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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

25(3) 1984

REMARKS ON NONLINEAR NONCOERCIVE PROBLEMS
WITH JUMPING NONLINEARITIES
Pavel DRABEK

Dedicated to the memory of Svatopluk FUCIK

Abstract: We are interested in the investigation of the
equations of the type
(0.1)  J(x) - wsS(x*) + ¥S(x™) + 6(x) = ¢
which were intensively studied in the principal Pudik s pa~
pers. The purpose of this paper is to give a short survey of
the results in this field which have been published during
last five years and also to formulate some open problems the
solutions of which, in the author s opinion, would lead to
the better understanding of the equations in question.

Key words: Boundary value problems for ordinary diffe-
rentiag equations, spectral theory of nonlinear operators.

Classification: 34B15, 34B25, 34C10, 47H12

1. Introduction. In his paper [9], Pudik emphasized the
concept of "Jjumping nonlinearity" and in this framework he
studied the solvability of the Dirichlet problem for second
order ordinary differential equations

- u (%) + g(u(t)) = £(t), telo,arl,
{ u(0) = u(sr) = 0,
with nonlinearity g: R — R satisfying

(1.1)

(h2) | um B8 .y, um B . w,

where . = are real numbers. These results were after-

wards generalized by Pudik himself and by many other authors

-313 -



in various directions (i.e. @ and » acquire values + o or
- 00 , or the partial differential operator of elliptic type
is considered instead of -u’’, e.t.c.). An exhaustive list of
references up to 1980 is given in the monography [11]1. In the
last two years many papers have appeared which deal with the
multiplicity of the solutions of the problem (1,1). For the
most recent results in this direction and also for an other
bibliography see [161,[20].

In this paper we shall concentrate on the case of finite
limits (1.2) and on existence results. The following parts of
the paper are organized as follows, In Section 2 the abastract
formulation of the problems in question is given and there is
shown the connection between the problems with jumping nonli-
nearities and the nonlinear Fredholm alternative developed
independently by Nedas [17]1 and PochoZajev [ 18] (see also L7]).
Section 3 contains some applications of abstract results to
Dirichlet and periodic boundary value problems for ordinary
differential equations of second and fourth order. We mention
also some local results for partial differential equations.
Finally, in Section 4 we formulate some open problems which are

mostly motivated by the known results in some particular cases.

2, Operator equation with jumping nonlinearity. Let us

suppose that X, Y, Z are Banach spaces with zero elements OX’
Oy, Oy end with norms hxlg, Ny ﬂY,\\zﬂ g+ Trespectively. A
subset C of Z is called a cone if it is closed, convex, inva-
riant under multiplication by nonnegative real numbers and if
cn(=C) = &Ozl. We shall suppose that the following assumpti-
ons are fulfilled.
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(21) C induces the semiordering x4y (i.e. (y - x)€C) such
that 8 = max{3,0,%cC, 5~ = max {-2,0,}c C exists for
every z e Z.

(22)  The mapping z +> z* 1s continuous.

(23) Xc 2 and the identity mapping X G Z is continuous.

Let us suppose that a>0 is a fixed real number and J:X—>

~»Y is the mapping which satisfies the following properties:

(J1) J is positively a-homogeneous, i.e. J(tx) = t2J(x) for

all xeX, t>0.

(32) J is a homeomorphism X onto Y.

(J3) J is 0d4d, i.e. x€X = J(=x) = =J(x).

Let S:Z —> Y be the operator defined on Z and satisfying
(S1) S is positively e~homogeneous.

(s2) S is continmous.

(83) x+>8(x*), x —>5(x") are completely continuous map-
pings from X onto Y.

Suppose that G:X—> Y is a completely continuous operator.
Aceording to the works of Dancer [2, 3] and Pudik [9, 10, 11]
we shall denote

R(6) ={feYyaAx e Xs J(x,) - wS(x}) + v 8(x7) + 6(x,) = 23,
R(0) 1is written in case G =03

Ay = 8w, v) € RE 3x F05 J(x,) - @w3Gd) + »8(x]) = ogds

4, = R2\a_gy

4 = (@, »)edyy deg Ly - @S TGN + »3( N7

By(1),0y140}3
Ay = {(we) e,y R(O)+YE,
4 = (@,») e R? R(0) = Yi

We refer to [41,[11] where the basic properties of the
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sets Ay, 1 =1,,..,3, are proved. In the sequel we shall show
how the nonlinear Fredholm alternative for quasihomogeneous
operators (see [8]) may be generalized using the classifiocati-
on of parameters © and vV in the sense of the sets 11. i =

- pooe 130

Definition 2.1. The mapping T:X —> Y is said to be regu-
larly surjective from X onto Y if T(X) = Y and for any R>0
there exists r>0 such that lUxly%r for all xGX with
nr(x) Wy SR,

The following is proved in [8, Chapt. IIl.

Theorem 2,1, The operator J - A8 is regularly surjescti-
ve from X onto Y if and only if A is not an eigenvalue of
J-AS8, 1.6, J(x) - AS(x) = Oy implies x = Oy.

Using the properties of Ay, 1 = 1,...,3 (see [4],011]) 1¢
is easy to see that the following generalization of the previeus

theorem is true.

Theorem 2,2. (1) The operator
(2.1) x> 3(x) - w8(x*) + »8(x")
is regularly surjective from X onto Y if and only if (&,») €
6 Ayniy.

(11) 1If (+,v )€ T, , where T, 1is the component of Ay com-
taining the diagonal point (A ,A) then the operator (2.1) is
regularly surjective,

Investigation of homogeneous equation
(2.2)  J(x) - wS(x*) + ¥3(x7) = 0y
is also useful for proving existence results for the equations
containing operators which are asymptotically close to J and S.

Definition 2,2, The mapping T:X—>Y ig said to be a
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(K,L,a)=homeomorphism of X onto Y if
(1) T is a homeomorphism of X onto Y3

(2) there exist real numbers K>0, L>0 such that
Lixlg«ln(x)hy<Klxzhy,
for each xeX,

Definition 2.3. Let !I.‘O:I —>Y be an a~homogeneous opere~
hr.

(1) T 1is said to be a-quasihomogeneous with respect to T,

1t ¢, N 0,x —>x, t; T (:ﬁ )—-»yoe! imply !o(xo) =Yoo

(11) T 1is said to be a~strongly quasihomogeneous with res-
pect %o ‘!o it

t, 2 0,x, — x, imply t3 T (:—‘; )"‘”o(‘o)~

Note that the symbols " — % and " —> " denote as usual the

weak and the strong convergence, respectively.

Using the homotopy invariance property of the Leray-Schau-
der degree it is possible to prove the following assertion.

Theorem 2,3, Let X be a reflexive Banach space and A an
odd (K,L,a)-homeomorphism of X onto Y which is a~quasihomogene-
ous with respect to J. Let P be a completely continuous opers-
tor from X into Y which is a~strongly quasihomogeneous with res-
pect to the operator x (\A-S(x"') - ¥38(x7). Then if (,») €
CTAC ‘o' where T, is some component containing the point
(A,A), the equation
(2.3) A(x) - F(x) = ¢
s at least one solution for arbitrary right hand side fe Y.

Proof. We shall prove at first that there exists a suffi-
ciently large ball By(r)CX such that
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(2.4) % (x, ©) 40y

for all xe’alx(h), T €10,11, where

Rz, e) = A(x) = (1 = TIND) - 2us(x) + 2»8(x") -
- (1 =-7)e,

Let us suppose by contradiction that there are <, ¢ [0,1],

Wx Wy — 00 such that

(2.5) W(xy, Ty) = Oye

Then at least for some subsequences, T, —> T, 6 Lo,11,
2 /Wx gy = v —v eXana (Ux Ny v)/Ux U7 —>
— (u.s(v ) - »3(vy), 3(v+)—-> 8(v ),y 8(v))— l(v )

Hence dividing (2.5) by HI‘I I e obtain
Al g v/ ) —> wB(v]) - »8(v]), L.e. letting
n—> 00,

(2.6) I(v,) - (.LS(T ) + »8(v)) = Oy,

Since A is (K,L,a)-homeomorphism, we have
M(ix Ry 'n)l! > 1
A

for alln ¢ N and hence v # Oy, which together with (2.6)
contradicts the assumption (w,»)c A . This proves (2.4).

Let us denote, now, by n(t) = (ny(w),ny(¥)), v ¢
€[1,2], the smooth curve which 1lies in T, and such that
M(2) = (A,A), N(1) = (,”). Let us consider
#(x,=) = Ax) - n(v)8(x") + 1,(w)8(x7) - v¢, v €l1,2],
x ¢ 9By(»). By oontradiction we shall show that for r >0 large
enough it is
(2.7) Fe(x, ©)+0y

for all x ¢ Bnl(r), 2 & [1,2], Let us suppose that for the
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suitable subsequences =, —> T, € [1,2], x /1 x lly = v, —
—v,€ X, 'o*°x'

Az dy v )/ U b3 —> (2 )8(v]) = Mp( 2,)8(v),

Lo, J(vy) = M (TIB(¥Y) + M, ( %,)S(V]) = Oy,

This contradicts ('711(1:),’712(’6))¢.A°, for all < 6 [1,2], and
hence (2.7) is proved. Using (2.4),(2.7), homotopy invariance
property of the Leray-Schauder degree and the fact that A is
(K,L,a)~homeomorphism we obtain that there is some R>0 and a
ball B!(R) CY such that

(2.8) aeg Ly = P(A™"(y))4 By(R),0p] = dog [y - AU (y)* +
+ A8 ()7 By(®), 041

Borsuk theorem and oddness of A and S imply that
(2.9) deg Ly - AS~'(1))* + A8~ (3))7s By(R),0,1 # 0.

Then (2.8),(2.9) and the basic property of the Leray-Schauder
degree imply that (2.3) has at least ome solution for arbitrary
fe!. Q.B.Do

Remark 2,1, The previous Theorem 2.3 may be understood as
s completion of the results contained in (81 concerning the sol-
vability of operator equations with quasihomogeneous and strong-

ly quasihomogeneous operators.

3. Some applications., Let us suppose that p=2, q =
= p/(p - 1) are real numbers; Let a and b be real functions de-
fined on [0,s71] . Suppose that a(t) >0, for all t e [O,ar],
acc'(Lo, w1 ), b(t)>0, for all t& [O,m1 , b&C(LO, ar] ). Put
X =z =WrP0,), Y =X*aw'r90,x)

and denote
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<:(..),v>'. f-(t)!n'(t)\l"’zu’(t) v’(t)at,
(3,14 <8 ,vY = [T HlaBIP? u(t) v(nat,

(tyvd>= f:(h(t) v(t)at,
hcLy(0,ar), for all veX, where {.,.2 is used for the dmality
between X and Y.

Rem 3.1, See [15] for the usual function spaces used
in this section.

Remark 3,2. It is possible to verify that the operators J
and S defined by (3.1) satisfy the conditions (J1)-(J3),(81)-(83)
from Seotion 2 (see [4]) and the equation
(3.2) J(u) - @S(u*) + »S(u”) = ¢

is the operator representation of the boundary value problem

- Yu (t)) = h(t), te [0, %],

~(a(9) 1w NP2 w’(4) 7 - (a2 wu*(s) -
u(0) = u(sr) = 0.

Definition 3,1, The solution of the operator equation
(3.2) is called the weak solution of BVP (3.3).

Remark 3.3, It is possible to prove that the weak solutiom
of (3.3) has more regularity than ueX. In fact we have
uec'(10, #1) and 1 he C([0, >1) then (a(£)lu’(£)1*2 u’(+)) e
[ 01(f0.1r]) (for the proof see (4, Th. 3.3]).

The following assertion is proved in [81,

Theorem 3.1, The real numbers A for which there exists a
nontrivial solution of J(u) = A S(u) = Oy form a sequence 6 =
€
- {An}nﬂ. 0 <Ay < Xp<annn, m]i-man = COe

Remark 3.4. Note that A ¢ 6 is equivalent to (A,A)s A_y.
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Then using the basic properties of the sets Ay 1 = =1,000,3

(see [11]) we can prove

Theorem 3,2, Let A & 6 . Then there exists a positive
real number o(A)> 0 (depending on the distamce A from 6 ) such
that BVP (3.3) has at least one weak solution for arbitrary
right hand side heL,(0,7r) 12 (@ -2A) + |v =~ Al<o(A),

We shall suppose now that g: [O,4] < R —> R satisfies
the Carathéodory’s conditions, i.e. g(t,s) is measurable in t
for all s ¢ R and contimious in s for a.a. %6 [0, 1 , and
let us consider perturbed BVP:
(a1’ ()12 0’(£)) 7 = v a(D)IP2( @wut(t) -
(3.4) { - »u (%)) + g(t,u(t)) = n(¢), te Jo, &L,
u(0) = u(ar) = 0,

Theorem 3.3, Let (@, )¢ A, Then there exists real po-
sitive 0o,(&,»)>0 with the following property: the BVP (3.4)
has at least one weak solution for arbitrary right hand side
helL,(0,3r) if there is some function r(t) & L,;(0,4r) such that

1&($,8) & x(t) + oy(ery») | 5177,
for a.a. t6¢[0,3r] and all z 6 R .

Remark « The proof of this assertion follows again
from the basic properties of the set A,;. On the other hand if
(w,v)c Ay (i.e, there exists such h&L,(0,ar) that BYP (3.3)
has no weak solution) then there is c,(,» )>0 such that BVP
(3.4) has no solution for some right hand sides provided

18(t,2)l £x(t) + op(a,») Lol

for a,a t<¢[0,3] and all s ¢ R .
Let us suppose that ¢: R —> R is a continuous functi-
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on which has fimite limity

o5 = lim 2 - s
O ¢l B e s e

Define the operator P:X —> Y by

nr
(3.6)  <Fw,v>= [To@t))v()at, u,vex,

and the operator AsX—>Y by

G.1 awarre LTG0+ @l @17 w'e vioas,
u,vé X,

Then the solution of the operator equation

(3.8) A(n) = P(u) = 2

is the weak solution of BVP

-1+ a(®) (I3 u(v)) - @ (u(%)) + n(¥),
(3.9) t< [0, %],
u(0) = u(x) = 0,

It is not difficult to see that A is odd, (X,L,p~1)-home-
omorphism X onto Y which is (p~-1)-quasihomegensous with respect
to J and P is ocompletely coniinuous operator from X into Y which
is (p~1)estrongly quasihomogensous with respect to the operator

u > us@h) - »s().

Using the properties of A; snd applying Theorem 2,3 we ob-

tain the following existence result.

Theorem 3,4, Let A ¢ 6 . Then there exists ¥(A ) >0 such
that BVP (3.9) has at least one weak solution for arbitrary
right hand side hSL.‘(O,ﬂ) provided l(ﬂ-—ﬂ.‘ + 1w =2Alc ¥A).

Let us suppose that the functions &, b are the same as at
the beginning of this section and put X = rﬁ'l’(o.ar). Y=
-w2190,%), 2 = LP(O,:N). Let us define operator S:X —»Y
and an element £« Y by the seme way as in (3.1) and an operator
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J:X —>Y by the relation

(3.10)  {3(w),v>= fo"a(t)m"(t)\l""‘ a (H)v’ (+)as,u,ve X,

Remark 6.. It is possible to verify that the operators
J and S satisfy again the conditions (J1)-(J3), (S1)-(S3) from
Section 2 and the solution of (3.2) is the weak solution of BVP

(a() (VP20 (£)) °7 = v () 2 (uut(3) -

(3.11) - Yu (t)) = h(t), te [0, 2,
u(0) = \1'(0) = u(r) = \l'(.ﬂ') = O,

Remerk 3.7. Also in this case the essertiion of Theorem 3.1
is still valid (see [8]1). That is why analogous results to that
formulated in Theorems 3.2 - 3.4 may be proved also for the weak
solvability of BVP (3.11).

Remark 3,8, Let us remark that all the results formulsated
above have the local character in the sense that we obtain the
solvability of BVP (3.3), resp. (3.11), when (,%) is "near"
to some diegonal point (A,42), A & 6 . In order to obtain
more global results we need some informationm about the structu-
re of the set A_; which plays the key role in the classificati-
on of real paremeters w and » .

It is possible to prove such global results for BVP (3.3)
under the assumption of constent coefficients, i.e. a(t) =

= b(t) = 1 for a1l te LO,or1.,

Theorem 3.5. BVP

(3.12) { 1209 7 - P2 (wut - »uT) =0,
) u(0) = u(st) = 0

has a nontriviel week golution if and only if one of the fol-
lowing conditions holds:
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(1) “ = 1.1, » is arbitrary,
(11) @ is arbitrary, » = 4,,
(1) @« >y, ¥ >3,

A 1
() () *
i S *
() P+ (9)IT)(Ay)

=k,

4 1
(@)™~ (11)%)()») b

S SO S
)™+ (T

4 1
RESL (A®) ™
+ ) 3
() + (v) )CAY

K =1,2,3000

Remark 3.9. The previous assertion gives the precise des-
cription of the set 1_1 for BVP (3.12). The proof of this theo-
Tem with the sketch of the figure of A_, may be found in (4].

Using the description of A__1 we may formulate the global

analog of Theorems 3.2 - 3.4.

Let us suppose that continuous function % satisties (3.5)
and consider BVP

(3.13) { =I0 + 11730} @ g (u(t) + 1, tn Lo, 1,
) u(o) = u(st') = 0,

Theorem 3.6. Let us suppose that one of the following con-
ditions is fulfilled:

W) <A, v<ir,,
(11) &> d,, ¥ > A, and

- 384 ~



1 1 1 1 4 4
(™= (AP™ID™ ()P = (APP) () P

T T T— < 1,
(¥ + (M P)(ap?®

T A 1 ’
(@™ + (M) Ap™
or

1 4 1
()™= (AP
k-1< . T 7 < kk-1<

@)+ (3P (AP

4 X

(¥ - (AD™) ()™
< % T T <k

(P + (»I)™)(A*

with some ¥ € W , k=2, Then the BVP (3.13) has at least one
weak solution for erbitrary right hand side h6L1(O,:n').

The proof of this assertion follows immediately from Theo-
rem 2,3 because the above inequalities (i),(ii) are equivalent
to (w,»)e T, , where T) is a component of A, containing dia-
gonal point (A,A), A ¢ 6§ .

On the other hand using the shooting method we obtain the
following nonexistence result.

Theorem 3.7. Let us suppose that one of the following oon-
ditions is fulfilled:

1) @> 11, Y < Ay
(11) w< ?\1, v > 2.1.'

1 2 4
(111) (@) ™= (A ™) () *
1

1 A
)™+ () *)ap™

<k,

i 1 4
(PIP= (AP P)(w)

()™ + (v)“)(fq)%

4 # 1 1 %‘ 1

(1) (™= (AT ™ (P~ (AP ®
T T T 7 X I T £

)+ (P ™ )P+ () ™)ap®

< ky

- 385 -



k = 1,2,3,... . Then there exists right hand side h €L, (0, 1)
such that

5.18) { (120" L P2 (wut - yuT) = hin[o,x],
o u(0) = u(x) = 0

has no weak solution.
Por the proof see [4].

Remark 3,10, Note that under the assumptions of Theorem
3.6 the BVP (3.14) has the wesk solution for arbitrary right
hand side he L;(0,3). We have complete description of the set
A_y for BVP (3.14) which is given by conditions (i) - (iii)
from Theorem 3.5 (the system of curves in the plane («,¥)).
fhe get A_, divides the plane (w,») into some open unbounded
nomponents. These components are of two different types - some
of them have nonempty intersection with the diegonal (A, A),
A € R , and some of them have empty intersection with this
diagonal., Theorem 3.6 then implies that the components of the
first type belong to A, (and hence also to A3) and Theorem 3.7
implies that the components of the second type belong to A2.

It is possible to prove some more precise results in the

case p = 2, i.e., for the solvability of BVP

—u (%) - mut(t “(t) = n(t), te Lo, ]
{3.15){\1() @u () + yu (t) (t) e Lo, 5
u(0) = u(x) = 0,

Let us suppose (w,»)e A_;, i.e. & and » satisfy the

assumptions of Theorem 3.5 (with p = 2), and denote v [

“,»
¢ wl'z(o,n) the normed nontrivial solution of BVP

{ -u”(t) - mut(t) + »uT(t) =0, te Lo,ar],
u(0) = u(x) = 0.
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The standard regularity argument for ODE s shows that v(w,v e
w220, x).

Theorem 3.8. Let (,»)e A_j. Then for given h; €

€ [v;’, ]'L (an orthogonal complement in the space L,(0,st)) the-
2

re exists an o«c(hy) ¢ R such that (3.15) has at least one

weak gsolution for h = hy + « (h, )'M,V .

Theorem 3.9. Let us suppose that (w,»)é€ A, (i.e. w and
v satisfy the assumptions of Theorem 3.7 with p = 2), Then
there exists w,. , € L,(0,) such that for any given h, €
e[wp,y 1' there exists a constant T(hy) such that (3.15) has
at least two weak solutions for h = hy + iw, , provided that
t>T(hy).

The proofs of the previous iwo theorems may be found in
[19). Note that p = 2 is essential here,

Some global results (concerning the classification of pa~
rameters @« and ¥ ) it is possible to prove also in the case
of ODE of the fourth order. Let us consider the equation
(3.16) otV . (u.u+ - pu,
with periodic boundary conditions. The regularity argument shows
that the description of A_1 is equivalent to finding a noncon-
stant 2y -periodic solution uc cH(R) solving (3.16). It is use-
ful to put w = a%, » = b4, (8,0)6 10,+ 0L x10,+w[=]0,+ 02,
Let us denote by y 6 }1(3/4)sr, ar [ the smallest positive root
of the equation

tan(x) + th(x) = 0,
and for z ¢ 10, vl
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ch(z) sin(z) - sh(z)cos(z)
g(z) = .

ch(z) sin(z) + sh(z)cos(z)

The following localization of the set A_1 is proved in [14].

Theorem 3.10. The set T_, = 4(a,b) €10,+ 09[2-, M= 54.

Vv = b4, ((u,,v)eA_1} is the system {5,k € N3 of C¥-curves,
where S, is a ourve (a,b(a)); b(a) is decreasing ¢ %-function

defined in 1% s+ [ with 1lim b(e) = ¥ . The curve S
x a'> o 5t 1

is symmetricel with respect to the straight line b = a and ful-
fils 84 CG,, where G, is the set of all pairs (a,b) s ]O,+ ol 2
such that

pza, (D)2 - gxra(l - sk z02(@2 - g(xrd( - 51),

or

vee, (B2 - g(xrb(1 - 510)z02(D)? - glsralt - 5.

For kz2 1t is S, = §(a,b) €20,+ co[ 2; (a/k,b/k) a8}

end S, c G, where G = {(a,b) & 10,+ oL 2, (a/k,b/k)€ G453,

In particular, T_1 C %L:.)" G, and for (a,b)g Sy the correspond-
ing 2sr ~periodic solution has exactly 2k-"semi-waves" in sn in-
terval of length 2sr . This solution is unique if translations

and positive multiples are not considered.

Remark 3.11. See [14] for the picture of the system
TN

Let us consider now the equation (3.16) with boundary con-
ditions
(3.17)  u(0) =u’(0) = u(wr) = u"(ax) = 0.
Then the following information about the set 1’_1 (for BVP (3.16),
(3.17)) may be got.

Theorem 3,11, The set T_1 is a system of continuous cur-

ves-\SI,s;;i e N¢ such that
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(1) for (a,b)€ S], resp. 5], the solution u satisties
u’(0)> 0, resp. u'(0)< 0. This solution is uniquely determined
by the choice of u’(0) and it has exactly i + 1 zeros in [0,]

(i1) SI is symmetrical to SI with respect to the straight
line & = b. If 1 is even then S5 = ST;

(iii) for each 1 €« N we have (SIUSE)A(SIHUSEH) =@,

Por the proof of this assertion see L14],

Remerk 3.12. Using the asgertion of Theorem 3.10 (i.e. the
localization of A_,) and the abstract Theorem 2.3 we may formu-
late the global existence results (analogous to thet from Theo-
rem 3,6) for the periodic BVP for the equation

V. g (u(t)) + n(w).

The situation concerning the description of the set A_; in
the case of PDE s seems to be much more complicated, This fact
implies that investigation of the solvability of the correspon-
ding BVP with jumping nonlinearity is very difficult. The most
recent results in this direction may be found in [12] D3],

The authors study the following problem

(3.18) ueD(J), J(u) = (wu+ - Yu” + ¢(.,u) +h,

under the assumptions: £ c IRN is an open set, heLe(_Q),J is
e linear selfadjoint operator with compact resolvent, the dom-
ain of J is D(J)c L,(LL) end J maps D(J) into Lz(ﬂ.), g =<
= R —>R is a Carathéodory s function,

1m  2leas) As;xpm]ﬂ-‘-l—'ss len, ().

int = oo ’

There is proved in [12] that if W ¥ » and intervallw,v ]
(resp. L, wl if w > ) does not contain any eigenvalue
of J then (3.18) has at least one solution for every hst(D.).
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Algo in the case w = » = A and A is not an eigenvalue of J
the problem (3.18) has at least one solution for every heL,(f2).
It is also proved there that the set A_, associated with (3.18)
(® =0,h= 0) in the neighbourhood of the simple eigenvalue 2
has the character of a continuous curve (or two continuous cur-
ves) passing through the point ( A,A).

In the second paper [13) there is studied the case when the
interval L ., ¥ 1 contains one simple eigenvalue A of the o-
perator J emd (w,v)e A_y, (@,») 1lies "near" to (A,2). The
authors have obtained sufficient conditions of Landesman-Lazer

type for the solvability of (3.18).

At the end of this section let us mention two results con-
cerning the solvability of BVP ‘s for ODE s conteining nonlinee-
rities introduced by Pulik [9] (see(1.2)).

Let us suppose that ¢ (t,8): [0,¥1x R — R is a Care-
théodory ‘s function, there is some constant ¢>0 and & function

neLd(O,xf) (d>1) such that
(3.19) L@ (%,8) 2 m(t) + cls\P’

for all s € R and a.a. te 0,1 . We shall suppose that the-

re exist functions x* %, 4”7, L4 ? X oo€ Loo (033 ) such

that
2{1:.:2
b-++oo |s1P™ '{ "o,
t,s
hlin*‘:xﬁ‘le)— %,w(t),

for a.a. t ¢ [0,2r] . Then using the description of the set L1

(3.20)

for the BVP (3.12) (see Theorem 3.5) we obtain the following ex-

istence result for BVP
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(3.21) —Qu’()1P2 u’($) " = @(t,u(t)) + h(t), te [0,ar],
) { u(0) = u(sr) = o.

Theorem 3,12, Let us suppose that either
(1) there exists some J° > O such that

Aewl®s A (B 2 Ay - T,

for a.a. t e JO,&w[ , or
(11) there are two couples (,,%,) and (u«,, v,) lying
in the same component of Ay and

Y

g = A0l £ 7)) 2 4y,
V= A (1) = TV & v,

holds for a.a., t € 10,5 L,
Then BVP (3.21) has at least one week solution for arbitrary
right hand side he L1(0,Jf).

Remark 3.13. The proof of this assertion may be found in
{1}, the sketch of the proof of this assertion is given also in
{5]. Note that the method of the proof is topological in nature
(it is based on the homotopy invarience property of the Leray-
Schauder degree) and therefore it is possible to consider more
general differential operator of second order than that consi-
dered in (3.21) (in the sense of Definition 2,2 and Definition
2.3(1)), i.e. the assertion of Theorem 3.12 remains also valid
in the case of BVP:

{ - L+ I (®I1P2) u (91 = @ (t,u(t)) + h(t),te o, nl,
u(0) = u(st) = 0.
Let us consider now the periodic BVP for forced Duffing

equation
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u“+Tu’ + @(t,u) = n(t) inldo, [,
(3.22) { . .

u(ar) - u(0) =u (o) - u(0) = o0,
¥eR, nei(o,#), ¢ is again the Carathéodory ‘s function
satisfying (3.19) with meL,(0,a), p = 2 and (3.20) (also with
P =2).

Theorem 3.13. Let us suppose that either
(1) there exists some J° > 0 such that

2 ~2
Tiwl® - = » 4I°W - £ £ -,

for a.a. t&l0,ar[, or
(11) there are two couples (4, »4) and ((“2' vz) lying

in the same component of '111 and

~2 ~2

My £, 0 - = e PN - T £y,
~2 ~2

Vg (8 - % < 7% - % 2 v,,

(0,0) ¢ [Uqy@p1=[vy,»,1,
for a.a. t € 10, L , Then periodic BVP (3.22) has at least one
solution for arbitrary heL,(0,x).

~ 2 00
Remark 3.14. 4 ={(@,») € RS @ v >0,((u,,v)¢hL=)1Ck'ﬁ,

V e Vv
2 (snd
C = {(@,») e R @ >0, SR Ve = kt,

where

~ L]
k = 1,2,3,... . See [6] for the picture of A, and k‘:)‘l Cye

Remark 3,15, The method of the proof of Theorem 3,23 is
based on the homotopy invariance property of the Leray-Schauder
degree and the shooting argument. In the first step, proceeding
via contradiction, we obtain the limit equation

e

v+ T v 'x'+(t)v+ -~y ($)vT =0ea.e onf0,1,
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with v(0) = v(at) = 0, v'(0) = v'(ar) = 1 and with y , o_
verifying @4 & ¥ (%) £ w,, vV, = ¥ _(t) & V,, for a.e.
t6[0,5r] ., By a substitution z(t) = exp ((c/2)t)v(t) we trane-
form this BVP to

4

~2 2
{z BECACES SR C A S}
2(0) = 3(sr) = 0,

which verifies also sign z (3r) = sign z°(0) 4 O. Here we get
a contradiction using the description of A_; for BVP (3.15) us-
ing the shooting argument (for complete proof of Theorem 3.13
see [6]1).

4. Open problems. In this last section we shall formulats
some open problems. Note that some open problems concerning mso.-
vability of general operator equation (0.1) are formulated in
[51.

Let us consider (3.14) and the sets Ay, 1 = =1,...,3, as-
sociated with this BVP. Then the following open problems con-
cerning the solvability of (3.14) may be formulated.

Problem 4.1, (1) Ay c R®\A; 7 (11) 7o find sufficienmt
conditions upon heL;(0,5) in order (3.14) to be solvable if
the angwer to (1) is positive and (M, »)€ A 4.

Problem 4.2. Let us suppose that (@,V)‘Lz. Pind suffi-
cient conditions (or necessary and sufficient conditions) upon
h in order (3.14) to be solvable.

Problem 4,3. Let us suppose that (w,v)€A_; and @
t R —> R 1is continuous and bounded function with finite 1li-
. 4
mits h}'i:g wq(u) = @q(to ). The problem is to find by means
of q (t e ) suffioient conditions upon h €L,(0,x) in order
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~(lu’1P2 9y ° o \u\p"z((u.u+ - Yu) +®(u(.)) =h in
fo, 1,
u(0) = u(sr) = o0,
to be solvable.

Remark 4.1, The last problem was motivated by the result
(13] where Landesmen-Lazer-type sufficient conditions are deri-
ved for solvability of semilinear problem (3.18).

Let us come back to the BVP (3.3). It would be interesting
to extend the local result from Theorem 3.2 at least in the fol-

lowing sense,

Problem 4.4. Let Ay, 1“1 € 6 be two successive eigen-
values for some i = 1,2,3,... (see Theorem 3.1). Prove or dis-
proves
BVP (3.3) has at least one weak solution for arbitrary right
hand side h€ L,(0,ar) provided Ay < w < Ny Ai < P <

< ?"1+1'

Remark 4.2. FNote that the answer is positive in the case
p = 2 (see [12] for PDE case),

Remark 4.3. It would be interesting to solve the Problem
4.4 also for BVP (3.11).

Let us suppose that J\.n ¢ 6 is a simple eigenvalue of
J - ASy J, S are defined by the relations (3.1). Then any in-
formation about the structure of the set A_; in the neighbour-
hood of (A, J\n) would be useful, namely we are interested in
solving

Problem 4.5. Prove or disprove: the set A_1 in the neigh-
bourhood of (.ﬂ,n, 7\,n) is a continuous curve (or two contimuous

curves) passing through the point (hn, ﬂ,n).
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Also global properties of the set A_1 associated with J
and S defined by (3.1) are not known very well.

Problem 4.6. Hes the set A_4 an empty interior (with res-
pect to the topology of R2) 2

Problem 4.7. Is there some connected subset Mc A_, such
that (Aq, A;) &M and (2,2,12):11, where A,, A, € 6 , A, #+
+ A0

Let us consider the BVP
(4.1 @ (®) 12 u(4)) " = p(t,ut)) + n+), t€ (0,1,
w0 {

u(0) = u(x) =0,

g satisties (3.19),(3.20), a€C'({0, 1), a(t)>0, tc [0,x]
and Ay, Ag,q € & , for some arbitrary but fixed i N . It
would be interesting to prove the following assertion.

Problem 4.8. Let us suppose that either
(1) there exists some J > O such that
AonlB)s 0D & Ay = T,

tor a,a. t e 10,y , or

(11) there exists some J’ > O such that

Ay +d g, (8 « () e Ny -,

M+ ey (D) e x ") e Ay, -,
for a.a, t€l0, v .

Then BVP (4.1) has at least one weak solution for arbitra-
Ty right hand side heL, (0, ).

Let us suppose that Q c RY is a bounded domein with
lipschitzian boundary 3% , @: Q » R — R 1is a Carathéodory’s
function satisfying the condition

|l (x.8)) « m(x) + cls\p-1,
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for all 8 €« R eand a,a, x € {L with some positive constant o

and neLq(.Q.), q = p/(p-1)(p=2). It is possible to define the
weak solution of the BVP

N e 2 4
(4.2){- "'Z‘ o3 (l-gllx;\ '5%1')" @(.u(.)) +hin Q ,
u=0on 3Q

in an analogous way as in Definition 3.1. We shall call by (3
the get of all real numbers A for which there exists a nontri-
vial weak solution of BVP

p-2
i £ (18] ) e,

u=O0Oondfl .

Using the variational approach it is not difficult to see that
int & > O. Any other information concerning the set & should
b2 very useful,

Problem 4.9. Is & e counteble set, say & = {fm o,
which is isolated and which has the property lim MWy = © ?
m >

Problem 4,10, Is it true that every u, ¢ & allows the
Ljusternik-Schnirelman characterization ?

Remark 4.4. The reason why it is important to have some
information about the solution of Problems 4.9 and 4.10 is the
following. If the answer to the preceding two questions is po-
eitive then the following assertion may be proved using varie-
tional method.

Problem 4,11, Let us suppose that (4y, 4, & & and
-+, @pTn& =@, Let there be some d° > O such that
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d < Xx,8 X, 8 -
(b + ‘.Ialin-rionf _‘li_-}.icb_,*w ll%_-z). @y =,

(‘41+d'élimin£1(£"§l 'ﬂ—‘zl My =J,

s D"‘w

(4.3)

for a,a, x € £ . Then BVP (4.2) has at least one weak soluti-
on for arbitrary heW 1+9(0).

Remark 4.5. Some local sufficient conditions instead of
(4,3) are considered in [1] in order to prove solvability of
(4.2) for an arbitrary right hand side new'29(q),
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