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A LARGE F, -DISCRETE FRECHET SPACE HAVING
THE SOUSLIN PROPERTY
V. V. USPENSKII

Abstract: By a theorem of G. Amirdzhanov, any 6 -product
of closed unit intervals (= the subspace of a Tychonoff cube
consisti of all points having only finitely many non-zero co-
ordinates) contains a dense subspace of countable pseudocharac-
ter., We give a simple proof of a more general fact: any such
6 ~-product contains a dense subspace which is the union of
countably many closed discrete seta and therefore has a Gy dia-
gonal, This answers & question (first answered by D.B. Shachma~
tov) raised by P. Simon, J. Ginsburg and R.G. Woods of whether
a regular space having a Gy diagonal and the Souslin property
can be of cardinality greater then exp e

Key words: Gy diagonal, Souslin number, pseudocharacter,
Fréchet space, countable tigﬁtness,s-produc%, Fy-discrete.

Classification: 54A25

Consider the following four cardinal inveriants of a to-
pological space X: (1) +the Lindelof number 1(X); (2) the Sou-
slin number c(X); (3) the character X (X); and (4) +the product
v (X)+t(X) of the pseudocharacter and the tightness. The first
two invariants are "global", the last two are "local", Suppose
one of the "global" inveriants and one of the "local" invari-
ants of a Hausdorff space X do not exceed a given cardinal m.
Is 1t true that X cannot be too large? It is well known that
the answer is yes for three of the four possible combinations:
(1) and (3) (Arhengel skii), (1) and (4) (Arhangel ‘skii (for
a regular X) - R. Pol - Shapirovskii), (2) and (3) (Hajnal -
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Juhdsz). In these three cases the cardinality of X does not
exceed exp m, see e.g. [1),[2). In the fourth case, when c, 'Y
and t are bounded, the cardinality can be as great as one choo-
ses 1t to be: for any cardinal m, the Tychonoff cube 1" con-
tains a dense Fréchet subspace X of countable pseudocharacter
[31, [2, Theorem 1.5.33]. For such an X, ¢(X) = ¥ (X) = t(X) =

= % , and |X) is great if m is. We show that any Tychonoff

0.
cube I® contains a dense Fréchet subspace which is Fe-discrete.
A space is Fs-discrete if it is the countable union of closed
discrete subspaces. Since the square of mFs—discrete space is
Fe-discrete and since every subset of an Fy-discrete space is
of the type Gy, any Fz-discrete space has & Gy diagonal. So
our example answers in the negative a question of P, Simon [4],
J. Ginsburg and R.G. Woods [5, question 2.5], and A. Arhangel -
skii [2, problem 16): is it true that {X| £ exp 5, for any re-
gular space X which has the Souslin property and a GJ diagonal,
The first to solve this problem was D.B. Shachmatov. Our con-
struction is much simpler than his eand provides a space which

is additionally countably tight (in fact, Fréchet).

The closed unit interval [0,1] is denoted by I. Let A be
a gset of indices. The points of the Tychonoff cube IA are writ-
ten in the form {x :a ¢ Af. For x€ A the set {a €A:x #0¢ is
denoted by A(x). The & -product of the family{Ia:aeA§ of in-
tervals is the set S -{erA:A(x) ig finite}. The space S is

Fréchet [2, Theorem 1,5.,27]1 and has the Souslin property.

Theorem. Any & -product S of closed unit intervals con-

tains a dense subget X which is an Fg-discrete space,

Proof., Choose a sequence K1 ,Ka,... of pairwise disjoint
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finite subsets of I such that every nonempty open subset of I
meets all but finitely many of K, ‘s. Por example, each K, may
be the set of rationals of the form (2k - 1)/27, where k is a
positive integer = 2n-1,

For every natural n, let S = fxeS:A(x) has precisely n
elements}. Define a subset X of S by the following rule: if a
point xe€ 8 is in Sn, then x is in X iff n>0 and all non-zero
coordinates of x are in Kn. Clearly X is dense in S (we assume
that the set A is infinije; otherwise S is a finite-dimensio-
nal cube and the theorem is obvious). We claim each X, =Xn Sn
is discrete and closed in X. For every natural n, choose & po-~
sitive number 4 such that Ix - ylzd,n for every two noneqal
points x, y which are in the union of n sets Kiseee ,Kn. For e-
very x¢ X, the set Vn(x) ={yeX: for any a€ A(x), ¥g> 0 and
‘Xa - 7a\< dn} is e neighbourhood of x. Since the intersection
Vp(x)n X, is empty for xe X\ X  and equals the singleton {x}
for ern, it follows that each xn is closed and discrete. Hen-
ce X = U{X :n = 1,2,,..% is Fy-discrete.

Corollary. For any cardinal m, there exists a Tychonoff
space X with the following properties: (1) X is Fg-discrete
(and therefore has a G, diegonal); (2) X has the Souslin pro-
perty, (3) X is Fréchet; (4) [Xl>m,

I am indebted to Professor A.V. Arhangel ‘skii for point-
ing out that the construction described here - which was in-
tended originally to yield a space with a Gydiagonal ~ yields

in fact an FG -discrete space.

-~ 259 -



m

2}

131

[4]

L5]1

References

JUHASZ I.: Cardinal functions in topology - ten years la~
ter, Math. Centre Tracts 123, Amsterdam 1980.

APXAHIEJNBCKHR A.B.: CrpoeEse N xaacCR)AXanus TONOAOrNYeC—
KNX NPOCTPANCTE N KADANHAALHNE NRBADNANTH, YCIexs
mareM. Rayx 33(1978), B 6, 29-84,

AMVPIXAHOB I'.ll.t O BCOAY NAOTHEX NOANPOCTPAHECTBAX CUETHO-
ro nNcesXOXapaxTepa X XPYrxx o6o0meHNSX cenapadexn-
mocrn, Hoxxaxu AH CCCP 234(1977), 993-996.

SIMON P,: A note on cardinal invariants of square, Com-
ment. Math. Univ. Carolinae 14(1973), 205-213.

GINSBURG J., WOODS R.G.: A cardinal inequality for topolo-
gical spaces involving closed discrete sets, Proc.
Amer, Math. Soc. 64(1977), 357-360.

CCCP, 117234, Mocxma 234, MocxoBcxmlt ymuBepcNTeT, MEXARNNXO~
uarenarxveckxit paxyarrer

~ 260 -



		webmaster@dml.cz
	2012-04-28T10:09:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




