Commentationes Mathematicae Universitatis Carolinae

Antonín Sochor

Notes on revealed classes

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 3, 499--514
Persistent URL: http://dml.cz/dmlcz/106389

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NOTES ON REVEALED CLASSES

Antonín SOCHOR

Abstract

We construct a revealed class X auch that $P(X)$ is not revealed and furthermore we show that there are two fully revealed classes so that their interseotion is no fully rem vealed class.

Key words: Alternative set theory, revealed and fully revealed ciass, set-theoretically definabie class, real class, similarity, automorphism, revealment.

Clasaification: Primary 03E70 Secondary 03H15

One of the important notions of the alternative set theory (cf. [V]) is the property "to be revealed"; this notion corresponds in some aspects to the saturation property in the model theory.

A class X is called revealed if for every countable class $Y \subset X$ there is a set u with $Y \in u \subseteq X(c f . § 5 \mathrm{ch}$. II [V]); a class X is fully revealed if for every normal formula $\varphi(z, z)$ (even formal one - element of $F L$, see below), the class $\{z ; \varphi(z, X)\}$ is revealed (cf. § $2[S-V 1]$).

At first we are going to summarize results desoribing the system of revealed classes - e.g. we describe some properties fulfilled by revealed classes and show under which of the most erequent operations the investigated system of classes is closed. A nontrivial result in this area is that $P(X)=\{x ; x \subseteq X\}$
need not be revealed even in the case that X is revealed.
The system of all fully revealed classes is closed under Gödel's operations having one free variable by the definition; e.g. $V-X, \operatorname{dom}(X), V \times X, X^{-1}, C n v_{3}(X)=\{\langle x, y, z\rangle ;\langle y, z, x\rangle \in X\}$ and furthermore $U X$ and $P(X)$ are fully revealed under the agsumption that X is fully revealed. On the other hand, also trivially, this system of classes is not closed under operations working with countably many classes - e.g. for every $n \in F N$, the class $N-n$ is fully revealed, but the class $N-F N=\cap\{N-n ; n \in F N\}$ is not fully revealed (being revealed) because $F N$ is not revealed.

It is not so trivial to answer the question whether the system of fully revealed classes is closed even under Gödel 's operations having two eree variables. In this article we are going to show that it is not, unfortunately, the case - we shall see that the intersection of two fully revealed classes need not be fully revealed. Constructing a pair of such classes we shall prove some statements which seem to be interesting themselves.

Let us note that a class X is revealed iff there is no function P With $F N=\left\{\alpha \in \operatorname{dom}(f) ; f^{n} \propto \subseteq X\right\}$. In fact, for every countable Y there is a one-one mapping f with $Y=f{ }^{\prime} F \mathbb{F N}$ \& $\& \operatorname{dom}(f) \in \mathbb{N}$ by the prolongation axiom; supposing $Y \subseteq X$ and $7(\exists u)(Y \subseteq u \subseteq X)$ we get $F N=\left\{\propto \subseteq \operatorname{dom}(f) ; f^{n} \propto \subseteq X\right\}$. On the other hand, assuming FN $=\left\{\propto \subseteq \operatorname{dom}(f): f^{\prime \prime} \propto \subseteq X\right\}$ and $f^{\prime \prime F} \subseteq \subseteq \leq \subseteq$ $\subseteq X$, we obtain $F \mathbb{=}=\left\{\propto \subseteq \operatorname{dom}(f) ; \mathrm{f}^{\prime \prime} \alpha \subseteq u\right\}$ from which Set(FN) follows - contradiction. Thence X is not fully revealed iff there is a normal formula $\varphi(z, Z)$ with set-parameters only (cf. the eighth theorem of $\S 2[S-V 1])$ so that $P N=\{z ; \varphi(z, X)\}$.

Thus the above mentioned result can be reformulated in the following way: there are classes X, Y ach that there $i s$ no normal formula $\varphi(z, z)$ with $F N=f z ; \varphi(z, X)\} \vee F N=\{z ; \varphi(z, Y)\}$ but there is a normal formula $\psi\left(z, Z_{1}, Z_{2}\right)$ with FN $=$ $=\{z ; \psi(z, X, Y)\}(\varphi, \psi$ with set parameters only). In this formulation our result is not so surprising.

We use the notation usual in the alternative set theory (cf. [V]); in particular, variables F, G, f, G, \ldots run through functions; the symbol $F \circ G$ denotes the composition of F and G.

Let us recall some definitions.
A pair of classes K, S codes a system of classes \mathcal{H} if $(\forall X)\left(X \in X_{K} \equiv(\exists q \in K) X=S^{n}\{q\}\right)$; a system of classes is codable if there is a pair coding it.

A formula is normal if no class variable is quantified in it; a formula is called set-formula if there are only set-variables and set-constants in it. We define formal formulae in the alternative set theory as usual and the class of all formal formulae (without constants) which are elements of FN is denoted by the symbol FL . The symbol FL_{V} denotes the class of formulae of FL in which set-parameters are allowed.

A class X is called set-theoretically definable (element of $S d_{0}$ resp.) if there is a set-formula $\varphi \in \mathcal{F L}_{V}$ ($\varphi \in \mathrm{FL}$ resp.) With $X=\{z ; \varphi(z)\}$. X is a π-class (σ-class resp.) if it is the intersection (union resp.) of a countable sequence of settheoretically definable classes.
F is a similarity if for mach set-formula $\varphi\left(z_{1}, \ldots, z_{n}\right) \in$ FL and for each $x_{1}, \ldots, x_{n} \in \operatorname{dom}(F)$ we have
$\varphi\left(x_{1}, \ldots, x_{n}\right) \equiv \dot{\varphi}\left(F\left(x_{1}\right), \ldots, F\left(x_{n}\right)\right) ;$
a similarity whose domain and range is V is called an automor-
phism (see 81 ch. V [V]).
A class X is said to be a revealment of a class Y if X is fully revealed and for every normal formula $\varphi(Z) \in F L$ we have $\varphi(X)=\varphi(Y)($ see $\& 2[S-V 2])$.

A class is called real if it is a ifgure in an indiscernibility equivalence (see $\delta 1[\mathrm{c}-\mathrm{V}]$ and ch . III [V$]$).

To obtain a complete picture of revealed classes let us recall results of \& 5 ch . II [V]:
(a) If for every set u the intersection $X \cap u$ is a set, then X is revealed; in particular, each set-theoretically deinable class is revealed.
(b) If X and Y are revealed, then $X \cap Y$ and $X \cup Y$ are revealed, too.
(c) If $\left\{X_{n} ; n \in F N\right\}$ is a descending sequence of revealed classes, then $\cap\left\{X_{n}\{n \in F N\}\right.$ is also revealed and furthermore $\operatorname{dom}\left(\cap\left\{X_{n} ; n \in P N\right\}\right)=\cap\left\{\operatorname{dom}\left(X_{n}\right) ; n \in P N\right\}$.
(d) If $\left\{X_{n} ; n \in \mathbb{F N}\right\}$ is a descending sequence of nonempty revealed classes, then $\cap\left\{X_{n}\{n \in F N\} \neq 0\right.$.

The most important result irom the previously mentioned ones is the last one, it guarantees the importance of the notion of revealness.

The following statement expressing mainly that the system of the revealed classes is closed under union and all Gödel 's operations except the complement is formulated for completeness onIy, its proof is quite trivial. It is necessary to emphasize that the complement of a revealed class need not be revealed; as an example can serve the revealed class N-FN.

Theorem. (a) If X is revealed, then $\operatorname{dom}(X), X^{-1}, \operatorname{Cnv}_{3}(X)$ and $U X$ are revealed, too.
(b) If X and Y are revealed classes, then also the olass $X \times Y$ is revealed.
(c) If F in a revealed function, then even the class $U\{P(x) \times\{x\} ; x \in \operatorname{dom}(F)\}$ is revealed.

Proof. (a) If Y is a countable class with $Y \subset d o m(X)$ ($Y \subseteq$ $\subseteq X^{-1}, Y \subseteq C_{n \gamma_{3}}(X), Y \subseteq \cup X$ resp.), then we are able to ohoose a countable cless $Z \subseteq X$ with $\operatorname{dom}(Z)=Y\left(Z=Y^{-1}, Y=C n \gamma_{3}(Z)\right.$, ($\forall y \in Y$) ($\exists z \in Z)$ (\mathcal{Z} z resp.). Assuming X is revealed there is u with $Z \subseteq u \subseteq X$ and thus $Y \subseteq \operatorname{dom}(u) \subseteq \operatorname{dom}(X)\left(Y \subseteq u^{-1} \subseteq X^{-1}, Y \subseteq C n \nabla_{3}(u) \subseteq\right.$ $\subseteq \operatorname{Cn}_{3}(X), Y \subseteq U u \subseteq U X$ resp. $) ; \operatorname{dom}(u), u^{-1}, C n v_{3}(u)$ and $U u$ are sets by $\$ 1 \mathrm{ch}$. I [V.].
(b) If Z is a countable part of $X \times Y$ then dom (Z) and rag(Z) are countable, too, and hence supposing X, Y to be revealed there are u, ∇ with $d o m(Z) \subseteq \nabla \subseteq Y \& r n g(Z) \subseteq u \subseteq X$ from which $Z \subseteq u \times \nabla s$ C $X \times Y$ follows.
(c) If Y is a countable subciass of $\cup\{f(x) \times\{x\} ; x \in$ $\in \operatorname{dom}(F)\}$ then $\operatorname{dom}(Y) \subseteq \operatorname{dom}(F)$ is also countable and assuming that F is revealed we can choose $f \subseteq F$ with $\operatorname{dom}(Y) \subseteq \operatorname{dom}(f)$ and therefore $Y \subseteq U\{f(x) \times\{x\} ; x \in \operatorname{dom}(f)\}$ and the lastiy mentioned class is a set.

Lemma. If Y is a revealment of FN then there is a revealed mapping F of Y into $N-F N$ with \cap Fry $=F N$ (F being moreover decreasing i.e. $\alpha<\beta \in Y \rightarrow F(\alpha) \geq F(\beta))$.

Proof. Using the same idea as in § 4 [S2] we define by induction a sequence $\left\{f_{\alpha}: \alpha \in \Omega\right\}$ putting $f_{0}=0_{i}$ the property $\operatorname{dom}\left(f_{\alpha}\right) \in Y \& r n g\left(I_{\alpha}\right) \subseteq N-F N \& I_{\alpha}$ is decreasing \& $(\forall \beta \in(\alpha \cap \Omega))$ $f_{\beta} \subseteq f_{\alpha}$ serves as the induction hypothesis.

If $f_{\alpha}(\propto \in \Omega)$ is constructed then we put $f_{\alpha+1}=f_{\alpha} u$ $u\{x\} \times\left(y-\operatorname{dom}\left(f_{\infty}\right)\right)$ where $y(x$ resp. $)$ is the smallest element
(in a fixed well-ordering whlch orders V by type Ω) of $Y-\operatorname{dom}\left(f_{\alpha}\right)\left(\cap \operatorname{rng}\left(f_{\alpha}\right)-F N\right.$ resp. $)$. Our choice is possible since $\operatorname{dom}\left(f_{\alpha}\right) \subseteq Y$ and $m g\left(f_{\alpha}\right) \cap F N=0$ by the induction hypothesis (and because FN is a proper class and thus Y is also a proper cless).

If $\alpha \in \Omega$ is a limit and if $\left\{f_{\beta} ; \beta \in(\alpha \cap \Omega)\right\}$ is constructed, then we choose an increasing sequence $\left\{\alpha_{n} ; n \in P N\right\} \subseteq$ $\subseteq \alpha \cap \Omega$ with $\cup\left\{\alpha_{n} ; n \in F N\right\}=\cup\{\beta ; \beta \in(\alpha \cap \Omega)\}$ (the countability of $\alpha \cap \Omega$ enables us to make such a choice) and furthermore we fix $\delta \in\left(\cap\left\{\cap \operatorname{mg}\left(\rho_{\beta}\right) ; \beta \in(\alpha \cap \Omega)\right\}-F N\right)$ (this choice is possible since FN is no π-class). By the prolongation axiom there is g with $g(n)=f_{\alpha_{n}} \&^{\alpha} \operatorname{dom}(g) \in N$. According to the induction hypothesis we have $n<m \in F N \rightarrow g(n) \subseteq g(m) \&$ $\& g(n)$ is decreasing \& dom $(g(n)) \in Y \& \operatorname{rng}(g(n)) \subseteq N-\sigma^{\circ}$. Thus there is even an infinite natural number α^{\prime} with the properties in question because Y is fully revealed and therefore, defining $f_{\alpha}=g\left(\alpha^{\prime}\right)$, we obtain $\operatorname{dom}\left(f_{\alpha}\right) \in Y \& \operatorname{lng}\left(f_{\alpha}\right) \subseteq N-\delta^{\circ} \&$ \& f_{α} is decreasing $\&(\forall n \in F N) f_{\alpha_{n}} \subseteq f_{\infty}$ from which the induction hypothesis for \propto follows because of our choice of the sequence $\left\{\alpha_{n} ; n \in F N\right\}$.

At the end we put $F=\bigcup\left\{f_{\alpha} ; \propto 6 \Omega\right\}$. Evidentiy F is revealed aince if $\left\{x_{n} ; n \in F N\right\} \subseteq \operatorname{dom}(F)$, then we can choose $\propto \in \Omega$ with $\left\{x_{n} ; n \in F N\right\} \subset \operatorname{dom}\left(f_{\alpha}\right) ; F$ is a decreasing mapping which is a part of ($N-F N$) \times Y. Moreover, $\operatorname{dom}(F)=Y \& \cap$ FHY $=F N$ because of the construction of $f_{\alpha+1}$'s.

Theorem There is a revealed class X such that $P(X)$ is not revealed.

Proof. Let Y be a revealment of $F N$ (for the existence see § 2 [S-V 2]), F be a revealed mapping of Y into $N-F N$ with

〇FHY $=F N$ and let $Y \subseteq \propto \in N$. We define X as $\cup\{P(x) \times\{x\} ;$ $x \in \operatorname{dom}(F)\} \cup \alpha \times(\alpha-Y)$. This class is revealed as the union of two revealed classes ($\alpha-Y$ is revealed since Y is fully revealed). For every $n \in F N$ we have $n \times \alpha \subseteq X$, but according to the choice of F there is no $\beta \in N-F N$ with $\beta \times \alpha \subseteq X$ and thus the re is no u with $\{n \times \propto ; n \in F N\} \subseteq u \subseteq P(X)$.

The following trivial lemma is useful.
Lemma. If $\left\{S_{n} ; n \in P N\right\}$ is a sequence of revealed classes with ($\forall n \in F N$) $S_{n+1} \subset S_{n}$ then the class $V-\cap\left\{S_{n} ; n \in F N\right\}$ is not revealed.

Proof. Let us choose f so that $f(n) \in\left(S_{n}-S_{n+1}\right)$ for every $n \in F N$. Evidentiy $m \geq n \rightarrow f(m) \in S_{n}$ and thus assuming the olasses S_{n} are revealed, we can choose a decreasing sequence $\left\{u_{n} ; n \in F N\right\}$ with
 if the lastly mentioned class would be revealed, then there would be a set u such that $\mathcal{P} \| P N \subseteq u \& u \cap \cap\left\{S_{n} ; n \in F N\right\}=0$. For every $n \in F N$ we would have $f(n+1) \subset\left(u_{n+1} \cap u\right) \subseteq\left(u_{n} \cap u\right)$ from which
$0 \neq u \cap \cap\left\{u_{n} \boldsymbol{n} \in \mathcal{F N}\right\} \subseteq u \cap \cap\left\{S_{n} ; n \in F N\right\}$
would follow by (a) and (d) of the beginning of the paper - contradiction.

Corollary. Each revealed σ-class is set-theoretically definable.

Proof. If $\left\{S_{n} ; n \in F N\right\}$ is a sequence of set-theoretically definable classes, then for every $k \in F N$ the class $S_{k}^{\prime}=U\left\{S_{n} ; n \leq k\right\}$ is set-theoretically definable, too, and thence the class $V-S_{k}^{\prime}$ is revealed. If $\cup\left\{S_{n} ; n \in F N\right\}=V-\cap\left\{V-S_{n} ; n \in F N\right\}$ is revealed, then there is $k \in F N$ such that $(\forall n \geq k)\left(V-S_{n}^{\prime}=V-S_{k}^{\prime}\right)$ 1.e. $U\left\{S_{n} ; n \in F N\right\}=S_{k}^{*}$

Corollary. There is no revealed class which is countable,
in particular, the class FN is not revealed.

Corollary. Each fully revealed π-class is set-theoreticelly definable.

Proof. Its complement is a revealed σ-class, therefore its complement is set-theoretically deifnable.

Corollary. Each fully revealed real class is set-theoretically definable.

Proof. In $\$ 1$ [$X-V]$ the authors prove that every revealed real class is a π-olass.

Theorem. (a) A class is set-theoretically definable iff the system of all its revealments is codable.
(b) Every set-theoretically definable class which is no element of S_{0} has Ω-many revealments (i.e. if a pair K, S codes the system of all its revealments, then K is uncountable) and each element of Sd_{0} is its sole revealment.

Proof. According to the second theorem of $\$ 2[S-V 2]$, the system $\{Y ; Y$ is a revealment of $X\}$ equals to the system $\left\{F N Y_{0}\right.$; Fis an automorphism $\}$ where Y_{0} is an arbitrarily chosen revealment of \mathbb{Z} (by the first theorem of $82[S-V 2]$ every class has a revealment).

If $X \in S d_{0}$, then X is its sole revealment by the second theorem of \& 3 [S-V 2].

If X is set-theoretically definable, then there is a setformula $\varphi\left(z, z_{1}\right)$ of FL and a convenient parameter p_{0} (may be an n-tuple) with $X=\left\{z ; \varphi\left(z, p_{0}\right)\right\}$. Let the symbol Mon denote the monad of p_{0} in the indiscernibility equivalence 으 defined in $\$ 1$ ch. $V[V]$. Further let us suppose $X \notin S d_{0}$.

Put $A_{q}=\{p ;(\forall z)(\varphi(z, p)=\varphi(z, q))\}$ and let us assume at ifrst that there are $p_{1}, \ldots, p_{n} \in$ Mon with Mon $\subseteq \cup\left\{A_{p_{k}} ; k \leq n\right\}$.

Since every A_{q} is set-theoretically definable, the class $\cup\left\{A_{p_{k}} ; k \leq n\right\}$ is set-theoretically definable, too. If $p \in \cup\left\{A_{p_{k}} ; k \leqslant n\right\}$ then there is $i \leqslant n$ with $(\forall z)(\varphi(z, p) \equiv$ $\left.\equiv \varphi\left(z, p_{i}\right)\right)$ and moreover for each automorphism F we have $(\forall z)\left(\varphi(z, F(p)) \equiv \varphi\left(z, F\left(p_{i}\right)\right)\right.$. Furthermore let us realize that $r\left(p_{i}\right) \xlongequal{n} p_{0}$ (because $p_{i} \xlongequal{\circ} p_{0}$) and therefore there is $j \leqslant n$ with $(\forall z)\left(\varphi\left(z, F\left(p_{i}\right)\right)=\varphi\left(z, p_{j}\right)\right)$ from which $F(p) \in \cup\left\{A_{p_{k}} ;\right.$ $k \leq n\}$ follows. We have proved that $U\left\{A_{p_{k}} i k \leq n\right\}$ is a figure in the indiscernibility equivalence $?$ and thence by the nineteenth theorem of $\$ 1 \mathrm{ch} . \mathrm{V}[\mathrm{V}]$ it is an element of $\mathrm{Sd} \mathrm{A}_{0} \mathrm{Ac}$. cording to the twelfth theorem of the mentioned section there is a definable $p \in \cup\left\{A_{p_{k}} ; k \leqslant n\right\}$ i.e. there is $1 \leq n$ and a getformula ψ of FL such that $\left\{z ; \varphi\left(z, p_{i}\right)\right\}=\{z ; \psi(z)\}$. Furthermore there is an automorphism F so that $F\left(p_{0}\right)=p_{i}$ (because p 요 p_{i} and because of the sixth theorem of $\& 1 \mathrm{ch} . V[V]$) and hence $Z=\left\{z ; \varphi\left(z, p_{0}\right)\right\}=\left\{z ; \varphi\left(z, F^{-1}\left(p_{1}\right)\right)\right\}=F^{-1 "}\left\{z ; \varphi\left(z, p_{1}\right)\right\}$. $=F^{-1}\{z ; \psi(z)\}=\{z, \psi(z)\}$. This contradicts our assumption $X \notin S_{0}$ 。

Let $\left\{p_{k} ; k \in F N\right\} \subseteq$ Mon be a sequence such that $p_{n} \notin U\left\{A_{p_{k}} ;\right.$ $k<n\}$ for every $n \in F N$. The class Mon is a $\pi-c l a s s$ by the definition and thus it is revealed. Therefore for every $n \in F N$ the class Mon - $U\left\{A_{p_{k}} ; k<n\right\}$ is revealed, too, and it is nonempty (p_{n} being its element). Thence by (d) of the beginning of the paper, even the class Mon $-\cup\left\{A_{p_{k}} ; k \in F N\right\}$ is nonempty.

We suppose that $X=\left\{z ; \varphi\left(z, p_{0}\right)\right\} \notin S d_{0}$. Then X is its revealment and for every $p \in M o n$ there is an automorphism G with $G\left(p_{0}\right)=p$ and furthermore for every automorphiam F we have $F\left(p_{0}\right) \in M o n$ and $P^{\prime \prime X}=F^{\prime \prime}\left\{z ; \varphi\left(z, p_{0}\right)\right\}=\left\{z ; \varphi\left(z, F\left(p_{0}\right)\right\}\right.$. Thus the
system of classes \{P"X; F is an automorphism $\}$ is coded by the pair Mon, $\{\langle z, p\rangle ; \varphi(z, p)\}$ and moreover there is no class $Z \subseteq$ Mon which is at most countable so that $M o n \subseteq U\left\{A_{q} ; q \in Z\right\}$. We have proved our statement (b) and one implication of (a).

Let Y_{0} be a revealment of a class $X_{\text {. If }}$ the system of classea $\left\{P^{\prime \prime} Y_{0} ; F\right.$ is an automorphism\} is codable, then by the eighth theorem of $\$ 1[\check{C}-V]$, the class Y_{0} is real. This class is even fully revealed and hence y_{0} is set-theoretically definable by the last Corollary and thus $Y_{0}=\{z ; \varphi(z, p)\}$ for some $\varphi \in \mathcal{F L}$ and a suitable parameter p. Therefore $X=\left\{z ; \varphi\left(z, p^{\prime}\right)\right\}$ for some parameter p^{\prime} by' the definition of revealment. We have proved the second implication of (a) which finishes the proof of our theorem.

Since there are classes which are not set-theoretically definable, the last theorem guarantees that the system of fully revealed classes is not codable i.e. it is very large. On the other hand, the following statement shows that this system is "narrow" - there is rather a small number of types of fully revealed classes if in one type there are classes satisfying the same normal formulae of PL. This is raised by the countability of the class of considered formulae (the system of all subclasses of FL is codable according to the prolongation axiom). (If we would admit in the considered formulae even set-parameters, we would get a quite opposite result, of course.)

The system of all axioms of the form $(\forall x)(\exists X) \Phi(X, X) \rightarrow(\exists Y)(\forall X) \Phi\left(X, Y^{\prime \prime}\{x\}\right)$
where Φ is an arbitrary formula is called the strong schema of choice; the alternative set theory with the strong schema of choice is consistent relatively to the alternative set theory.

Theorem. If the strong schema of choice is available, then there is a codable system of olasses $\partial \nVdash$ auch that
$(\forall X)(\exists Y \in \gamma \not \subset) Y$ is a revealment of X.
Proof. As $\Phi(z, z)$ we fix the formula
$[(\exists Q)(\forall \varphi \in \mathrm{FL})((\varphi$ is normal \& φ has exactly one iree variable $) \rightarrow(\varphi(Q)=\varphi \in z)) \rightarrow(\forall \varphi \in P L)((\varphi$ is normal $\&$ $\& \varphi$ has exactly one free variable $\rightarrow(\varphi(z) \equiv \varphi \in . z)] \& \mathrm{z}$ is fully revealed.

The following result is a slight generalization of the eighth theorem of § $1[\mathrm{C}-\nabla]$.

Theorem. If there are x, y so that the system of classes $\left\{F^{\prime \prime X} ; F\right.$ is an automorphiam with $\left.F(x)=y\right\}$ is nonempty and codable then X is a real class.

Proof. Let x, y be sets with the above described property. Since there is an automorphism F with $F(x)=y$, the set $\{\langle y, x\rangle\}$ is a similarity.

To every similarity $\{\langle z, y\rangle\}$ there is an automorphism H with $H(y)=z$ by the sixth theorem of $\& 1$ oh. V [V]. Moreover, if a well-ordering of V of type Ω is chosen, then such an automorphism can be constructed uniquely and we are going to denote it by the symbol H_{z}.

If a pair of classes K, S codes the syatem of classes \{fnX; Fis an automorphism with $F(x)=y\}$ then we put.
$\widetilde{K}=U\left\{\left(H_{z}{ }^{n} K\right) \times\{z\} ;\{\langle z, y\rangle\}\right.$ is a similarity $\}$
and

$$
\tilde{S}=\left\{\left\langle H_{z}(p),\left\langle H_{z}(q), z\right\rangle\right\rangle ;\langle p, q\rangle \in S \&\{\langle z, y\rangle\} \text { is a similarity }\right\}
$$

If G is an automorphism with $G(x)=z$ then $\{\langle z, y\rangle\}=$
$=\{\langle z, x\rangle\} \circ\{\langle x, y\rangle\}$ is a similarity since the composition of similarities is also a similarity and the converse of a similarity is a similarity, to 0 (see $\S 1 \mathrm{ch} . \mathrm{V}[\mathrm{V}]$). Thus the auto-
morphism H_{z} had to be chosen and putting $F=H_{z}^{-1} \circ G$ we have $F(x)=H_{z}^{-1}(G(x))=H_{z}^{-1}(z)=y$ and thus there is $q \in K$ with $F \mathbb{X}=$ = S" $\{q\}$. Since $\{\langle z, y\rangle\}$ is a similarity, $\left\langle H_{z}(q), z\right\rangle$ is an element of \tilde{K} and moreover

$$
\widetilde{S "}\left\{\left\langle H_{z}(q), z\right\rangle\right\}=\left\{H_{z}(p) ;\langle p, q\rangle \in S\right\}=H_{z} "(S "\{q\})=
$$

$$
=H_{z}{ }^{\prime \prime}\left(F{ }^{\prime \prime X}\right)=H_{z} "\left(H_{z}^{-1} n(G n X)\right)=G n X .
$$

We have proved that the system of classes $\{G " X ; G$ is an automorphism $\}$ is codable. We finish the proof using the mentioned result of § 1 [č-v].

Theorem. If F is a similarity which is at most countable, then there are f, g such that $F \cup\{\langle g, f\rangle\}$ is a aimilarity and such that every automorphism G with $G(f)=g$ is an extension of F.

Proof. We suppose that $\operatorname{dom}(F)$ is at most countable and thus there is f with $f " F N=\operatorname{dom}(F)$. According to the third theorem of $\oint 1$ oh. $V[\nabla]$ there is g such that $F \cup\{\langle g, f\rangle\}$ is a similarity. If G is an automorphism with $G(f)=g$, then $G(f(n))=$ $=(G(f))(G(n))=(G(f))(n)=g(n)$ and $\langle f(n), n\rangle \in f$ implies $(F \cup\{\langle g, f\rangle\})(\langle f(n), n\rangle) \in(F \cup\{\langle g, f\rangle\})(f)$ i.e. $\langle F(f(n)), n\rangle \in g$ from which $F(f(n))=g(n)=G(f(n))$ follows for every $n \in \mathbb{F N}$. We have proved $F \subseteq G$ because P'FN $^{\text {F }}=\operatorname{dom}(F)$.

Lemma. If F is a similarity which is at most countable, then for every $\alpha \notin \mathbb{F N}$ there is $\beta \in \alpha-\mathbb{F N}$ such that $\mathrm{Pu}\{\langle\beta, \beta\rangle\}$ is a similarity.

Proof. Lat f_{4} be the system of classes of the form $\left\{\beta<\alpha ; m<\beta \&\left(\varphi\left(\beta, x_{1}, \ldots, x_{n}\right)=\varphi\left(\beta, F\left(x_{1}\right), \ldots, F\left(x_{n}\right)\right)\right)\right\}$ where $m \in F N, x_{1}, \ldots, x_{n} \in \operatorname{dom}(F)$ and φ is a set-formula of PL with exactly $n+1$ free variables.

Por every $m \in F N$ there is ast-formula $\psi(z) \in F L$ wo that $(\exists \mid x) \psi(x) \& \psi(m+1)$ 。

If $\varphi\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ is an arbitrary set-formula of $F D$, then $(\exists x)\left(\varphi\left(x, z_{1}, \ldots, z_{n}\right) \& \psi(x)\right)$ is a set-formula of PL, too. UEing the fact that F is a similarity, we obtain $(\exists x)\left(\varphi\left(x, x_{1}, \ldots, x_{n}\right) \& \psi(x)\right) \equiv(\exists x)\left(\varphi\left(x, F\left(x_{1}\right), \ldots, F\left(x_{n}\right)\right) \&\right.$ \& $\psi(x))$
i.e.

$$
\varphi\left(m+1, x_{1}, \ldots, x_{n}\right) \equiv \varphi\left(m+1, F\left(x_{1}\right), \ldots, F\left(x_{n}\right)\right)
$$

for every $x_{1}, \ldots, x_{n} \in \operatorname{dom}(F)$.
Thus $\partial \nVdash$ is a countable system of nonempty set-theoreti-
 refore by (a) and (d) of the beginning of this article we have $\cap\left\{X_{i} \bar{X} \in \gamma \not \subset\right\} \neq 0$. According to the definition of $\gamma \mathscr{F}$, every element of $\cap\{X ; X \in \partial \not \subset\}$ satisfien our requirements.

Theorem. There are fully revealed olasses X and Y such that $X \cap Y$ is not fully revealed.

Proof. Let us define
Sat $=\{\langle x, \varphi\rangle ; \varphi \in P L \& \varphi$ is a set-formula with exactiy one Iree variable \& $\varphi(x)\}$.

The class Sat determines the satisfaction relation in the molel $\langle V, \epsilon\rangle$ and the pair of classes $F L$, Sat codes the system of olassea $S d_{0}$. Furthermore, for every revealment Q of Sat and every $n \in F N$, we have $Q P n=S a t P n$ since Sat $P n$ is set-theoretically definable. Since each class has a revealment, wo are able to fix Z as a revealment of the class Sat.

Let $\left\{\alpha_{\gamma} ; \gamma \in \Omega\right\}$ be a descending sequence of natural numbers with $\mathrm{FN}=\cap\left\{\alpha_{\gamma} ; \gamma \in \Omega\right\}$ and let $\left\{x_{\gamma} ; \gamma \in \Omega\right\}$ be an enumeration of the universal class. We are going to construct a sequence of similarities $\left\{H_{\gamma} ; \gamma \in \Omega\right\}$ by induction putting
$H_{0}=0$ and for every limit $\gamma \in \Omega$ we define H_{γ} as $\cup\left\{H_{\beta} ; \beta \in(\gamma \cap \Omega)\right\}$ 。

For every $\gamma \in \Omega$ we construot the similarity $H_{\gamma+1}$ under the assumption that H_{γ} is a similarity which is at most countable.

By the last lemma we can choose $\beta e \alpha_{\gamma}$ - FN such that $H_{\gamma} \cup\{\langle\beta, \beta\rangle\}$ is a similarity; furthermore according to the last theorem we are able to $1 i x g, f$ such that $H_{\gamma} \cup\{\langle\beta, \beta\rangle\} \cup$ $\cup\{\langle g, f\rangle\}$ is a similarity and such that every automorphism F with $F(f)=g$ is an extension of $H_{\gamma} \cup\{\langle\beta, \beta\rangle\}$.

At first we are going to show that there is an automorphism F with $F(f)=g$ such that $Z \Gamma \beta \neq F^{n}(Z \Gamma \beta)$. If there would not be such an automorphism then the system of classes
$\left\{F^{\prime \prime}(Z \cap \beta) ; F\right.$ is an automorphism with $\left.F(f)=g\right\}$ would be codable and nonempty $(\{\langle g, f\rangle\}$ being extendable to an automorphism since it is evidently a similarity) and thus $z+\beta$ would be real because of the last but one theorem. since $z \Gamma \beta$ would be fully revealed and real, it would have to be set-theoretically definable by the last Corollary. On the other hand, the pair PL, $Z \upharpoonright \beta$ codes the system of classes $S d_{0}$ and thus we would obtain a contradiction to the first theorem of \& 4 [S-V 2.]. Our claim is proved.

We have proved that there is an automorphism $\left.F \supseteq H_{\gamma} \cup f\langle\beta, \beta\rangle\right\}$ with $Z \upharpoonright \beta \neq\left(F^{n Z}\right) P \beta\left(=\left(F^{n} Z\right) P P(\beta)=F^{n}(Z \cap \beta)\right)$. Therefore we are able to choose $\mathrm{H}_{\gamma+1}$ so that
(1) $H_{\gamma+1}$ is a similarity which is at most countable; $H_{r} \subseteq H_{\gamma+1}$
(2) $\left(\exists \beta<\alpha_{\gamma}\right)(\exists x \in z \vdash \beta)(\exists y \notin z \upharpoonright \beta)(\langle x, y\rangle \in$

$$
\left.\epsilon\left(H_{\gamma+1} \cup H_{\gamma+1}^{-1}\right)\right)
$$

(3) $x_{\gamma} \in\left(\operatorname{dom}\left(H_{\gamma+1}\right) \cap \operatorname{rng}\left(H_{\gamma+1}\right)\right)$.

At the end we put $H=\cup\left\{H_{\gamma} ; \gamma \in \Omega\right\}$. Evidently H is an automorphism and for every $\alpha \neq$ FI we have ($\left.\mathrm{H}^{n} \mathrm{Z}\right) ~ \Gamma \propto \neq \mathrm{z} \Gamma \propto$, since for every $\gamma \in \Omega$ there is $\beta<\alpha_{\gamma}$ such that for every oneone mapping F with $P \geq{ }_{\gamma+1}$ we have (FHZ) $\Gamma \beta \neq \mathrm{Z} \Gamma \beta$.

According to the second theorem of \& $2[S-V 2]$, the class H"Z is a revealment of the class Sat, too, and thence for every $n \in F N$ we get $Z \Gamma n=S a t r n=(H Z Z) \Gamma n$. Eventually we define $X=$ $=Z \times\{0\} \cup V \times\{1\}$ and $Y=V \times\{0\} \cup\left(H^{\prime \prime} Z\right) \times\{1\}$. Both classes X and Y are fully revealed classes and we have $X \cap Y=Z \times\{0\} \cup\left(H^{\prime \prime} Z\right) \times\{1\}$; this class is not fully revealed because
$\{\alpha ;((X \cap Y) "\{0\}) \Gamma \alpha=((X \cap Y) "\{1\}) \Gamma \alpha\}=$
$=\left\{\propto ; Z \Gamma_{\alpha}=\left(H^{n z}\right) \upharpoonright \alpha\right\}=\mathrm{FN}$
is not revealed by the first Corollary.
Let us note that as a trifial consequence we get that the system of fully revealed classes is closed neither to Cartesian product nor to the pairing operation of classes ($\langle\mathrm{X}, \mathrm{Y}\rangle^{\sigma}=\mathrm{X} \times\{0\} \cup$ $\cup Y \times\{1\})$. On the other hand, according to [S-V 5], to every fuliy revealed class there is a system of fully revealed classes containing it and closed under all Gödel's operations.

At the end let us note that we have constructed two revealments Z, Z° of the satisfaction class Sat with $F N=\{\propto ; Z \Gamma \propto=$ $\left.=z^{\circ} \mid \propto\right\}$, but using the same technique as in the last proof we are able to prove a still stronger result, namely, for every codable system 殓 of revealments of the class Sat we can construct a class X with
$(\forall Y \in$ gyt $) P N=\{\propto ; X P \propto=Y \Gamma \propto\}$
Thus we can construct by induction a system $\left\{X_{\gamma} ; \gamma \in \Omega\right\}$ of revealments of the class Sat so that

$$
(\beta, \gamma \propto \Omega \& \beta \neq \gamma) \rightarrow \mathbb{P N}=\left\{\propto\left\{x_{\beta} \Gamma \propto=X_{\gamma} \Gamma \propto\right\}\right.
$$

1.e. we are able to construct Ω-many revealments of Sat with the property in question.

Referenoes
[7] P. VOPĚNKA: Mathemation in the alternative set theory, Teubnerwexte, Leipzig 1979.
[Č-V] K. ČUDA and P. VOPĽNKAs Real and imaginary classes, Comment. Math.Univ. Carolinae 20(1979), 639-653.
[S2] A. SOCHOR: Metamathematios of the alternative set theory II, Comment. Math. Univ. Carolinae 23(1982),55-79.
[S-V 1] A. SOCHOR and P. VOPEKKKA: Endomorphic universes and their standard extensions, Comment. Math. Univ. Carolinae 20(1979), 605-622.
[S-V 2] A. SOCHOR and P. VOPĚNKA: Revealments, Comment. Math. Univ. Carolinae 21(1980), 97-118.
[S-V 5] A. SOCHOR and P. VOPĚNKA: Shiftinge of the horizon, Comment. Math. Univ. Carolinae 24(1983), 127-136.

Math. Inst. Czeahoslovak Acad. Sci., Žítń́ 25, 11000 Praha, Czechoslorakia
(Oblatum 14.1. 1985)

