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COMMENTATIONES MATHEMATiCAE UNIVERSITATIS CAROLINAF. 
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ON SUBSPACES OF ULTRABORNOLOGICAL SPACES 
J. K/JKOL 

Abstract; This paper is concerned with the inheritance 
of the ultrabornology by subspaces of topological vector spa
ces. 

Key words; Ultrabornological and ultrabarrelled topolo-

gical vector spaces-

Classification: 46A09 

In U3 S. Dierof and P. Lurjje constructed a bornological 

and barrelled locally convex space containing a dense subspa-

ce of countable infinite codimension which is barrelled but 

not bornological. On the other hand, a subspace with the pro

perty (b ) in a bornological space is bornological 110], In C5] 

Iyahen introduced the concepts of ultrabornological and quasi-

ultrabarrelled spaces in non locally convex situations. It is 

known L13 that every finite codimensional subspace of an ul

trabornological or quasiultrabarrelled space is a space of the 

same type, respectively. 

In the present paper it is proved that every closed sub-

space G with the property (b) tresp. with a countable codimen

sion! of an ultrabornological tresp. and ultrabarrelledJ spa

ce B is of the same type, and every algebraic complement to G 

in £ is a topological complement and carries the finest vector 
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topology. 

It is proTed also that eTery subspace with the property 

(b) of an ultrabornological boundedly summing space Is ultra-

bornological. In particular, every subspace with the property 

(b) of a locally convex ultrabornological space is ultrabor

nological. A subspace 6 of a topological vector space (tTs) E 

is said to haTe property (b) if for eTery bounded suboet B of 

B the codimension of 6 in the linear span . of Qu B is finite. 

Following [33 a sequence (Un) of balanced and absorbing 

subsets of a Teotor spaoe E is called a string if U +1 + U +1 

c U for all neN. A string (Un) in a tTS is closed, if eTery 

U is closed* bornlTorous. if eTery U n absorbs all bounded sab-

sets of B* topological, if eTery U n is a neighbourhood of zero 

in E. 

A trs E is ultrabornological [ ultrabarrelledJ if eTery bor-

niTorous Cclosedl string in B is topological 133 (A da sen, Ernst 

and Keim call these spaces bornologioal and barrelled, respec

tively). 

The following assertions are equiTalent, £31 f (2), p. 61: 

(i) ( E , r ) is ultrabornological. 

(ii) BTery bounded linear map from (E,t;) into a trs is 

oontlnuous. 

(ill) ETery bounded linear map from (E ff) into a metri-

zable complete tvs is oontlnuous. 

(IT) BTery Teotor topology on E haTing the same bounded 

sets as X is coarser than t? • 

Throughout we consider (Hauadorff) tvs over the field K 

of the real or complex soalars. A tTS B with the topology X. 
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is denoted by (B f<r) f or simply by E f and by (Gft?lG)f or Gf 

we denote a subspace of E endowed with the induced topology. 

A sequence (x^) in E is said to be a local null-sequence if 

there exists a sequence of scalers (a ) such that a —*• co and 

anx —* 0. We say that x n — > x locally if x n - x — > 0 locally. 

A subspace G of E is locally dense if for every x £ E there ex

ists a sequence in G which locally converges to x. A linear map 

from E into a tvs F is locally continuous if it maps every lo

cal null-sequence into a local null-sequence. As easily seenf 

a linear map from E into a tvs is locally continuous if and on

ly if it is bounded (= bounded on bounded subsets of E) f tU f 

p. 3U For any set M of a tvs (Eff) we denote by M and m the 

closure of the set 171 f with respect to the topology K f and the 

set of all local limits of sequences of I.if respectively. 

A tvs E is boundedly summing [3J, p. 74, if for every boun

ded subset B of E there exists a sequence of scalars (tn)ftn-£Of 
on, 

nel,r, such that 2 t K : = O - £ . t . B is bounded. Clearly, every ' m. n m Jksi K 

almost convex space, locally convex space, locally pseudoconvex 

space, are boundedly summing. 

Inheritance properties. In L61 there v/as proved the fol

lowing result, which will bo needed later. 

Lemma 1. Let (B,t) be a tvs and G its finite codimensio-

nal subspace with a co-base ( x . j f x , , « . # % r ) * ̂ et (-O be a se

quence of (balanced) subsets of G 3uch that 

(i) G = U A n and A n +
 A

n
c A

n+1
 f o r Q l 1 r. €11$, 

(ii) every ^I G bounded subset is contained in some A . 

Then every t bounded subset of E is contained in some A + 
-fv m 

+ 2 i .S^ z^x^t . ai \ ù 1} f a i € K. 
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Let Bg be a family of all bounded closed and balanced sub

sets of a tvs E. 

Lemma 2. Let (EtT ) be a tvs and G its closed subspaoe 

with the property (b). Let ? be an algebraic complement of G in 

E. Then for every BeBg there exist G cBg and a finite dimensi

onal bounded subset A of P such that Be Go Q + A. 

Proof. Let BcB™# Then GnB-» is a finite oodimensional 
IS B 2<*+1 

subspaoe of Eg, where Eg « C B and B n • 2£ Bt n£ N. Let fg 

be the finest vector topology on Eg for which all B n are boun

ded. A string (V.,) in Eg is topological if every V., absorbs all 

Bn. Clearly ^lEg-6 tfg# In view of T2J, p. 15f we obtain that 

(B ) forms a fundamental sequence of tg bounded sets. By 

Lemma 1 there exist n «H and a finite dimensional bounded sub-X. 
-*B B 

set T suoh that Be GnBfl + T. Since both projections of T on

to G and onto P are bounded, there ex is t Q6B--, and a f i n i t e di 

mensional bounded subset A of F such that Be GnQ + A. 

Proposition 1. Let (E,f) be an ultrabornological tvs 

and G its closed subspaoe with the property (b). Let P be an 

algebraic complement of G in E. Then G is ultrabornological and 

P is a topological complement and carries the finest vector to

pology. 

Proof. Clearly, (E,nr) is the inductive limit space of the 

family (Eg^giBeB^) of ultrabornological spaces. Por every 

ncH l e t Hn(B):« Sp Bn G and BcBg. Let fg^G be the f inest 

vector topology on --g^Q- • VJ Hn(B) for which a l l H (B) are boun

ded. Clearly, ^ g l E g ^ £ v^n0* I f ( G » ^ denotes the inductive 
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limit space of the family of ultrabornological spaces (Bg^gt 
/^Br^iB6.BE)fthen (Gfi» is ultrabornological f DJ f 4 f P» 62. Sin

ce ? endowed with the finest vector topology 0 is ultrabornolo-

gical (£83fExample 1 9D]f(4) f p. 62) f the topological direct sum 

(E fcC)*»(G fn .>)€)(F f 0 ) is ultraborno logical. Clearly ti & oC . By 

Lemma 2 the topologies oC and *% have the same bounded eete.Sin

ce (Efot) and (E ff) are ultraborno logical, it follows that oc« 

• t . This completes the proof. 

Corollary 1. Let E be an ultrabornologloal and ultrabarrel-

led tvs and G its closed subspace of countable codimension. Then 

G is ultrabornologloal and ultrabarrelled and every algebraic com

plement of G in E is a topological complement and carries the fi

nest vector topology. 

Proof. Observe that G has the property (b). Indeed, let (x^ 

be a co-base of G in E. Put G ?»G + lin-tx̂  fx2f«..xn} for all ne N, 

Let BcBg. Since E is the strict inductive limit space of closed 

subspaces Gnft1lf p.29, then B C G for some n€NfE33fp. 28. Hen

ce G has the property (b). In view of C3lfp«90f G is ultrabarrel

led. Applying Proposition 1 we obtain that G is ultrabornological, 

Corollary 2. Let E be an ultrabornological tvs and G its 

closed subspace with the property (b). Then any linear extensi

on to E of a continuous linear functional on G is continuous. 

We shall need the following 

Lemma 3. Let (E ft) be a boundedly summing tvs and G its 

subspace with the property (b). Let F be an algebraic comple

ment of G in E. Then for every BCBg there exist Q€Bg and a 

finite dimensional bounded subset A of E such that Be (*r> Q + A. 
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Proof. Let Be.Bg. We construct a metrizable vector topo

logy nTB on Eg, coarser than t-g, and such that T-* I Eg .£ i?g. 

Indeed, since (E,^) is boundedly summing, then there exists a 

sequence of scalars (a ) with a > 0 and a .j <& a for all neN 

such that -?a.B is bounded in E. If we put "V = .2! a „ - B, 
*, i r n T̂ p i 

then for every neN we have V ̂  + V +., c V • Clearly, every V 

absorbs all Bn, and hence (V ) is a string in Eg, which genera

tes a metrizable vector topology ^ B on Eg such that T! Eg -= 

-6 ̂ B. Since t B is the finest vector topology on Eg for which 

all B are bounded, then -#v -s- TB. Let (x-pXgt... x ) be a co-

base of G A E B in Eg. In view of Lemma 1 there exists meN such 

that 
.if* 

iL B 4* 
BcGnl 1 3 + 2ra 4.2l.a.x4i|a/|^1i. m i a 1 i i l 

Y -g , & 

Let Ps» Bm
 B and Q:« B^. Clearly GrvP Bc GoP B. Since (Eg, ̂ B) 

is metrizable and tslEg *-= -#B, so we have GnP c Go P cGnQ 1. 

This completes the proof. 

Lemma 4. Let ( E , T ) be an ultrabornological tvs and G its 

dense subspace. 

(i) If G is of finite codimension in E, then G is locally 

dense. 

(ii) If E is boundedly summing and G has the property (b), 

then G is locally dense. 

Proof, (i) Evidently, it suffices to carry over the proof 

to the case when G is of codimension one. Suppose G is not lo

cally dense. Then G must be locally closed. Let f be a linear 

functional on E such that G = ker f. We prove that f is locally 

continuous. By HI, p. 31, f is locally continuous if and only 
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i f i t i s bounded on loca l nul l -sequences . Suppose f f a i l s t h a t 
proper ty . Then f4»0f so t ha t f (x ) = 1 for some x e E and t h e 
r e ex i s t sequences a^—> co and x„ » z„ + b x f z £ Gf b„£K f 

^ n n n n o ' n ' n * 
such t h a t a x^—> 0 and f(x^) • b^—> oo . Since a „ b f b ~ z„ + n n n n A n n 

+ x ) — * 0 f then b^ z —* -x l o c a l l y . Since G i s loca l ly c l o 

sed, i t follows x e. Gf a cont rad ic t ion . Hence f i s loca l ly con

t inuous. Since E i s u l t r abo rno log ica l , then f i s continuous. 

Thus G i s c losed, a cont rad ic t ion . We proved tha t G must be l o 

ca l ly dense in E. 

( i i ) Let F « \J ( U B n G j B e B j . To conclude the proof 

i t i s enough to show tha t F = E. Suppose F4=E and l e t X be an 

a lgebra ic complement of F in E. For every B£B™ l e t FB « 

• U B n G . Let QfB be the f i ne s t vecto r topology on FB fo r 

which a l l B^TTG 1 a re bounded. C lea r ly , t\ FB £ fB and (FB f TB) 

i s u l t r abo rno log ica l . Let (Ff-t>) be the induct ive l imi t space 

of the family (F B t TB*B &B™). Then the topo logical d i r ec t sum 

(EfoC):=- ( F f ^ ) © ( X f 6 ) ) i s u l t r abo rno log ica l , provided 8 i s 

the f i ne s t vecto r topology on X. Clear ly *t £. cC . B y Lemma 3 

there e x i s t QcB™ and a f i n i t e dimensional bounded subset A such 

tha t B c G n Q + A. Since both pro jec t ions of A onto F and onto 

X are bounded, there ex i s t SeB™ and a f i n i t e dimensional boun

ded subset R of X such tha t B C G A S + R. Hence the topo logies 

at and x have the saiie bounded s e t s , and thus oC » X . The 

l a s t i s a cont rad ic t ion , because F i s closed in (E,oo) and den

se in ( E , t : ) . Hence F = E. 

Lemma 5. Let (Ef f ) be a tvs and G i t s loca l ly dense sub-

opace with the property (b ) . Let f be a loca l l y continuous map 

from G in to a metrizable and complete tvs F. Then there e x i s t s 

a loca l ly continuous extension f of f to the whole space. 
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Proof. Let B€B«. Then G is a locally dense finite co dimen

sional subspace of (G + Eg., t \ G + Eg). According to [1Jf p. 

32, for every BeBg there exists a locally continuous extensi

on ffi of f to the space G + Eg. If f(x)s» fg(x) for xeG + Eg 

we obtain a linear extension f of f to the space E. Let x ^ — > 

— > 0 locally in E. There exist a scalar sequence a n—> co and 

a bounded set B*« -t t ^ ^ s \t\6 1fn6N$ such that &n-i-n~* 0 in 

G + Eg. Sinoe f ^ - ^ ) — > 0f so f is locally continuous. 

Corollary r3. Let E be an ultrabornological tvs and G its 

locally dense subspace with the property (b). Then G is ultra

bornological. 

Remark. In I73f Proposition 13*1 f we proved that every 

tvs which admits a locally dense ultrabornological subspace 

must be ultrabornological. In view of £33 $ P» 112, we deduce 

that "locally dense" cannot be replaced by "dense". 

Corollary 4 (U3 f p. 33)* Let E be an ultrabornological 

tvs and G its subspace of finite co dimension. Then G is ultra

bornological. 

Proof. It suffices to carry over the proof to the case 

when G is of codimension one. Two cases are possible; G is clo

sed. Then G is ultrabornological by Proposition 1. G is dense. 

Then G is locally dense by Lemma 4. Corollary 3 completes the 

proof. 

Let E be a tvs. By E* and E we denote its algebraic and 

topological dual, respectively. Let t and & be two vector 

topologies on E. By sup (nz , iH we mean the weakest vector to

pology on E finer than x and & . 
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Corollary 5# Let (B 9t) be an ultrabornologioal tvs with 

B*.-i*B## Then there exists on B a vector topology a?* different 

from t such that (B 9^) and (B9i?>) are linearly homeomorphio 

and such that (E, sup (x9^)) is ultrabornologioal. 

Proof. Let f G £ * \ B # and let S^ • ker f. Choose xQ with 

*(xQ) • 2. Define a linear map T of E into B by fx « i - f(x)x 

for every xeB. Clearly T » id™. Let ^ be a vector topology 

on B defined as the image of ^ by T. In view of E93f the proof 

of Theorem 3.4, f is continuous for sup ( t , ^ ) , As easily seen 

ft\ Sj • tl Sj. Hence sup (x 9^)\3^ • tsl Sf. By Corollary 4f 

(Si§ t \ Sf) is ultrabornological, and hence we have 

(B9sup (t 9&)) m (s^, tl S ^ ) 0 K is also ultrabornologioal. 

Proposition 2. Let B be a boundedly summing ultrabornolo

gioal tvs and G its sub space with the property (b). Then G is 

ultrabornologioal. 

Proof. If G is closed, we apply Proposition 1. If G is 

dense, then by Lemma 4 (ii) it is locally dense. Applying Co

rollary 3 we obtain that G is ultrabornological. If G is neit

her closed nor dense9 we take its closure and apply the previ

ous arguments. 

Since every locally convex tvs is boundedly summing, Pro

position 2 can be applied to obtain the following 

Corollary 6. Let B be a locally convex ultrabornological 

tvs and G its sub space with the property (b). Then G is ultra

bornological. 

Problem. Must (E,sup {t9&)) be ultrabornological if t 
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and t> are non comparable ultrabornological topologies for a 

vector space E ? 
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