space and an open cover V' of M such that

N (U)<U . Let V, be a cover of (M,©) by 1/n balls. Then
the desired sequence is {f~'( V' )i.

- 206 -



On the other hand, suppose (X ). Por any disjoint closed
sets A and B we may, of course, construct a normal seguence
v n" of covers in (-e.)(” satisfying the separation proper-
ty from (X ). Thus, A and B have disjoint closures in the uni-
formly contimious pseudometric ocorresponding to this sequences.
Hence, A and B can be separated by sets belonging to
oos(le-)(”x - h(”ool(e»x).

We obtain the following corollary.

Theorem 2,3.: Let X be a uniform space. The following
statements are equivalent:

(1) X is 6 -discretely refinable;

(i1) X x 7 3 X satisfies the condition (X).

Proof: The claim follows immediately from the results
of 18], where it was we proved X is @& -disoretely refinab-
le iff any two disjoint closed subsets of X x FAX can be
separated by a hypercozero-set of the first class.

Proposition 2.4.: Let X be a uniform space. Then the
following statements are true:

(1) X satisties the condition (%) iff for every pair A and
B of closed disjoint subsets of X there exist a closed
cover iP % of X and & sequence {U % of covers in ALY
such that for each n
St(a, U )n3St(B ’un)f\rn =g

(11) («.x is & ~discretely refinadble iff for every open co-
ver V" there exists a closed countable cover {7t o2 X
such that for each n the restriction

VP, is a uniform cover of P .
Proof: Exercise.

- 207 =



Remark: A uniform space (ax is C-normal L10] if every
finite open cover of X belongs to (4-(1) « The above proposi-
tion and Theorem 2.3 show that the condition (%) is related
to C-normality as 6 -refinability is related to uniform pars-
compactness. (Recall that a topological space X is called sub-
normal [2] if any two disjoint closed subsets of X can be se-
parated by Gy -sets.)

6 -discretely refinable —> h“)oos-nomal

uniformly paracompast —> C-normal

Lemma 2,5.: Let X be a uniformly countably paracompact,
G -disoretely refinable metrio-fine uniform space. Then «X
is uniformly paracompact,

Proof: it is enough to show that 7<% is a uniform co-
ver, provided 7V is & €-uniformly discrete open cover. Let
V= }dJ V', each V', being uniformly discrete. Let U be a
uniform cover such that U < { U ‘U'n§<°° . Take for any n @
uniform cover ‘W such that {St(W, W)W e W % witnesses
discreteness of 11'1..... 'Vn. Take for each x nxe‘ @ such

n,
. x .
that St(x, u ) ¢ ;U U V', . Obviously, the cover
G =48t(x, U A 'w’nx)zx €X} refines V<% . Since “X1is
metrio-fine, G is a uniform cover.
A family {V,} of subsets of a uniform space «X is called
€ ~uniformly discretely refinable if there exists a 6 -uni-

formly disorete collection U refining {V,t such that UU =
= U -iv“&.
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Lemma 2,6,: Let w X be a uniform space, let » be a com-
patible uniformity on X such that every uniformly disorete fa-
mily in v X is G -uniformly discretely refinable in («X. Then
“X is € -discretely refinable, provided (eA»)X is 6=~
discretely refinable.

Proof: It is enough to show that any uniformly discrete
family in ( w AV )X is 6 -uniformly discretely refinable in
“X.

Let # = {H,j:ac A} be a uniformmly discrete family in
( @ A » )X. Then there exist covers % and V' 6 -uniformly
discrete in @ X and » X respectively such that WA V' wit-
nesses the discreteness of ¥ ., Obviously, 7" has a 6 -uni-
formly discrete (in « X!) refinement ¥’ . Let %= U W,

V= Vv, , W,, 7V, being uniformly discrete families in
¢ X. Then for every n, m
g,n’m = {Han VnU:acA, Ue 'wn,v € vm}

is a uniformly discrete family in (_u.x. Thus,

G =rw,.lszw('3’n,m is & & -uniformly discrete refinement of J¢ .

Corollary 2,7.: Let X be a uniformly countably pare-
compe ct uniform space. Then the following statements are equi-
valent:

i) X is & -discretely refinable;

ii) m w X is uniformly paracompact.

Corollary 2.,8.: Let (u.X be a uniform space. Then the
following statements are equivalent:

i) wXis 6 -discretely refinable;

ii) m(C A @)X is uniformly paracompact.

Remark: It should be noted that the term C cannot be o-
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mitted from ii) in Corollary 2.8. To see this, let X be the
set @, X @ and define a uniformity @« on X by the basic co-
vers

U, ={iptxw:ixsff= @, 301(p,n): B<ct,ne@ls

where ¢ < @,. Then (X 18 a 6’ -uniformly discrete metric-
fine space which is not uniformly paracompact. Indeed, the co-
ver of X by one-point sets does not have a uniformly locally
finite refinement. In this context it should be noted that X
is uniformly para-Lindelof.

3. Supercompleteness. A uniform space is supercomplete
(L13)) if the hyperspace H(wX) of all closed subsets of X
({141, p. 28) is complete. By [13], X is supercomplete if
and only if, X is paracompact and A @X= F X, where A is
the Ginsberg-Isbell locally fine coreflection. Uniformly para-
compact spaces are supercomplete since by [18] the equation
py«/(.#x = ¥ X holds for every uniformly paracompact space
¢ X. On the other hand, complete 6 -discretely refinable spa-
ces need not be supercomplete. The second author has shown in
{121 that a fine paracompact p-space X has the property that
X x Y i3 supercomplete for any fine separable metrizable space
Y if and only if, the space X is C-scattered.

Let X be a completely regular space., Then by Theorem 2 in
£5), X is Lindelof if and only if, CX is uniformly paracompact.
Indeed, one can show that X is Lindelof if and only if, CX is
supercomplete., A paraccmpact space X is uniformly countably
paracompact if and only if, every fe C(X) is uniformly locally
bounded. (See [10).) Thus, if X is a paracompact non-Lindelof

gspece, then CX is a uniformly countably paracompact space which

- 210 -



is not supercomplete. Moreover, we obtain the following result:

Proposition 3.1.: Let X be a uniformmly countably para-
compact, 6 -discretely refinable space. Then every open cover
of X belongs to pe,/(.»(”.

Proof: Let 7 be an open cover of X. For each xe€ X, choo-
se V_€V end an open {ux € @ such that st?(x, U V,.

Now W ={St(x, ’Ux):xe X} is an open cover of X end hence it
has a © -uniformly discrete open refinement W’ . Write U’ =
= U 'Wn, where each Wn is uniformly discrete relative to
U, e @ «Put G =U W . Then G=4G:ne€ w? is a coun-
table open cover of X, By uniform countaeble paracompactness the

A

cover 9<m is uniform., For each mn € @ define ’Lbn = ZL.‘ A
Aves A 'un. Let

A m
Hen = 'u.nr (;‘\_-)4 Gi)

end let ¥ a UL ¥ :ne @t , Then ¥ e y-“) and each member
of ¥ 1is contained in the union of a finite subfamily of W,
Given H e 3 , let FycX be a finite subset with
Hec Ust(x, U ):xeFpk, Put U = AL U :xePyl. If xeH,
then there is & y¢Fy such that x¢ st(y, ’&ly) end consequent-
1y st(x, Uy)c st?(y, U). Thus,

{st2(y, 'uy):yc Fy3tH and e fortiori

{Vy:ycFH} MH is & uniform cover of H. Put

D =4HAV:xe FH} .
Then e p@/q.&“) and $ < 1V, as required.

Corollary 3.2.: If X is a uniformly countably paracom-

pact and uniformly para-Lindelof space, then every open cover

of X belongs to pu/,y.(”.
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Proof: Trivial, since uniformly para-Lindelof spaces are
6 -discretely refinable.

Corollary 3.3.: Uniformly countably paracompact, € -dis-
cretely refinable spaces are supercomplete. In particular, uni-
formly countably paracompact uniformly para-Lindelof spaces are

supercomplete.

Remark: By an argument more elaborate than that used in
proving 2.5 and 2.6 one can establish the following: the local-
ly fine coreflection of & uniform space X is & -discretely
refinable iff m «w X is supercomplete. (This follows from the
fact that the metric-fine coreflection of a locally fine space
is locally fine.)

In the following we shall consider a special class of su-
percomplete spaces. A unifoxm space (u.x is equinormel if any
two two closed disjoint subsets of X are separated by (L~un1-
form neighbourhoods.

Proposition 3.4.: Let @ X be an equinormal and uniformly
locally connected space. Then every continuous real-valued func-
tion on X is uniformly continuous.

Proof: Let £:1X — R be a continuous function. One can ea~
sily for € > O construct two closed disjoint sets Aq,A, c £(X)
such that

1) d(Aq,4;) Ze/8

2) for each rc £(X) d(x,AvA;) < €/8

3) for each acA, if la" - al<€/4, a’e Ay, thena = a’,

Teke By = ! (A;). Then B,, B, are closed disjoint sub-
sets of X. Then there is a uniform cover U of X consisting
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of connected sets such that st(B,,’u)n B, = g. Let for U &
€U aiam £(U) Z € . Then there are r,<r,cf(U) such that
r, = ry>3€ /4. Since U is conmnected, £(U)> (ry,r,). Thus,
obviously, £(U)n A;¥@+2(U)n A,. Contradiction.

Corollary 3.5.,: Let wX be an equinormal and uniformly
locally connected space. Then every family & of real-valued
continuous functions on X with topologically discrete family
of supports is equiuniformly continuous.

Proof: Let ¥ = 1f.3, let e > 0, Since £ = = f, is uni-
formly continuous, we can find a uniform cover U of X con-
sisting of connected sets such that for U e U diam £(U) < €/2,
Let fhere be, for 'some a &nd some U, points x and y such that
\fa(x) - £,(y)1 = € . We may suppose x€coz f_, £,(y) = O.
Then f,(x) Z € . Thus, f_(U) > <0, > , which is impossi-
ble.

Remark 1l: The uniform spaces whose continuous real-valu-
ed functions are uniformly continuous, were characterized by
Atsuji [1)., It seems that our proof of 3.5 cannot be simpli-
fied by the results proved therein,

Remark 2: In [16], J. Nagata stated that a locally com-
plete, paracompact, equinormal and uniformly locally connec-
ted space is complete. However, if the cardinelity of the spa-
ce is non-measurable, then by Katétov-Shirote theorem the spa-
ce is realcompact and consequently (by Proposition 3.4) C X =
= C % X is complete. Hence, barring meamirable cardinals it
follows that w < C ¥ X is complete even without the assumpti-
on that the space is locally complete. However, the full use

of 3.5 give even nore.
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A family ¥ of functions is called & ~equiuniformly con-

tinuous if it is the union of countable collection of equiuni-

formly continuous families.

Lemma 3.6.: Let X be a uniform space such that every
open cover of X has a 6 -equiuniformly continuous partition

of unity., Then ma X is fine uniformly compact.

Proof: Suppose that V, = coz Los (fa} being an equiuni-
formly continuous partition of unity. Then the map f = (fa)A:
t mX — £_(A) is uniformly continuous. Define B, = {x:
tx  £(X), x(a)>03. B, is an open cover of £(X), thus {Vai is
& uniform cover of mw X since V, = ! (8,).

Now, let ¥ = U F , each ¥, being an equiuniformly con-
tinuous family. Then

6 p(x,y) = sup {12,(x) = £,(y)) :f, € F T is uniformly
continuous pseudometric, G'n(x,y)é 1. Thus,

g(x,y) = = 2708 6 ,(x,y) 1s uniformly continuous end all
functions from F are Lipschitz with respect to & . Replacing
a function f e Tn by 2R copies of the function 27 we get an

equiuniformly continuous partition,

Lemma 3.,7.: Let @ X be an equinormal, uniformly locally
connected, topologically paracompact space, Then m (u.x is a
fine uniformly paracompact space.

Proof: Since every open cover of a paracompact space has
& partition of unity with a topologically discrete family of

supports, the claim follows immediately from 3.4 and 3.6.

Corollary 3,8.,: Let X be an equinormal, uniformly lo-
cally connected, topologically paracompact space. Then X is

supercomple te,
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Proof: By 3.4, X is uniformly countably paracompact.
Thus, the claim follows from 3.3 and 3.7.

4. Concluding remerks. We have not been able to solve the
question whether a uniformly countably paracompact, uniformly
para-Lindelof spaces are uniformly paracompact. In a metric
case, the answer is yes, gsince a uniformly countably paracom-
pact space is uniformly paracompact [11)., In distal spaces
(81, the answer is likewisge yea, since each distal space hes
a bagis of covers which are finite unions of uniformly discre-
te families, Obviously, the answer is affirmative for both lo=-
cally fine and separable spaces. Distal, locally fire and se-
parable spaces have one property in common: they admit & point-

finite basis. In fact, we have the following simple result.

Proposition 4.1.t Let X be a uniformly para-Lindeldf,
uniformly countably paracompact uniform space with point-fini-
te basis., Then “ X is uniformly paracompact.

Proof: Let U be an open cover of X. As « X 1is uniform-
ly para-Lindelof, there is a uniform cover v, uniformly lo-
cally finite with respect to the cover %W , such that for each
V « V' there is a sequence {U!} such that V ¢ leg, UX e U.

Define V, = L){UX:V € U3, Since X is uniformly counteb-
ly peracompact, there exists a uniform cover M of X, B < %,
such that R < 4V 3““ . Take B € B . BcVju...uV o B in-
tersects just Vq,...,V, from VY . Thus

B oY Y U1
Thus, B < U<® and @ X is uniformly paracompact.
A collection UV of subsets of a topological space X is
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called a k-network if for each compact subset C<c X and each
neighbourhood U of C there is a finite subfamily ¥ ’c 7 susch
that C c U U“c U, A regular space with a 6-locally finite k-
network is called an g-space [17]. The proof of the following
lemma is straightforward.

Lemma 4,2,: A uniform space «X is a 6 -discretely re-
finable K -space if, and only, « X has a 6 -uniformly local-
ly finite k-network.

M. Kubo proved in [15] that if X is & paracompact i -
space, then the hyperspace K(X) of compact subsets of X is a
paracompact {5 -space, The same proof can be modified to es-
tablish the following proposition.

Proposition 4.3.: If “ X is a & -discretely refinable
% -space, then so is K( u X).

M. Coban noted in [ 3] that the hyperspace K(X) of a para-
compact p-space is a paracompact p-space. It is not difficult
to establish the following enalogue.

Proposition 4.4.: If X is a & -discretely refinab-
le p-space, then so is K( «X).

Acknowledgment: The authors express their gratitude to

Z. Prolik for discussing paracompactness in uniform spaces.
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