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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26,1 (1985)

LARGE TIME BEHAVIOUR OF THE SOLUTIONS
TO SOME NONLINEAR EVOLUTION EQUATIONS
A. HARAUX

Abstract: In this survey paper we describe some recent re-
sults about the qualitative behavior of solutions to some equa-
tions or systems of nonlinear partial differential equations in

a bounded open domain of R®
- Semi-linear heat-equation and reaction-diffusion systems
- Wave equation with dissipation and almost-periodic for-
cing term
- Semi-linear wave equation of conservative type and vibre-~
ting string with an obstacle.

Key words: Nonlinear equations, heat equation, wave equa-
tion, erbolic systems, global behaviour, periodic and almost

periodic solutions.
Classification: 35B10, 35B15, 35B40, 35K05, 35L05

0., Introduction., In this survey paper, we describe some re-
cent advances concerning the behavior for large time of the so-
lutions to some classes of partial differential equations repre-~
sented by a dynamical system in a Banach space of functions de-
fined on & bounded, open domain £ of R™ with smooth boundary
T=23%.

The two basic models which will be studied are the non-li-
near heat equation

u; - Ou = £(t,x,u) on Rt Q

with Dirichlet or Neumann boundary conditions and the non-linear

- — — — - - - ’

This paper was presented on the International Spring School on
Evolution Equations, Dob¥ichovice by FPrague, May 21-25, 1984
(invited paper).
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wave equation

Uy = Au = £(t,x,u,u;) on RY< O
u=0 on R'xT

As & rule, we shall not try to place our results in the most ge-
neral framework available. On the contrary, we will iry to be
a8 gpecific as possible in each of the four following situations

1) Semi-linear heat equations.

2) Autonomous hyperbolic systems with a weak damping.

3) Periodic or almost-periodic quasi-autonomous hyperbolic
equations with non-linear, local damping term.

4) Autonomous semi-linear wave equations of conservative

type and vibrating string with obstacle.

1. C1 estimates for semi-~linear parabolic problems, We re-
port here on a joint work with M. Kirane ([131). Since a lot of

papers have been written on nonlinear heat equations, there will
be no attempt here to present a survey of the relevant literatu-
re and we focus on & very specific point which is: the obtention
of bounds in C'({L), uniform for t —»+co, for the solutions of

an equation
(1.1) ug - Au = £(t,x,u(t,x)), t2z0, x e QL

with homogeneous boundary conditions (Dirichlet or Neumann).

For these kinds of semi-linear problems it is generally na-
tural to study the existence of solutions in X = C(fL). It is
well-known that the dynamical system generated by (1.1) has very
strong "smoothing properties", and the smoothing effect has been
studied by many authors in various contexts,

A natural field of applications for the idea of amoothing
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effect is the study of global behavior for the soiusioms . -
action-diffusion systems arising in Chemistry end Biology. For
such systems it currently heppens that globel existence and 1P~
bounds are known for all the "interesting" solutions (like non-
negative solutions when the unknowns are supposed to represent
the relative concentrations of chemical components).

The interesting question to be solved is then the behavior
of the solutions as t — + 00 . When the structure of the system

is such that some "local" Liapunov functionals of the type

P (U, uppeee,y) = [Q‘P(u1'“2""'“k)dx
exist at least for the "nonpegative solutions", then asymptotic
behavior is attainable through "La Salle’s invarience principle"
provided that we can esteblish precompactness of positive trajec~
fories in X = C(R).

As a consequence of Ascoli s Theorem, this will be satisfied
if the trajectories are, for example, unifoxmly bounded in
ie'@n® gor tzo.

The point we want to emphasize here is that such a result is
easy to derive from L® ~bounds (and even LP-bounds with p big e-
nough) under almost no smoothness assumption on the function f.
Moreover, the method that we shall describe is somewhat indepen-
dent of the dimension of Q , in contrast with the methods per-

taining to energy estimates which are used, for example, in the
study of Navier-Stokes equation.

In fact, the idea is very simple and consists in using the
smoothing properties of the linear part of (1.1) together with the
variation of parameters formula.

lMore precisely, we have the following



Theorem 1.1. Let T(t) be the semi-group generated by the

equation
(1.2) u, - du =0, tZ0, xe &
with either Dirichlet or Neumamn s boundary condition in H =

= 12(0).
Then for eny u,& L(f.), we have
(1.3) Yt>0, T(t)u e c' (1)
¥e> 0, 3D(e) € R* such that ¥t e 10,11,

1
-= €
(1.4) IT(t)uouc1®£D(e)t fu "me_)

Broof. This result is a simple consequence of the fact that

T(t) is analytic in 1P(0) for all pel2,+ o[, together with
Gegliardo-Nirenberg interpolation-embedding inequalities. For

details, cf. [13].
Now we consider equation (1.1) and we assume that f satis-

fies the following conditions
teC(RYx L % R) with: V(t,x,u,v)6 R'x QxRx R

(1.5) 12(t,x,u) - £(t,x,v)1 & k(%) C(lul,lvD)u-v]

with keLloc( R*), ¢ being bounded on bounded subsets of R x R*
(1.6) W(t,x,u) € R x T ®, l2(t,x,w 4, (lul)

with C, bounded on bounded subsets of r*.

Then we have the following result.

Theorem 1,2, Assume that f satisfies (1.5) and (1.6) and

let u be & solution of (1.1) on RVx QL (with either Dirichlet

or Neumann boundary conditions). Assume that u satisfies
(1.7 we L@( RY,1%°(Q))
Then for any ¢ >0, we have
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(1.8) u@.CB(d',+ao ;c’(li)).

Proof: We give only a formal "gketch". The rigourous deri-

vation of Theorem 1.2 can be found in [13].

Assume for simplicity d = 1. We have the formule

VE20, u(t+1) = 2(Du(t) + fo‘m(mf(t+1-s'.x,u(t+1-6 ,x))ae

We set M = Su;: :as lu(t,+)0y. Then for almost all 6s 10,1L we
z

have £(t+1-6, ¢ ,u(t+1=6)) e L®(Q) and 1£(t+1=-6", e ,u(t+1 -

=6,*))l & cy(m)

By using (1.4) with for example &= 11 we find that u(t+l) €
ecl(@) and

1 4 Cq (1D
Ra(es0 ,  2d(p [u+ [ a6 |
c %'
@) °
Sup Hu(t+1 4K(M).
~> Sup u(t+ )1\01@ (w)

Remarks 1.3. &) If in addition to (1.5)-(1.6), f satisfies

the following "coerciveness" property

ac e RY, lulzCc =2 ¥(t,x) e RYx Q s 2(%,x,u)uso0,
then (1.7) is automatically satisfied for any solution of (1.1).
This remark is very effective in practice.

b) If in (1.6) we have C4(p) = C, [1+@] (growth like an

affine function), then (1.7) and (1.8) can be deduced under the
following very weak assumption:

ueL%( [R+,I.1(_Q.)) (ct. [131 for proof).

c) The combined use of Theorem 1.2 and the remarks above
permits, as a simple application, to study the asymptotic beha-

vior, a8 t —> + o , of the solutions to the system
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uy-adu+ruv=0,t20,xeQ
(1.9) Vg=bAv-ruv+ Av=0, t20,x €0

%—‘é=%§=o, tzo, x €T

where a,b,r, A are positive constents and uo(x), vo(x) the ini-
tial data are assumed to be =z O.

A treatment of (1.9) independent of dim({fl) was our origi-
nal motivation for developing the method described above. This
system is one of the possible models for describing the propaga-
tion of epidemics (cf. [16]).

d) It is possible to show that for example if £& C%°, then

u(t,*)eC®(l) for t>0 if 3N is smooth. For this type of re-
sults, cf. [14].

2, Some wave equations with a "weak" nonlinear damping term.
Let g: R—>RVU{~00,+0} be a nondecreasing function. To such a

function we essociate & "multivalued mapping® (3 : R —> T (IR)
defined by

YuelR, Au) = (g (u) ,g+(u)]{\ IR where

g (w) = sup [g(m], g'(w) = Int [g(w)].
ure M ur > M

We say that 3 1s the maximal monotone graph generated by
g and we get

R) ={fueRr, Bu)+dl.
It is clear that in the case where g is continuous:
R —> R, then [}= g and D(3) = IR.

On the other hand, if g: IR —» IR is any nonde cusing func-
tion such that

g(w) = = 1 for w<O, g(w) = + 1 for w>0,
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then the "graph" 3 1is defined by

f(u) = - 1 for w<O
B(0) =[~- 1,+11
f(u) = + 1 tor w>0

In this example, we can see clearly that for any choice g(0) =€,
-1 égé +1, the graph of the map u—> g(u) in [R = (R is never
closed. The interest of replacing g by the "multivalued mapping"
B precisely consists in the fact that the graph G({;) =
= §{(u,f) e Rx R, £ e 3(u)} is always cloged.

In this section, we are interested in nonlinear multivalued
partial differential equations of the fomm
2.1) {utt - Bu + a(x) 3 (uy) »0, tZz0, x ¢ L

u=0 tz0, x € 0L

where [3 is the maximal monotone graph generated by some nonde-
creasing function g and a(x)Z O, We assume from now on that
0 e f3(0).
The usual method for solving (2.1) is to write it under the
form of a system:
uec( RY,H (2) n ¢'(®*,12(Q))
(2.2) ug = v
vy = bu - alx)p(v)

Then if we set U(%t) = (u(t,e),v(t,¢)) this system can be viewed
as a (mltivelued) evolution equation in the energy space H =
= B ()= 12(0).

If for example a(x) = 1, the classical theory of maximel mo-
notone operators (cf. [21,(31) provides the existence of a weak
solution of (2.2) for any initial data U, = (uo,vo)cH;(Q_)x‘e

where

e = {veLz(D.). v(x)¢ DIF) @a.e. in Qi
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Our point here is not the study of the initial value problem as-
sociated to (2.2), but the analysis of asymptotic behavior of
solutions as t —> + 00. In fact, (2.2) generates & nonlinear se-

mi-group of contractive mappings S(t):C— C with C = Hl(.fl Ix®
a closed convex subset of H.

It is possible to establish that for any (u,,v )& C the
set t\zjo U(t) 4is precompact in H. Then & theory of Dafermos
and Slemrod ([5]) predicts that U(t) must be asymptotic, as
t — + c0, to some almost-periodic solution of (2.2).

Now since O 6 3(0), the functional

3 = 101§ = [ 1170l + 1v1Fax,
is a Liapunov functional for S(t). Hence any solution of (2.2)
which is almost-periodic in H must satisfy

¢ (U(t)) = 9 (U(0)), VteR.
By using this property together with some more specific proper-

ties of (2.1), the following result was obtained in 1978 ([7]).

Theorem 2,1, Assume that 0 € 3(0) and a(x) = 1.

Let ucc( RY,H (2))nc' (R, 12(2)) be any (weak) soluti-
on of (2.1). Then:

- If g =0 in an open neighbourhood of O, we have

tainl”j:ﬂ{\Vu(t,x) - V§ (5,012 + tu (4,0 = §,(t,2)1%}ax<0
where § 1is a solution of

§ectrE (anc'(RIZ(R)), §4y -8F =0o0n RxQ
such that (s‘t(t,x)e f$"1 (£0%) a.e. on IRx Q..

- If g(v) is not identically O in any neighbourhood of O,
then u(t,x) is asymptotic in H;(S&) strong, eas t —» +00, to a
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function §(x) such that §e H)(L) and AE(x)€ 3(0) in the -
gense of D'(L), i.e. g'(0) ~Af end A - g7(0) are nonne-
gative measures on fL whenever they are defined (if gt (o) or

g (0) is infinite, the corresponding condition disappears).

Remark 2.,2. &) Theorem 2.1 is optimal in the sense that
eny element of the form ¢ (t%,x) or g‘(x) satisfying the conditi-
ons above represents a particular solution of (2.1). (Respecti-
vely & common solution with the wave equation and an "equilibri-
um solution",)

b) In [6] C.l, Dafermos considered the case where a(x)*ct;
and g is Lipschitz-continuous together with its inverse 5'1.Then
if for example a(x) € C(QNl) and a(x°)> 0 somewhere in Q. , all

solutions of (2.,1) tend to O as t —>» + ¢0 .

The following generalization has been obtained in 1983 (cf.
1)),

Theorem 2.3. Assume that a € L°(0.) and moreover

(2.3) mes {x € ,a(x)> 0340
(2.4) 3ceRY, YvelR, lg(v)&c(l + {vl)
(2.5) g(v) 1is not identically zero in any neighbourhood of O.

Then any week solution of (2.1) converges in H;(.Q) gtrong,
as t —> + 00, to some g(x)eﬂz(.ﬂ.)nﬁl(_ﬂ.) such that

(2.6) Af (x)e a(x) 3(0) a.e. on N .

Proof: LetE ={xeQ , a(x)>03. By differentiation of
d(u) = f&uv ul? + lut\2}d.x it is easy to see that eny almost-
periodic strong solution of (2.1) must satisfy

(2.7) uy =0 e.e. on RxE

(here we use (2,5) in an essential menner),
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Thus - Au(t,x) = n(x) a.e. on RxE,

Let
h(x) if xeE

lfl'(x) = ’ .
0 if x¢E

and define ¥ such that ’\'r“eHl(.O.)f\Hz(ﬂ), - A¥ =1

Then @ = u - ¥ and we have

OW=0o0n IRx
(2,8)

'\Vzt = 0 on IRXE,

Pinally e Fourier enalysis (cf. [6]) shows that any solution of
(2.8) 1is in fact identi{:e.lly zero. Hence any strong almost-peri-
odic solution of (2.1) is in fact an equilibrium solution. Thus
the result of Theorem 2.3 is true if (u,,v, )€ }12(.0.)011;(_9.) »
xH;(.ﬂ.). The general case follows by & standard completion ar-

gument.

Remerk 2,4. The case Q= 10,£[ , with g(v) = - 1 if v< O,
g(v) =+ 1 1if v>0 can be viewed as the free oscillations of a
string with fixed ends which is submitted to a "distributed dry
friction" acting only locelly. In this case, Theorem 2.3 says
that the string tends to an equilibrium position which moreover

is rectilinear on each component of the unconstrained region.

3. Damped wave equations with periodic or almosgt-periodic

foreing term. In this section, we consider the nonline-
ar (possibly multivalued) partial differential equation
(3.1 { - Au+(5(ut)a£(tx). tz0, xe L
: u=0 tz0, xeT .

The theory of Cauchy problem for (3.1) is classical (cf.[21,
[3]) for any feL]_oc( r* L2 (D.))- Existence of periodic or almost
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periodic solutions of (3.1) has been studied in [8] and [91.
There are still open problems in this direction and we will not
discuss this question here.

Throughout this section, we will assume that the following
hypotheses are satisfied

(3.2) The function £(t,+): R — Lz(ﬂ) is S1-almost periodic.

(3.3) There exists at least one solution u of (3.1) defined for
t € R and such that U(t): R—> H is (strongly) almost pe-
riodic. (If £ is periodic with period T> 0 we agssume that
there is a T-periodic solution of (3.1).)

From now on we shall denote by w (t,x) one of the almost
periodic (resp. T-periodic) solutions of (3.1) end we consider
the two following questions:

- Asymptotic behavior of the other solutions ag t — + 00,

- Uniqueness of almost-periodic solutions.

The two questions are obviously related. The main difficul-
ty in answering the first one is the fact that precompactness
of trajectories to equation (3.1) in the energy space is until
now unknown except when quite strong hypotheses are done on the
function g (cf. {91, Theorem 4.1, p. 206).

The following general results have been stated in.this form
only in 1981. They somehow generalize Theorem 2.1 to the case of

quasi-sutonomous equation (3.1).
Theorem 3,1, If g is strictly increasing (i.e.
Yu,eDd(@), VYu,eD((), uy<u, = gluy)<salu,))

then for any solution u of (3.1) there exists ?(x) 3 Hl(.().)
such that ®(t,x) + g(x) satisfies (3.1) and

(.4) Un (u(t,2) - @(4x) = £(x)) = 0 in HI(A) weak,
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Theorem 3.2. If g is contimuous with D((3) = R, then for
any solution u of (3.1) there exists §(t,x) such that w(t,x) +
+ g(t,x) satisfies (3.1) and

(3.5)  lm (u(t,x) - &(t,x) -~ §£(t,%)) = 0 in H (Q) weak.
t>+@
(3.6)  §eC(RAE(@NNC(RIZ(N)) and 4y - A{ = 0 on
Rx L.

Remark 3,3. &) The proofs of Theorems 3.1 and 3.2 are ve-
ry technical and will not be given here (cf. [9] for the details),

b) If g is continuous with D(ﬂ) =+ R, we do not know whet-
her the result of Theorem 3.2 still holds true.

¢) Theorems 3.1 and 3.2 immediately imply the following re-
sult.

Corollary 3.4. If g is continuous and strictly increasing
with D(B) = R, then for any solution u of (3.1) we have
(3.7 lim  (u(t,x) - @(t,x)) = 0 in H' () weak.

ta+0 (¢]

This result can be generalized in two possible ways

Theorem 3.5. Assume that g 1s strictly increasing with
D(R) = R and f(3(0) = {0}. If in eddition we have
(3.8) @, is absolutely continuous: R — 12 ),
then (3.7) is satisfied for any solution u of (3.1).

Theorem 3.6. Assume that g is continuous with D(f) = R.
Assume moreover that we have

(3.9) There exists an open neighbourhood V of 0 in R such
that

wev, eV, U= g(u1)>g(u2)
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(3.10) @ eLP(R,E(A)INCO*NA)), & >0

Then (3.7) is satisfied for any solution u of (3.1).

Proof of Theorem 3.5. Let u be a solution of (3.1) eof the
form w(t,x) + §(x). Prom D((3) = R we deduce that [Ju and
Dw erein Ll (R,1'(Q)). If §=u- w0, let AcO and
d’ > 0 be such that meas(A)>0 and | AE(x)|Z J" a.e. on A, Them
cot(t,x) remains in e discrete set not containing O for (t,x) €
€ RxA. This is easily shown to contradiet (3.8).

Proof of Theorem 3.6. Let u(t,x) be a solution of (3.1) ef
the form @(t,x) + y(t.x) where i

yeC(REN(0)INC (R,I%(0)) and Oy = 0'on R Oe

We have: a.e. on 0 , g(uy(t,x)) = g(w,(t,x)).
Now let W be a neighbourhood of T° such that

xeW=> ¥t € R, ot(t,x) ev,

Since V is opem, we deduce: ut(t,x) = cot(t,x) a.e on Rx VW ap
= ¥74(%,x) = 0 on RxW. The end of the proof is identical te
that of Theorem 2,.3.

Remark 3.7. It is natural to ask whether the regularity
conditions in the statements of Theorem 3.5 and 3.6 can be drop-
ped to obtain the same conclusion. The answer turmns out to be no:
even when Q = 30,1[ it is possible to construoct explicit countex-
examples of non-uniqueness (cf. 110} and [111).

4., Undamped oscillations for some nonlinear wave equations.
It is well-known that the solutions of the ordinary wave equati-

on with Dirichler boundary conditions in a bounded open domain
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0 are almost periodic in the energy space and admit a genera~

lized Fourier representation of the form:
+co
u(t,x) ~MZ=1 cos( VA _t + o Iw (x)

where {2} is the sequence of eigenvalues of (-A) in Hl(_().)
and w, is a solution of - Awn = an‘n' ¥n €N,

This representation is useful to study the oscillatory che-
racter of the solutions and also the transmission of oscillati-
ons (cf. for example the argument in the proofs of Theorems 2.3
and 3.6).

In this section we describe some recent results concerning

the oscillatory properties of the solutions to two different

kinds of "nonlinear perturbations" of the wave equation.

Example 1: semilinear perturbations. We report on a recent
joint work with T. Cazenave ([4]).

Let g: R x 1< IR — R be sufficiently regular with respect

to the third variable u, We consider the nonlinear problem

o {uecw,n},m))n ¢ (351%(2))
) upe - Bu + gt,x,u(t,x)) =0on JxQ

where L is (for simplicity) assumed to be connected.

We start with a gersral result.

Proposition 4,1. Let 3\.1 be the smallest eigenvalue of
(-8) in x,l‘m) and assume that ge¢ 01( R=x T % IR) is such that

7z 0, (n=2)y 44, lgu(t,x,u)léch + ul?) on
IR =L xR
V(t,x,u) e Rx L xR , g(t,x,u) uz0.

Then if u is a solution of (4.1) such that u(t,x) 20 a.e. on
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J x L , we must have either u = 0, or a2,
VR

Idea of the proof: let @(x)eC™(£) be such that

g)E.Hl(,Q.)' -A?= 3'1? ’ fn-q(x)dx= 1.

On multiplying the equation by @(x) and integrating over
L |, we obtain that if u(t,x)z 0 a.e. on J x Q& , then
&2
45 (fpem o) < - 2 [ uie,m) g)ax on 3.

fud
This inequality is easily shown to imply either gl & ——»

VA,

or

-f.;l u(t,x) @ (x)ax= 0 on J.
Since ¢ > 0 in Q , proposition 4.1 is proved.

When Q. = 10,10, much moregprecise results are available.

We can for example state the following

Theorem 4.2. Let ge 01( IR) be nondecreasing and such that
g(-u) = -g(u), Yu e R, Let u be a solution of
wec( R, (2 )0 ¢t (®,22(0))

utt'uxx+3(u) =0on Rx Q

(4.2)

Then we have the following results
1) Ifuf O0Oon Rx0 and xosn_\Q. then for any « € IR the-
re exists t, and t, in [e¢,0¢ +2] such that u(t, ,xo)>0 and
u(tz,xo)<0.
2) As t — +c0 we have the following alternative

- 1 =0
Either lim | u(t)l\me)

- Or for any x ;€ O\ Q

lim inf u(t,x )< 0<1lim sup u(t,x,).
+-> 4+ 0 o t >+ 00
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Remark 4,3. &) In fact the function t —> u(t,x) must take
both positive and negative values on any interval of the form
Lo¢,+2] except for the points x of a finite set (containing
10,1%).

b) If for some point x € 10,1[, x ¢ 10,1} the property a-
bove is not satisfied, then u(t,xo) =0on R and u(t,2xo-x) =
= -u(t,x) for all x¢10,1[ such that 2x, - 1éx£2x°.

¢) We de not know whether some nontrivial solutions of (4.2)
effectively tend to O as t — + 00 .

In view of the energy conservation for (4.2) if this happens

it must correspond to rather complicated oscillation phenomena,

For the proof of Theorem 4.2, cf. [4].

Example 2: vibrating string with an obstacle. In the plane
Oxu, we consider the oscillations of & vibrating string with fi-

xed ends ¥ % in presence of a fixed obstacle fu = -h} against
which the string is subject to rebound without energy loss.

The correct formulation of this problem (in case of "small
oscillations"”) has been given in 1980 by M. Schatzman ([15]).
The displacement u(t,x) is & solution of the "singular hamilto-
nian system" (with Q=)= %, + %[):

uec( R,H (0w r,12(0))

uZ-h in Rx QO
(4.3) { upy = u  Z0in D' (Rx Q)

Supp(ug -u ) c {(t,x), u(t,x) = -h}

o

s-{-2ugu b + 2 lugl® + 1u)® = 0 in D' (R=Q)
These conditions allow to prove an existence and uniqueness The-

orem for the initial value problem under the “"compatibility
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hypotheses" u z -h a.e. in RxQ and u,(0,x) = v (x) = 0 a,e,
on {uo = ~h}. The solution conserves the energy in a relevant
sense and it is therefore naturel to wonder whether the motion
is almost periodic in some natural sense.

The compatibility conditions are automatically satisfied if

we assume for example

(4.4) u,Z 0 a.e. in Q, v, =0 a,e in Q..

In such a case the solution is even as & function of t.
We now report on the results obtained in our joint work

with H, Cabannes ([12]).

Theorem 4.4. If u cH)(Q) satisfies the following assump-

tions for some a € L

u, is non-decreasing and uo(x9<1 on [~ %,a.[
uo(a) =1

u, is non-increasing and uo(x)<1 on Ja.%]

then the solution of (4.3) with initial data (uo,o) is such that
the function t —» u(t,x) is (strongly) elmost periodic from [R
to H ().

Theorem 4.,5. &) If h = -g. pe B¥, qe W*, pNq = 1, the mo-
tion is periodic with as a period the integer p + q if p + q is
even, 2(p+tq) if p + q is odd.

b) If h is irrational, the motion is not periodic, except
in the gingle cage u,(x) =1 - 2ix|. In that case the motion is

periodic with period 1 + h.

Remark 4.6. a) The proofs of Theorems 4.4 and 4.5 consists

in almost "computing" the solution u(t,x): hence they are not
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very instructive and will not bg given here.
b) The solution u(t,x) starting from an initial detum
(uo,o) as above must oscillate "at least as fast as" the solu~

tions of the free wave equation u,y - u,, = 0 in a global sense.

xx
Indeed, none of the inequalities

u(t,x)2 0 on Q. or u(t+,x)£0 on N0

cen be satisfied on a time interval of length > 1 except if
u(t,x) = 0 on Rx . The proof is amalogous to that of Propo-
sition 4. 1 .
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