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ON SUBSPACES OF ULTRABORNOLOGICAL SPACES
1. KAKOL

Abstract: This paper is concerned with the inheritance
of the ultrabornology by subspaces of topological vector spa-
ces,

Key wordsg: Ultrabornological and ultrabarrelled topolo-~
gical vector spaces.

Classification: 46A09

In (4] S. Dierof and P. Lurje constructed a bornclogical
and btarrelled locally convex space containing a dense subspe-
ce of countable infinite codimension which is barrelled but
not bornological. On the other hand, & subgpace with the pro-
perty (b) in a bornological space is bornological [10]., In [5]
Iyahen introduced the concepts of ultrabornological and quasi-
ultrabarrelled spaces in non locally convex situations. It is
known [1] that every finite codimensional subspace of an ul-
trabornological or quasiultrabarrelled space is a space of the
same type, respectively.

In the present paper it is proved that every closed sub-
space G with the property (b) Lresp. with a countable codimen-
sion]) of an ultrabornological [resp. and ultrabarrelled] spa-
ce E is of the same type, and every algebraic complement to G
in E is a topological complement and carries the finest vector
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topology.

It is proved also that every subspace with the property
(b) of an ultrabormological boundedly summing space is ultra-
bornological. In partioular, every subspace with the property
(b) of a locally convex ultrabornological space is ultrabor-
nological. A subspace G of a topological vector space (tvs) E
is said to have property (b) if for every bounded subset B of
B the codimension of G in the linear span: of Gu B is finite.

Pollowing [3] a sequence (U ) of balanced and absorbing
subseis of a vector space E is called a gtring if Upe1 * Upsq
c U, for all neN. A string (U,) in a tvs is gclosed, if every
Un is closed; bormivorous, if every Un absorbs all bounded mib-

sets of Ey topological, 1f every U, is a neighbourhood of zero
in E.

A tvs E is ultrabornological [ ultrabarrelled] if every bor-
nivorous [closed] string in B is topological [3] (Adasch, Ernst
and Keim call these spaces bornological and barrelled, respec-
tively).

The following assertions are equivalent, [3], (2), p. 61:

(1) (B, ™) is ultrabornological.

(i1) Bvery bounded linear map from (E, ) into a tvs is
continuous.

(1i1) Every bounded linear map from (E,7) into a metri-
zable complete tvs is continuous.

(iv) Every vector topology on E having the same bounded

sets as © 1s coarser than T .

Throughout we consider (Hauadorff) tve over the field K
of the real or complex scalars, A tvs E with the topology =~
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is denoted by (E, %), or simply by E, and by (G,~«lG), or G,
we denote a subspace of E endowed with the induced topology.
A sequence (x,) in E is said to be a local null-sequence if

there exists a sequence of scalars (an) such that a,—> o and

anxn~—-> 0. We say that x,—> x locelly if x - x —> 0 locelly.
A subspace G of E is locally dense if for every x€E there ex-
ists a sequence in G which locally converges to x. A lineer map
from E into a tva F is locally continuous if it maps every lo-
cal null-sequence into & local null-sequence, As easily seen,

a linear map from E into a tvs is locally continuous if and on-
1y if it is bounded (= bounded on bounded subsets of E), 17,

p. 31, For eny set Il of a tvs (E, ) we denote by M~ and W the
closure of the set I, with respect to the topology = , and the

set of all local limits of sequences of (1, respectively.

A tvs E is boundedly summing [{2], p. 74, if for every boun-

ded subset B of E there exists a sequence of scalers (t.),t,+0,
»

nell, such thot Z ¢ N:i= 4 = B is bounded. Clearly, every

almost convex space, locally convex gpace, locally pseudoconvex

space, ere boundedly summing.

Inheritance properties. JIn L[6] there was proved the fol-

lowing result, which will be necded later.

Lemme 1. Let (E,t) be a tvs and G its finite codimensio-
nal subspace with & co~base (XqsX;sees xp). Let (I\n) be & se~
quence of (balanced) subsets of G such that

(1) G = oAy and Ay + ApC A, for all nell

(ii1) every ~IG bounded subget is contained in some Am'
Then every « bounded subset of & 1s contained in some I‘: +

+2m{§; . 1% :
1= aixinai\a ) 84€ K,
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Let By be a family of all bounded closed and balanced sub-

sets of a tvs E,

Lemma 2. Let (E,7 ) be & tvs and G its closed subspace
with the property (b). Let P be an algebraic complement of G in
E. Then for every BeBE there exist G cBE end a finite dimensi-
onal bounded subset A of F such that Bc Gn Q + A.

Proof. Let BGBE. Then GnBB is a finite codimensional
m+1

subspace of Ep, where Ep = 5'{ B,end B, = g B, neN. Let Ty
be the finest vector topology om Ep for which ell B, are boun-
ded. A string (Vj) in By is topologicsl if every Vj abgorbs all
Bn.¢01ear1y ¢ |Eg £ ¥g, In view of [2], p. 15, we obtein that
(Fn B) forms & fundamental sequence of 'I:’B bounded sets, By
Lemma 1 there exist n<N and a finite dimensional bounded sub-

*B

,
set T such that Bc Gn Bnla + T. Since both projections of T on-

to G and onto F are bounded, there exist QEBE and & finite di-
mensional bounded subset A of F such that Bc GNQ + A,

Proposition 1. Let (E,T ) be an ultrabornological tvs
and G its closed subspace with the property (b). Let F be an
algebraic complement of G in E, Then G is ultrabornological end
F is a topological complement and carries the finest vector to-

pology.

Proof. Clearly, (E,n ) is the inductive limit space of the
femily (Eg, "TB:BeBE) of ultrabornological spaces. For every

m+4

neXl let H,(B):= 4‘?» BN G and B€ By, Let ¥y . be the finest
vector topology on Ep q:=UJ H, (B) for which all H (B) are boun-
ded. Clearly, "B\EBnG £ Tpge If (G,1>) denotes the inductive
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limit space of the family of ultrabornological spaces (ED\G'
'P-’BnG:BeBE),then (G,») is ultrabornological,[3], 4 , p. 62. Sin-
ce F endowed with the finest vector topology © is ultrabornolo-
glcal (I8),Exemple 1,[31,(4), p. 62), the topological direct sum
(B,x):=(G,*)®(F,0) is ultrabornological., Clearly 7 £ o« . By
Lemma 2 the topologies o«« and v have the same bounded sets.Sin-
ce (E,¢) and (E, ) are ultrabornological, it follows that o« =
= T , This completes the proof.

Corollary 1. Let E be an ultrabornological and ultrabarrel-
led tvs and G its closed subspace of countable codimension. Then
G is ultrabornologicel and ultrabarrelled and every algebraic ocom-
plement of G in E is a topological complement and carries the fi-

nest vector topology.

Proof. Observe that G has the property (b). Indeed, let (xn
be & co-base of G in E, Put G :=G + lin{x),X;,...x } for all neN.
Let BGBE. Since E is the strict inductive limit space of closed
subspaces G, ,[1], p.29, then BC G, for some n€N,[3),p. 28. Hen-
ce G has the property (b). In view of [3]1,p.90, G is ultrabarrel-
led. Applying Proposition 1 we obtain that G is ultrabornological.

Corollary 2. Let E be an ultrabornological tve and G its
closed subspace with the property (b). Then any linear extensi-

on to E of a continuous linear functional on G is continuous.
We shall need the following

Lemms 3. Let (E,%) be a boundedly summing tvs and G its
subspace with the property (k). Let F be an algebraic comple-
ment of G in E. Then for every BCBE there exist QEBE and a
finite dimensionsl bounded subset A of E such that Bc 3AQ + A.
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Proof. Let BeBE. We construct a metrizable vector topo-
logy '\73 on Eg, coarser than Ty, and such that < 1Eg £ 4.
Indeed, since (E, ¥) is boundedly summing, then there exists a
sequence of scalars (an) with & >0 and &  ,4&e for all neXN

such that %ais is bounded in E. If we put V_ Z a e B,

then for every neN we have V Vn+1c Vn. Clearly, every Vn

nei ¥
absorbs all Bn' and hence (Vn) is a string in EB’ which genera-
tes a metrizable vector topology '\9’3 on EB such that ¢l EB £

= V5. Since ¥y 1s the finest vector topology on By for which
all B, are bounded, then '\9‘]3 & Tpe Let (x, 1Xp 4000 xp) be a co-
base of Gn EB in EB‘ In view of Lemma 1 there exists me N such

that
2,

% B A
BeGnB 4+ 20 4"24&1 izlailéﬁ.

5°B 5% —p_ —"»
Let P:= B, ~ and Q:= By, Clearly GNP "c GNP ", Since (E '\9' )

is metrizeble and <wlEy = s 80 We have Gn P%c GnP cGnQ .
This completes the proof.

Lemma 4. Let (E, t) be an ultrabornological tvs and G its
dense subspace.

(1) If G is of finite codimension in E, then G is locally
dense,

(ii) If E is boundedly summing and G has the property (b),
then G is locally dense.

Proof. (i) Evidently, it suffices to carry over the proof

to the cese when G is of codimension one. Suppose G is not lo-
cally dense. Then G must be locally closed., Let f be a linear

functional on E such thet G = ker f, We prove that £ is locselly
continuous., By [1], p. 31, £ is locally continuous if and only
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if it is bounded on local null-sequences, Suppose f falls that
property. Then £40, so that f(xo) = 1 for some x €E and the-
re exist sequences &, ~—> @ and X, =2, + bnxo, zné G, bnc X,
such that a x —> 0 and £(x;) = b —> co . Since anbn(b'1zn +
+ x ) ~—> 0, then b;1 z,—» -x_ locelly. Since G is locally olo-
sed, it follows X, € G, a contradiction. Hence f is locally con-
tinuous. Since E is ultrabornological, then f is continuous.
Thus G is closed, & contradiction. We proved that G must be lo-~
cally dense in E,

(ii) Let P = U ( %Jt ﬁ;m}lzBeBE). To conclude the proof
it is enough to show that F = E, Suppose F&E and let X be an
algebraic complement of F in E. For every BG'BE let FB =
= l”Jv B—;r—\_al. Let ~p be the finest vector topology on Fy for
which all B_n G* are bounded. Clearly, vIFy< ¥y end (Pg, 7p)
is ultrabornological. Let (F,4*) be the inductive limit space
of the family (FB, ¥p:B :;BE). Then the topological direct sum
(E,t):= (F,~}) ® (X,0) is ultrabornological, provided 6 1is
the finest vector topology on X. Clearly v £ « . By Lemma 3
there exist QeBp and & finite dimensional bounded subset A such
that B<:57:51 + A, Since both projections of A onto P and onto
X are bounded, there exist StaBE end a finite dimensional boun-
ded subset R of X such that Be G_rT-S-l + R. Hence the topologies
o« and ¥ have the same bounded sets, and thus « = ¥ . The

last is a contradiction, because F is closed in (E,oc) and den-

ge in (E, ). Hence F = E,

Lenma 5, Let (E,v) be a tvs and G its locelly dense sub-
space with the property (b). Let £ be & locelly continuous map
from G into a metrizable eand complete tvs F, Then there exists

e locally continuous extension 'f’of £ to the whole space,
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Proof, Let B&Bg. Then G4$ a locally dense finite codimen-
sional subspace of (G + Eg, G + EB). According to [1], p.
32, for every Be BE there exists a locally continuous extensi-
on fp of £ to the space G + Ep, If (x):= fp(x) for xeG + By
we obtain a linear extension T of £ to the space E, Let xn—?
—> 0 locally in E, There exist a scalar sequence a,—> and
a bounded set B:={te x: It141,ne N} such that 8,X, —> 0 in
G + Ep. Since fB(xn)—> 0, BsoO % 1s locally continuous.

Corollary 3. Let E be an ulirabornological tvs and G its
locally dense subspace with the property (b). Then G is ultra-

bornolcgical.

Remark. In L7), Proposition 13.1, we proved that every

tvs which admits a locally dense ultrabornological subspace
must be ultrabornologicel., In view of [3], p. 112, we deduce

that "locally dense" cannot be replaced by "dense",

Corollary 4 (L1], p. 33). Let E be an ultrabornological
tvs and G its subspace of finite codimension. Then G is ultre-

bornological.

Proof. It suffices to carry over the proof to the case
when G is of codimension one. Two cases are possible: G is clo-
sed. Then G is ultrabornological by Proposition 1. G is dense.
Then G is locally dense by Lemma 4, Corollery 3 completes the

proof.

Let E be a tvs, By E¥ and E’ we denote its algebraic and
topological dual, respectively. Let = and 1} be two vector
topologies on E. By sup (% ,7) we mean the weakest vector to-

pology on E finer than = and A .
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Corollary 5. Let (B, ) be an ultrabornologioal tvs with
E* 4+ E°, Then there exists on E a veotor topology 7> different
from * such that (E,x) and (E,+>) are linearly homeomorphio
and such that (E, sup (,~*)) is ultrabornological.

Rroof. Let £GE*\E’ and let S, = ker f. Choose x_ with
f(xo) = 2, Define & linear map T of E into E by Tx = x = 1’(::):o
for every xeE, Clearly 12 a 1dg. Let 2> be a vector topology
on B defined as the image of * by T. In view of [9], the proof
of Theorem 3.4, £ is continuous for sup (¥ ,7"). As easily seen

A*1 8y = x| 8y, Hence sup (x ,19')]8f = | 8,. By Corollary 4,

s T 8 rabornological, and hence we have
(Sgy % Sp) is ultred
(E,sup (v ,v)) = (Sy, ¥l S,) @K 1z slso ultrabornological.

Proposition 2., Let E be a boundedly summing ultrabornolo-
gical tvs and G its subspace with the property (b). Then G is
ultrabornological.

.

Proof. If G is closed, we apply Proposition 1., If G is

dense, then by Lemma 4 (ii) it is locally dense. Applying Co-
rollary 3 we obtain that G is ultrabornological. If G is neit-
her olosed nor dense, we take its closure and apply the previ-

ous arguments.

Since every locally convex tvs is boundedly summing, Pro-~

position 2 can be applied to obtain the following

Corollary 6. Let E be a locally convex ultrabornological
tvs and G its subspace with the property (b). Then G is ultra-
bornological.

Problem. Must (E,sup (7 ,)) be ultrabornological if =
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and ¥ are non comparable ultrabornologicel topologies for a

vector space E ?

(O]

[3)

[4}

[5]

(6l

{7

[8)

{9
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