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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
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A LARGE F* -DISCRETE FRtSCHET SPACE HAVING 
THE SOUSLIN PROPERTY 

V. V. USPENSKII 

Abstract; By a theorem of G. Amirdzhanov, any ^-product 
of closed unit intervals (= the subspace of a Tychonoff cube 
consisting of all points having only finitely many non-zero co
ordinates; contains a dense subspace of countable pseudocharac
ter. We give a simple proof of a more general fact: any suoh 
€T-product contains a dense subspace which is the union of 
count ably many closed discrete sets and therefore has a Of dia
gonal. This answers a question (first answered by D.B. Shachma-
tov) raised by P. Simon, J. Ginsburg and R.G. Woods of whether 
a regular space having a G</* diagonal and the Souslin property 
can be of cardinality greater than exp .K . 

Key words: G^ diagonal, Souslin number, pseudocharacterf 
Frechet space, countable tightness, 6"-product, F^-discrete. 

Classification: 54A25 

Consider the following four cardinal invariants of a to

pological space X: (1) the Lindelof number 1(X)| (2) the Sou

slin number c(X)% (3) the character % ( X ) f and (4) the product 

*y(X).t(X) of the pseudocharacter and the tightness. The first 

two invariants are "global", the last two are "local". Suppose 

one of the "global" invariants and one of the "local" invari

ants of a Hausdorff space X do not exceed a given cardinal m# 

Is it true that X cannot be too large? It is well known that 

the answer is yes for three of the four possible combinations: 

(1) and (3) (Arhangel'skii), (1) and (4) (Arhangel'skii (for 

a regular X) - R. Pol - Shapirovskii), (2) and (3) (Hajnal -
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Juh£sz). In these three cases the cardinality of X does not 

exceed exp m, see e.g. £lDff23» In the fourth case, when c, y 

and t are bounded, the cardinality can be as great as one choo

ses it to be: for any cardinal m, the Tychonoff cube Ira con

tains a dense Frechet subspace X of countable pseudocharacter 

t33» 1.2, Theorem 1.5.333. For such an X, c(X) - y(Z) « t(X) * 

- .y> , and IX\ is great if m is. We show that any Tychonoff 

cube I m contains a dense Frechet subspace which is Fg -discrete. 

A space is F^-discrete if it is the countable union of closed 

discrete subspaces. Since the square of aaFg -discrete space is 

F--discrete and since every subset of an E--discrete space is 

of the type Gj*, any Fg-discrete space has a G^ diagonal. So 

our example answers in the negative a question of P. Simon £43, 

J. Ginsburg and R.G. Woods C5, question 2.53, and A. Arhangel -

skii [2, problem 16]: is it true that j Xi 4 exp J&Q for any re

gular space X which has the Souslin property and a Qj- diagonal. 

The first to solve this problem was D.B. Shachmatov. Our con

struction is much simpler than his and provides a space which 

is additionally countably tight (in fact, Frechet). 

The closed unit interval 10,1.1 is denoted by I. Let A be 
A 

a set of indices. The points of the Tychonoff cube I are writ
ten in the form A x :a € k\. For x e I A the set -{ a € A: xQ =** 0 } is 

a a 

denoted by A(x). The & -product of the family -£ I&: a € A f of in

tervals is the set S * i x e I :A(x) is finite}. The space S is 

Frechet [2, Theorem 1.5.273 and has the Souslin property. 

Theorem. Any tf -product S of closed unit intervals con

tains a dense subset X which is an F^-discrete space. 

Proof. Choose a sequence K^IC,,... of pairwise disjoint 
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finite subsets of I such that every nonempty open subset of I 

meets all but finitely many of K s. Por example, each K may 

be the set of rationals of the form (2k - 1)/2n
f where k is a 

posit ive integer *£2n"1 . 

Por every natural nf l e t Sn -«fx€S:A (x) has precisely n 

elements!. Define a subset X of S by the following rules i f a 

point x e S i s in S , then x i s in X i f f n > 0 and a l l non-zero 

coordinates of x are in K • Clearly X i s dense in S (we assume 

that the set A i s in f in i te* otherwise S i s a finite-diraensio-

nal cube and the theorem i s obvious). We claim each X„ « Xn S 
n n 

i s discrete and closed in X. Por every natural n f choose a po

s i t i v e number d^ suoh that Ix - ylz-oV for every two nonetjial 

points x f y which are in the union of n s e t s K* f . . . f K • Por e-

•ery xCX f the set Vn(x) - - fyeXt for any a e A ( x ) f y a > 0 and 

' x a "" -̂ a'"* ^n^ i s a neighbourhood of x. Since the intersect ion 
v

n ( x ) o Xn i s empty for x € X \ X and equals the s ingleton-{x} 

for x e X n f i t follows that each Xn i s closed and discrete . Hen

ce X m LHXn:n » 1 , 2 , . . . ^ i s P^-discrete. 

Corollary. Por any cardinal raf there ex i s t s a Tychonoff 

space X with the following properties: (1) X i s Pg-discrete 

(and therefore has a G^ diagonal)* (2) X has the Souslin pro

perty* (3) X i s Prechet, (4) IXl>ra. 

I am indebted to Professor A.V. Arhangel'skii for point

ing out that the construction described here - which was i n 

tended original ly to y i e ld a space with a Qrdiagonal - y ie lds 

in fact an P^-discrete space. 
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