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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

A NOTE ON THE SOLVABILITY OF NONLINEAR ELLIPTIC PROBLEMS
WITH JUMPING NONLINEARITIES
Flavio DONATI *)

Abstract: We study semilinear boundary value problems
with nonlinearities orossing a simple eigenvalue. Some crite-
ria for existence and non-existence of solutions are present-
ed; some open questions and connections to & number of papers
on the subjeot are also discussed.

Key words: Nonlinear boundary value problems, cross of
a simple eigenvalue, multiplicity of solutions.

Classification: 35J65

Introduction. The aim of this note is to give some con-
tributions to the study of the solvability of semilinear boun-
dary value problems such ag

-BDu=gw +1b, her?(n)
{uaz(n)nn;m.)

where the nonlinearity g interacts, in some sense, with the
spectrum of the linear part and Qc IRN, NZ1, is a bounded
domain with smooth boundary.

In the sequel we will not distinguish between the function g
and its associated Nemlitskyl operator and we shall assume that

g: IR —> IR is a continuous function such that

r
8+ -“]_.Exg@ 55.—1 exigt in R with g_4 g, that is, following

(x) Work performed under the auspices of G.N.A.F.A.(C.N.R.)
and supported by the project "Metodi asintotici e fopolo-
glci in problemi differepziali ,non lineari",Facolta ai
Scienze M.F,.N.,Universita dell A4quila,

- 455 -



(71, & is a "jumping nonlinearity" (with finite jumps). We
shall suppose g_< &, and the interval (g_,g,) containing a
simple eigenvalue of the considered linear operator, i.e. the
nonlinearity g crosses an eigenvalue.

This type of problems originated from the pioneering work
of Ambrosetti and Prodi [3], dealing with the croass of the
first eigenvalue, has been extensively investigated in recemt
years; for an exhaustive bibliography we refer the reader to
the survey paper [6]. The cross of a (simple) higher eigenva~-
lue, however, exhibits some particular features as shown, for
instance, in [5),081,[91,(12],(13]. Actually, in this caae,
the results of Ambrosetti-Prodi type are established only ac-~
cording to the particular nature of the eigenfunction corres-
ponding to the considered eigenvaluej; moreover, a complete
description of the solvability problems such as ({P) seems to
be known only for the case N = 1, see [5],(8],[9]. Pinally,
some "hidden" or nonlinear resonance phenomena can occur, see
[9],{131. For other interesting features on the jumping nonli-
nearities we refer to recent papers [2],(14].

Here we present, in a simple and unified way, some orite-
ria on g_, g, which allow to decide on the solvability of pro-
blem (P )(under an additional assumption on g); our results
complete and slightly improve analogous results in [5],[12].
The plan is the following: in Section 1 we state the results
and briefly discuss some possible refinements and related open
questions; in Section 2 we prove some auxiliary lemmas and in
Section 3 we éive the proofs of the main results.

We wish to thank T. Gallouét and G. Mancini for helpful

disocussions and comments.
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1. Notation and statement of the results. We shall study

problem (®) in the following, more general, formulation

Au = g(u) + h, ne L2(0)
(®) {

ueD(A)
where
(5) [ A:D(A) c Lz(_(l)—-» Lz(j)_) is a densely defined self-
1 adjoint linear operator with compact resolvent;

then A is a closed operator and its domain D(A), equipped with
the graph norm ful’ = (Nul® +{aul®)?Z for ueD(4), is com- -
pactly embedded in L2(5) (with norm |+ | and inner product
(+4°)). Moreover, the spectrum of A consists of a countable se-
quence (th) C IR of eigenvalues, repeated according to their
finite multiplicity, and the corresponding eigenfunctions {gyk}
are a complete orthonormal basis of LZ(_Q.). In order to simpli-
fy the notation we shall set X = D(4), Y = Lz(ﬂ.) and write A
for the simple eigenvalue crossed by g and P for the assoclat-
ed normalized eigenfunction; we shall also set A = mp{?tk:
tA <Al and A = inf A A< A%, Then the map £=4-

- AI:XcY—> Y is a selfadjoint Fredholm operator (see e.g.
£101, p. 239) and the spaces X, Y admit the orthogonal decompo-
sitions

(1.1) I=Rg® %, Y= Rep@ ¥

where £ = XN (nq,)l (which is a Hilbert space with the norm
fo0 ) eand ¥= (|ch)“' , ( Y being the orthogonal space in
Y; it is also known that the restiriction of 2 to i has an inver-

1 a4 )
:Y —» X, which is bounded.

se, denoted by i-
For the nonlinear part g, besides the above mentioned general

assumptions, we shall require the following Lipschitz condition
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there exists & constant 0<Léx I A~T§ =7 such tmat
(ry)=-g(r

giry)=glr, £
1'1 - r2

end A-L&g <A<g A+ 1

(H,) A<A-1 & A+L<) for ry%Tp

finelly we shall set ¢, =g _~-A and ¢_ = A~ g_ while, for
a function ue¥, u' = max {u,0% and u~ = -min {u,03.

We are now able to state our main results.

Theorem 1. Let fnigzlcy > 0, i,e. Nt >lg “0; 12

A and g verify (E1),(Hz) and
(1.2) max {ci,cf§< z—ﬁ-l-rn- mintlc, llg>+l12 -c_ \lq:"“ 2) ,

le_ l\cp+\l 2. c, llg;"uz\i

then
-3 2
(1) when :?+l|: < -:—t< :;?_'[[ , for all qe? there exists e

reasl number T = T(q) guch that for h = $g + q, ¥ 6IR, the
pxoblem (P) has at least two solutions if t< T, at least

one solution if t+ = T and no solutions if t>T;

~n2 2
b 1

golvable for all heY.

¢
(1i) when <
c

. Theorem 2. Lg_tfnlqlq = 0; if A and g verify (H,),
(B;) and o 4 o_ with :

1 le, = o_|
‘ 212" 2
then problem (P) is solveble for all he Y.

(1.3) max {oi.cf{<

0f course a result analogous to Theorem 1 is true when

fnlcglq < 0 and both theorems hold, with obvious modifica~
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tions, for the case g_7 8, tooy; on the other hand, one can re~
place the constant % in (Hz) by an arbitrary Ke (0,1) provided
% in (1.2),(1.3) is replaced by 1 - K. A result similar to The-
orem 1 (1) was proved in [12] by requiring a condition of the
type (1.2) for the Lipschitz constant L; our formulation,
thanks to (H,) and (1.2), allows separate controls on L and the
behaviour at infinity of g. Moreover, results similar to Theo-
rem 1 (1) and Theorem 2 were proved in [5] by a different met~
hod while Theorem 1 (ii) seems to be new,

Despite of the involved form of (1.2), when ¢, and o_ have a

common value ¢ (i.e. 8+ ¥ &. u A ) we simply have
S

°<;,;T:‘rr1fnl?l?!-

On the other hend, since |A~1ll 14 min A=A ,A -2, 1t
would be interesting to know if the above theorems hold with
§a-tn - replaced by min {A -2, X = A% 1in (1.2),(1.3). Anot-
her open question is whether a result of Ambrosetti-Prodi type

can ocour when fﬂ.lqa | @ = 0; a negative answer is given in

{9), under the stronger assumption that the functions o¢',q
can be obtained one from the other by & tramslation, and in

{5),(8] for the one~dimenaional case.

2, Auxiliary lemmas., By the orthogonal decompositions gi-
ven in (1.1) we can write every us X as
u=s8¢ +v with s ¢ IR, vcf
and every heY as
h=tg +q with telR, qc¥;
hence the problem(P) is equivalent to the system
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(2.1) {Av-Pg (sg +v) +q

(2.2) sA = (g(sg + v),q@) + ¢

where P:Y — '!‘ is the orthogonal projection on f. As it is known,
the equation (2.1) is always solvable, more precisely we have

Lemma 1, If A and g satisfy (H,),(H,) then, for every
fixed s ¢ IR and for all qe?. there exists a unique v =
= v(s.q)ci solution of (2.1).

Though the proof of this lemma is the same of that given
in {12], we present it for the reader ‘s convenieénce.

Proof. PFixed s € IR, we shall prove that the map defined
as Y(v) = Av - Pg(sg + V), for ve £, is a homeomorphism of %

onto £. Since
(2.3) PV ¥ =v-1T'Pleleg + V) - A(sg + M)

it suffices to prove that 3'112‘ is a homeomorphism on X; by
calling & (v) the second addendum of (2.3), from (Hz) we get

M - d@DN < 5 lv-FI for v,7ei,

i.e. § is a contraction on ¥ and then, being Ay -1+  ,

we can conclude by applying the Banach contraction mapping prin-
ciple.

By this way the solvability of the problem (P) follows from that
of equation (2.2) or better, by setting G(s,q) = sA -

- (g(sq@ + v(s,q)),p), from the study of the real-valued func-
tion G(as,q) for every fixed qe Y. The following lemma will en-
able us to investigate the behaviour at infinity of such a func-
tion.

Lemma 2, Let A and g be as in Lemma 13 then for all qef

there exist
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1im Sﬁ%._gl == (e (@ + L MEENE + 97, 9)

N>+
G(s + -
aiil"m-%‘ﬂ =lelg+m +clg+n,g),
with uniquely determined ¥, ve i (i.e. which are independent
on q) such that

mex {170, Nyl 2208 " nax {c,,c_3.

Proof. We study only the case s —> + c© since the proof
for the other case is identical. Let isn'k be a positively di-
vergent sequence and, for a fixed qe’Y\, let Vo = v(sn,q) be the

unique solution of the equation (2.1)3 then v

n» for all nelN,

is such that

(2.4) v, = e P[q(an; +vy) = A(s,g+ vn)] + ﬁ'1q.

By edding end subtracting the quantity &(s @) - A s, @ in the

square bracket and using (Hz), after some easy computations,

we obtain
e WA (s,%)
(2.5) ni“ £ 1 _uﬁ-" L (“g :: -aqn‘-“'_:;“);
next, since QEE;E_CP_)g converges strongly to g, q+ -g. ¢ in
n
Y (see for instance Lemma 2.5 of [9]), we have that
R DOy

V. [
and hence the sequence u 33- “ is bounded,
n
v
Then there exist Ve X and a subsequence of{-s—n} , 8till denoted
n

v
by .{?:} , which is weakly convergent to ¥ in % and from (Hz),

(2.5) we get
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IvWe2li ' -llo,g*+o g lc2 na-ty max {¢,,03 .

We have now to show that such a ¥ is uniquely determined and
independent on the fixed q. For this purpose it suffices to pro-
ve that ¥ is the unique solution of the equation

-

weX, Aw = P (8, (qg+ wt - 8_(g+w)7]
or equivalently

(2.6) wed, wailp [n+(g; +wt o (o+ w7

Since “;i “' is bounded and X is compactly embedded in Y, the-
re exists a subsequence of{:;-:l:} which is strongly convergent

to ¥ in Yy hence, after dividing (2.4) by s,, we can pass to
the 1limit in (2.4) (again thanks to the quoted lemma in [9])
and conclude that ¥ is a solution of (2.6). In order to prove
uniqueness let us suppose that there exist two solutions WieWs
of (2,6). By writing (2.6) for w, and w,, subtrecting temm by
term, and using the inequalities

- (m = w) &g+ w) = (g4 )T (wy = w)*
- (wy =) @+ w)T = (@+ W) £ (wy - W),
we have, from (H,),
wy = wy 0 < BA™TN max fo,,0. % Rwy = wol s 3 Hwy = wy I

giving rise to & contradiction.

G(sn,q)

n

Finally, the value of 1lim is immediately obtained,
ny+0
v
since the whole sequence {;—q} converges to ¥, by arguing as
» n
vn
sbove for {g(s, (g + Co ) /s, % .
In the sequel we shall also need the following
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Lemma 3., Let A and g be as in Lemma 1; then, for every
tixed qe¥, G(s,q) is & continuous function of IR into R.

Proof, By the definition of the function G(s,q) and the

Lipsohitz continuity of g, it suffices to prove the continuity
of v(s,q) with respect to s, for every fixed qe?. Then, let
{8,} be such that s,— 5 and, for every fixed qsf, let v, =
= v(sn,q) be the unique solution of (2.1); by arguing as befo-
re in order to obtain (2.5), we get

(2.7 llvnﬁ'é const.(lgle, @) ~ As @l + Nql)

where the term on the right is bounded.

Hence, after extracting & subsequence, we may assume that vn—a
—> ¥ strongly in Y and by the continuity of the map g in ¥ we
have that Pg(s,cp+ vn) —> Pg(sq@ + %) strongly in Y. Prom (2,1)
1t follows that Av, —> Pg(s@ + ¥) + q strongly in Y and, sin-
ce A is a closed operator, we obtain Ve X with AT = Pg(sq+ )+
+ q that is, by Lemma 1, ¥ = v(s,q). Thus the whole sequence
{vn’; converges to v(s,q) (even w.r.t. the norm f{ « ||’) and we

can conclude,

Remark 1. The result stated in Lemme 2 cen be improved
when A = .7!.1 , the first eigenvalue of Ay in fect, in this case
it is possible to show that ¥ = v = O and, since ¢, does not
change sign on Q. , we have 1lim G(s,q) . 2 ~ 84 + To our

byt B 1 pt
kmowledge this was firstly observed in [91; on the other hand,
e more direct proof of this result is given in [4].

Remark 2, The proof of Lemma 3 follows essentially by the
Lipschitz continuity of g; actually, under this assumption, it
is possible to say that G(s,q) has the same regularity of g,

gee e.g. [‘10[1130
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3. Proofs of the results. As we already said, the solva-

bility of equation (2.2), and hence that of the problem (P),

is an immediate consequence of the behaviour at infinity of
G(s,q)y more precisely, since by Lemma 3 we know that, for eve-
‘ry ﬁged qe'f, G(s,q) is a continuous function, the solvability
of equation (2.2) is determined by the sign of the quantities

Gp = 1im 9£829) gtugied in Lemme 2. Thus, Theorem 1 (i) is
= A3*o0 8

readily obtained if we are able to prove that G+< 0 and G_> 0
since, for a fixed qe¥, it suffices to take T = T(q) =
= nu;‘x G(s,q)3 similarly Theorem 1 (ii) and Theorem 2 wil follow

it G + and G_ have the same sign.

In order to prove Theorems 1 and 2 we remark that the fol-

lowing estimates hold:

(3.1 16, + (c, 9% + c_¢~,9)|& max{c,,c} | 7N
(3.2) 1G_ = (c_p* + ¢,9 , @) £ max {c ,c 3 I xlV

where, besides some simple computations, we used inequalities
of the type
-w4(g+rmt - oTewt (withw=Forw=y);
from (3.1),(3.2) and the estimate of Lemma 2 on NFH’, [ vl' we
get
lo, + Lo, N@* U2 = o Mg~ 0211 22 N2 |l max §c2,0%3

lo_ - Le_Ng* 12 - ¢, g~ 1211 € 2 127" ) max {2,023 .

c
It c—*— satisfies the condition in (i) of Theorem 1, then

6, < - Te, 1g*I2% - c_ L@ 2] + 215N mex £c2,6%}<0

¢_2lc_lg*h%-c, Re~U2) = 2 0%""N max §c?

+,c3§70
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where the strict inequalities follow from (1.2), since the
quantities in square brackets are positive, and we can conclu-

de; by the same arguments it is possible to verify that for

o NgTi2  igH? o
R T T LA

(G+< 0 and G_< O reap.), thus proving (ii) of Theorem 1.

resp.) we have G >0 and G_> 0

Being ¢ @as in Theorem 2 and ¢, <c_ (c,>c_ resp.), from (1.3)
we have G, > 0 and G_> 0 (G+< 0 and G_< O resp.) and hence the
solvability of (P) for all heY.

Remark 3. The statement of part (i) of Theorem 1 can be
strengthened, when A = - and 3601( IR), by showing the exis-
tence of T = To(q)< T such that for h = tg + q with t<7T,
the problem (P) has exactly two solutions; this can be proved
by arguing as in [1], where such a result wes established for
the case ¢, =c_=1L On the other hand, by suitably modifying
the arguments used in [ 1], we can also obtain uniqueness of
solutions "at infinity" (i.e. for large values of the parame-

ter t) for the situations described in Theorems 1 (ii) and 2.
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