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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26,3 (1885) 

A NOTE ON THE SOLVABILITY OF NONLINEAR ELLIPTIC PROBLEMS 
WITH JUMPING NONLINEARITIES 

Flavio DONATI •> 

Abstract; We study semilinear boundary value problems 
with noxuihearities crossing a simple eigenvalue. Some crite* 
ria for existence and non-existence of solutions are present­
ed; some open questions and connections to a number of papers 
on the subjeot are also discussed. 

Key words t Nonlinear boundary value problems, 
simple eigenvalue, multiplicity of solutions. 

Classification: 35J65 

crosa of 

Introduction. The aim of this note is to give some con­

tributions to the study of the solvability of semilinear boun­

dary value problems such as 

r _ & u « g(u) + hf h€L2(il) 

iu€H2(a)nH;(.a) 

where the nonlinearlty g interacts, in some sense, with the 

spectrum of the linear part and XL c IR, U2T1, is a bounded 

domain with smooth boundary. 

In the sequel we will not distinguish between the function g 

and its associated N emit sky i operator and we shall assume that 

g: IR —>> IR is a continuous function such that 

g+ m lim Si£-t exist in IR with g^+g + that i«, following 

(x) Work performed under the auspices of G.N.A.P.A. (C.N.R.) 
and supported by the project "Metodi asintotici e topolo-
gici in pro hi em i differencial! ,non linear!" tPaoolta di 
Scienze M.F.N.fUniverait* dell Aquila. 
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17} 9 g is a "jumping nonlinearity" (with finite jumps). We 

shall suppose g_< g + and the interval (g_,g+) containing a 

simple eigenvalue of the considered linear operator, i.e. the 

nonlinearity g crosses an eigenvalue. 

This type of problems originated from the pioneering work 

of Ambrosetti and Prodi L33, dealing with the cross of the 

first eigenvalue, has been extensively investigated in recent 

years; for an exhaustive bibliography we refer the reader to 

the survey paper C63. The cross of a (simple) higher eigenva­

lue, however, exhibits some particular features as shown, for 

instance, in [53,L8],C9],C12},C133. Actually, in this case, 

the results of Ambrosetti-Prodi type are established only ac­

cording to the particular nature of the eigenfunction corres­

ponding to the considered eigenvalue; moreover, a complete 

description of the solvability problems such as ((P) seems to 

be known only for the case N • 1, see [5] ,C83,[9.1. Finally, 

some "hidden" or nonlinear resonance phenomena can occur, see 

C9],L133. For other interesting features on the jumping nonli-

nearities we refer to recent papers L23,L14}. 

Here we present, in a simple and unified way, some crite­

ria on g^, g + which allow to decide on the solvability of pro­

blem ((P)(under an additional assumption on g); our results 

complete and slightly improve analogous results in f5],P23. 

The plan is the following: in Section 1 we state the results 

and briefly discuss some possible refinements and related open 

questions; in Section 2 we prove some auxiliary lemmas and in 

Section 3 we give the proofs of the main results. 

We wish to thank T. Gallouet and G. Mancini for helpful 

disoussions and comments. 
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1. Notation and statement of the results. We shall study 

problem ((P) in the following, more general, formulation 

Au « g(u) + h, he L2(il) 

B(A) 

where 

A:D(A)c L 2(&)—•* L2(J1) is a densely defined self-

{ A U i 

(H1> 
I adjoint l inear operator with compact resolvent; 

then A i s a closed operator and i t s domain D(A), equipped with 

the graph norm Bull' - ( llulr +HAulr) z for ueD(A) , i s com­

pactly embedded in L (51) (with norm I! • II and inner product 

( • , • ) ) • Moreover, the spectrum of A consis ts of a countable se ­

quence ( XJ) c IB. of eigenvalues, repeated according to the ir 

f i n i t e mul t ip l ic i ty , and the corresponding eigenfunctions -Ctpj^ 

are a complete orthonormal basis of L ( H ) . In order to simpli­

fy the notation we shal l set X * D(A), Y • L ( i l ) and write A 

for the simple eigenvalue crossed by g and <p for the associat­

ed normalized eigenfunction; we shal l also set . A - sup {X^i 

: .%lc< A 1 and Ik » inf \ %^i %< ^^* T h e n *-ie ^ap i a A -

- ^ I J I C Y - - > Y i s a self adjoint Predholm operator (se« e#g# 

[ 1 0 ] , p. 239) and the spaces X, Y admit the orthogonal decompo­

s i t ions 

(1.1) X - IRcy <& X, Y - lRg> ® $ 

where i * XO QRy) (which i s a Hilbert space with the norm 

|i • 11' ) and Y • (jfryr , ( ) being the orthogonal space in 

Y; i t i s also known that the res tr ic t ion of A to X has an inver-

se , denoted by A :Y—• X, which i s bounded* 

For the nonlinear part g, besides the above mentioned general 

assumptions, we shall require the following Lipschitz condition 
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there e x i s t s a constant 0 < L * i (1 4~1 ( " such that 
g(r 1 ) -g(r : ) 

(H_) % < % - L £ T
} ^ T^ £7i • L<A for r ^ r - * t 

, and % -» L£g_ < & < g+ _- & + L; 

f inal ly we shall set c+ « g+ - X and c_ » A - g_ while, for 

a function u e Y , u+ » max iu . ,01 and u~ » -min { u , 0 } . 

We are now able to state our main resu l t s . 

Theorem 1. Let J__l9 19 > 0 f i . e . Il9+ll >1>9 ~IW I I 

A J_a5 g verify ( E j ) , ^ ) and 

(1.2) m a x - i c ^ c 2 ^ 1 mint|c+ ||<2>+i|2 - c„ i y - | | 2 I , 
2 II A II 

l c _ I l 9 + I | 2 - c+ l l 9 - H 2 H 

II 2 C . !.-*«-
then 

( i ) when y^_ , A < — ± < _T lL f for a l l q f iY there ex i s t s a 
I l9*lr c_ Il9~)r 

real number T « T(q) such that for h » t<p + q, t 6 IR, the 

problem^ (P) has at least two solutions i f t < T t at l eas t 

one solution i f t » T and no solutions i f t > T ; 

c+ Ho?" II2 Ha**.!2 c+ 
( i i ) fjies — 1 < _T * or "T * < ~ ± , problem (P) i s 

c . l \9+ (r ll<j*r c „ 
solvable for a l l h£Y. 

* Theorem 2. Let J* 19 I 9 « 0* i f A and g verify (Ej) f 

(%) a n d c
+ # ° - Mi*** 

,2 л 2 . 1 | c + - c j 
(1.3) m a x * o + f c . J < - - ^ 2 

then problem (P) i s solvable for a l l hcY. 

Of course a result analogous to Theorem 1 i s true when 

r I 9 I <y < 0 and both theorems hold, with obvious modifica-
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tions, for the case &J? g+ too; on the other hand, one can re­

place the constant | in (Hg) by an arbitrary Ke(0,1) provided 

j in (1.2) ,(1.3) is rtplactd by 1 - K. A result similar to The-

ortm 1 (i) was proved in 1123 by requiring a condition of the 

type (1.2) for the Lipschitz constant L; our formulation, 

thanks to (Hg) and (1.2), allows separate controls on L and the 

behaviour at infinity of g. Moreover, results similar to Theo­

rem 1 (i) and Theorem 2 were proved in 153 by a different met­

hod whilt Theorem 1 (ii) seems to be new. 

Despite of the involved form of (1.2), when c+ and c_ have a 

common value c (i.e. ̂ + + g- « Jl) we simply have 

2 It A 1 * J-* 7 l 

On the other hand, s inot IIA"1 ii " 1 * min {& - A , X - &l , i t 

would be interest ing to know i f the above theorems hold with 

UJ-1j[ -1 r e p l a o e d b y m i n - j ^ . A, 3 - %\ in ( 1 . 2 ) , ( 1 . 3 ) . Anot­

her open question i s whether a result of Ambrosatti-Prodi type 

can occur when J 1cp i <y • 0; a negative answer i s given in 

[93# under the stronger assumption that the functions <J>+,<p" 

can be obtained one from the other by a translation, and in 

[53iC83 for the one-dimensional case. 

2 . Auxiliary lemmas. By the orthogonal decompositions g i ­

ven in (1.1) we can write every ue X as 

u « s<£> • v with 0 £ fR, V € l 

and every h e Y as 

h * t<f + q with t e ffi, q€% 

hence the problem(P) i s equivalent to the system 
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(2.1) r AT • Pg (eqj + T) + q 

(2.2) 1 m& - (g(s<j> + T),<f) + t 

where P:Y—> Y i s the orthogonal projection on ?. As i t i s known, 

the equation (2*1) i s always solvable, more precisely we have 

Lemma 1. I f A and g sa t i s fy (H.| ) , ( ! £ ) then, for eTery 

fixed s e IR and for a l l q c Y , there e x i s t s a unique T « 

« T(s ,q)c& solution of ( 2 . 1 ) . 

Though the proof of this lemma i s the same of that given 

in [121, we present i t for the reader's convenience. 

Proof. Fixed s e IR, we shal l proTe that the map defined 

as l[(r) m AT - Pg(s (p + T ) , for Tt>X, i s a homeomorphism of % 

onto i . Since 

(2 .3) J.T1 > T ( T ) . T - J - 1 p [ g ( s < ? + T) - A(scj> + T)3 

i t suff ices to proTe that A~ "_£ i s a homeomorphism on i ; by 

cal l ing $ ( T ) the second addendum of ( 2 . 3 ) , from (H.?) we get 

ll$ ( T ) - $ (•> H' £ \ II T - T it' for T , T * X , 

i . e . $ i s a contraction on £ and then, being A"" Y • I + $ , 

we can conclude by applying the Banaoh contraction mapping prin­

c ip le . 

By th is way the solTabi l i ty of the problem (P) follows from that 

of equation (2.2) or bet ter , by se t t ing G(s,q) « BX -

- (g(sc.p + T(s,q)),<j> ) , from the study of the real-Talued func­

t ion 6(s ,q) for eTery fixed q€Y# The following lemma w i l l en­

able us to invest igate the behaviour at in f in i ty of such a func­

t ion . 

Lemma 2 . Let A and g be as i n Lemma U then for a l l q*Y 

there ex is t 
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u . G. в-q> 
Л->+oű 

g - ' ( C + ( y + V) + C^( (J» + V ) " , y ) 

lim 2ifi*ftl . ( 0 ( m + j )+ + c . ( y + • ) " , » ) , 

with uniquely determined "?, ve X ( i . e . which are independent 

on q) such that 

max 41! v l i ' , B • 11'J A 2 !}A"111 m a x * c + , c j . 

Proof. We study only the case s —*- + co since the proof 

for the other case i s ident ical . Let -Is \ be a pos i t ive ly di- % 

vergent sequence and, for a fixed qeY, l e t v » v(s ,q) be the 

unique solut ion of the equation ( 2 . 1 ) ; then v , for a l l n e N , 

i s such that 

(2.4 ) v n =- A~1 P[q(sn<j> + v n ) - & (sn<? + V ^ + ^ *' 

By adding and subtracting the quantity fi(sn9) - X s Q 9 in the 

square bracket and using (Ik) , after some easy computations, 

we obtain 

'"» lir-7^rrr'|-ifi-»-M^I'. 
g ( s a ) . 

next, since { — - = \ converges strongly to g. <j - g_ <$" in 
n 

Y (see for instance Lemma 2.5 of 191)» we have that 

g(snc?) - л«?fl—* K°г + + °-<ï' 

and hence the sequence II •— 1 i s bounded. 

v„ 
Then there exist v^X and a subsequence ot^~\ , still denoted 

в
n 

by {~&\ , which is weakly convergent to v* in X and from (E-,), 

s
n
 d 

(2.5) we get 
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I I v l | / ^ 2 l i A - 1 ! i • It c + ^ + + o j y - U 2 | i - 1 J a a x U + , e J . 

We have now to show that such a V is uniquely determined and 

independent on the fixed q. For this purpose it suffices to pro­

ve that v is the unique solution of the equation 

wcX, Aw - -?Cg+(<j>+ w )
+ - g^(9 + w)~J 

or equivalently 

(2.6) wci, w * 1""1F [a+(<y+ w )
+ • 0.J9 + w)~3. 

Since J ^ 11 i » bounded and X i s compactly embedded in Y, the-

re ex i s t s a subsequence of -J ~ \ whioh i s strongly convergent 
n 

to v in Y| hence, after dividing (2*4) by s n , we can pass to 

the l imit in (2.4) (again thanks to the quoted lemma in [9] ) 

and conclude that f i s a solution of ( 2 . 6 ) , In order to prove 

uniqueness l e t us suppose that there ex i s t two solutions w.. ,* 2 

of (2*6). By writing (2.6) for w.j and w2 , subtracting term by 

term, and using the inequal i t ies 

~ (wt " w2)~£ (<$+ w-j)+ - (qp+ w 2 ) + £ (w.j - w 2 ) + 

- (w-j - w2)+.£ (qp + w.j)~ - (<j> + w2)"".^(w1 - w2)~ , 

we have* from (Hg), 

tlw-, - w2 It' £ II A~1S max U+9cJ It w., - w2H A \ t w., - w2B
# 

giving r i s e to a contradiction. 
G(s fq) 

f i n a l l y , the value of lim ' & •• i s immediately obtained* 
i1V-»+C0 % * 

v M 

since the whole sequence -v<~ \ converges to vf by arguing as 
*n 

v 
above for ?g(sn(^ + «j« >)/*a^ • 

In the sequel we shall also need the following 
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Lemma 3. Let A and g he as in Lemma U then, for. every 

fixed q€Y f G(sfq) i s a continuous function of |R into JR. 

Proof. By the def ini t ion of the function G(sfq) and the 

Lipsohitz continuity of g f i t suff ices to prove the continuity 

of v(s ,q) with respect to s , for every fixed q6Y. Then, l e t 

$ 8 ^ he such that s n — • s and, for every fixed q£Y f l e t v « 

* Y^an*^ ^ e ***« u n i < l u e solution of (2 .1 ) ; by arguing as befo­

re in order to obtain ( 2 . 5 ) , we get 

(2.7) B v n l i / ^ const. ( Hg(sn<y) - X*n<fl\ + ft q II ) 

where the term on the right i s bounded. 

Hence, after extracting a subsequence, we may assume that v ~ * 

—> ^f strongly in Y and by the continuity of the map g in Y we 

have that Pg(sncj>+ v )—> Pg(s<y + *v) strongly in Y. From (2.1) 

i t follows that Avn —* Pg(s<J> + v*) + q strongly in Y and, s in ­

ce A i s a closed operator, we obtain v c X with Av • Pg(s<j> + 'vH 

+ q that i s , by Lemma 1, v'-se v ( s - q ) . Thus the whole sequence 

\vn\ converges to v (s f q) (even w.r. t . the norm ll • H' ) and we 

can conclude. 

Remark 1. The resul t stated in Lemma 2 can be improved 

when & « A-j, the f i r s t eigenvalue of X% in fac t , in th i s case 

i t i s possible to show that v • v • 0 and, since <y-j does not 

change sign on JQ. , we have lim r.vgtfl/ « X _ g 9 f0 our 

b -+ ± <x> ° • -

knowledge this was firstly observed in £91; on the other hand, 

a more direct proof of this result is given in £4)# 

Remark 2. The proof of Lemma 3 follows essentially by the 

Lipschitz continuity of g* actually, under this assumption, it 

is possible to say that G(sfq) has the same regularity of gf 

see e.g. C431L113. 
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3* Proofs of the resulta. As we already said, the solva­

bility of equation (2,2), and hence that of the problem (P)f 

is an immediate consequence of the behaviour at infinity of 

G(sfq); more precisely, since by Lemma 3 we know that, for eve­

ry fixed qcY, G(s,q) is a continuous function, the solvability 

of equation (2,2) is determined by the sign of the quantities 

G+ m lim .G(.•!<_? studied in Lemma 2. Thus, Theorem 1 (i) is 
- A —>±0O s 

readily obtained i f we are able to prove that G+< 0 and G__> 0 

s ince, for a fixed qeY f i t suff ices to take T * T(q) _=S 

_=» max G(s fq); similarly Theorem 1 ( i i ) and Theorem 2 wil follow 
R 

i f G+ and G__ have the same sign. 

In order to prove Theorems 1 and 2 we remark that the f o l ­

lowing estimates hold: 

( 3 . D \G+ + (c+<5>+ + o ^ " , ^ ) ! ^ m a x \ c + f c j || v R' 

(3.2) IG__ - (c__<p+ + c+<?~f <?)\6 m a x - ( c + f c j fi v tl' 

where, besides some simple computations, we used inequal i t ies 

of the type 

- w~-s(cp+ w)+ - (?+.6 w+ (with w » v or w » v ) ; 

from (3.1 ) f (3.2) and the estimate of Lemma 2 on ll vtl'f || j \ \ ' we 

get 

lG+ + Lc+ H(y + l l 2 - 0 . I t c y - l l 2 ] ! ,6 2 11A-1 H max 4c+fc_;i 

IG. - t o . ll<y+tt2 - c+ | i ( _ > - | l 2 } U 2 ttA"1 B max{c2
fo_;} . 

c 
Xf -Z satisfies the condition in (i) of Theorem 1 f then c 

G+_t - [ o + l ( t } + l l 2 - c_ t 9 " l l 2 J + 2ttA-1I m a x t c + , c _ . < 0 

G _ > [ c _ H 9
+ | 2 - c+ R<j.-.2J - 2llA-1» m a x 4 o + , c _ ^ 0 
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where the strict inequalities follow from (1.2)f since the 

quantities in square brackets are positive, and we can conclu­

de; by the same arguments it is possible to verify that for 

c + Il<¥~82 ll<P+K2 C4. 

tK "i^i-( wij<t re8P,) we ta™ G+? ° •a* ^ ° 
(G+< 0 and G_< 0 resp . ) f thus proving ( i i ) of Theorem 1. 

Being <p as in Theorem 2 and c + < c_ (c + > c_ r e s p . ) , from (1.3) 

we have G+> 0 and G >̂ 0 (G+< 0 and G_< 0 resp.) and hence the 

solvabi l i ty of (P) for a l l h c Y . 

Remark 3 . The statement of part ( i ) of Theorem 1 can be 

strengthened, when A • - A and g e C ( IR) f by showing the ex i s ­

tence of T • TQ(q)< T such that for h «• t<y + q with t < T Q , 

the problem (P) has exactly two solutions; this can be proved 

by arguing as in £1J, where such a result was established for 

the case c+ « c_ » L. On the other hand, by suitably modifying 

the arguments used i n C1] , we can also obtain uniqueness of 

solutions wat inf ini ty" ( i . e . for large values of the parame­

ter t) for the s i tuat ions described in Theorems 1 ( i i ) and 2 . 
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