Commentationes Mathematicae Universitatis Caroline

Patrick Oswald

On a prior estimates for positive solutions of a semilinear biharmonic equation in a ball

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 3, 565--577
Persistent URL: http://dml.cz/dmlcz/106393

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON A PRIORI ESTIMATES FOR POSITIVE SOLUTIONS Of a SEmilinear biharmonic equation in a ball P. OSWALD

Abstract: We deal with a priori estimates in L^{∞} for positive, radial symmetric solutions $u \in C^{4}(\bar{B})$ of the probles $\Delta^{2} u=g(u)$ in $B, u=\frac{\partial u}{\partial n}=0$ at ∂B, where $B \subset R^{\mathbb{N}}, \mathrm{H} \geq 1$, is the unit ball, and the nonlinearity $g: \mathrm{R}^{+} \longrightarrow$ $\rightarrow \mathrm{R}^{+}$has superlinear growth at infinity. As a straightforward application mome existence results are proved.

Key mords: Biharmonic equation, semilinear elliptic equation, positive solution, a priori estimates.

Classification: 35B45, 35P30, 35 J 65

1. Introduction. In the present note we are mainly interested in studying L^{∞} - a priori estimates for positive, radial symmetric solutions of the homogeneous Dirichlet problem for a semilinear biharmonic equation
(1) $\quad \begin{aligned} \Delta^{2} u & =g(u) \quad \text { in } \Omega \\ u & =\frac{\partial u}{\partial n}=0\end{aligned} \quad$ at $\partial \Omega \quad\left(u \in C^{4}(\Omega)\right)$
in the special case where $\Omega=B$ is the unit ball in $R^{I N}$.
The motivation for considering this question arises from the extensive literature on analogous problems for second order nonlinear elliptic equations where nearly optimal results have recently been obtained in the case of the Laplace equation. We refer to the paper [1] by D.G. de Figueiredo, P.-I. Lions, and
R.D. Fuesbaum (of. also [2-4] and the further references in [1]). As it was shown in [1], L^{∞} bounds combined with wellknown fixed point properties of compact, cone-preserving oporatorm in Banach spaces and variational techniques turn out to be very useful for investigating structural properties of the positive solution set of semilinear problems.

In order to prove a priori L^{∞} bound for the solutions $u \in C^{2}(\bar{\Omega})$ of the related semilinear Laplace equation

$$
\begin{align*}
\Delta u & =g(u) & & \text { in } \Omega \tag{1}\\
u & =0 & & \text { at } \partial \Omega
\end{align*}
$$

for more general bounded, mooth domains $\Omega \subset R^{I I}$ and under near iy ifinal conditions on the growth and the regularity of the nonIinearity g, the euthors of [1] explored the Pohozaev identity [5] and some monotonioity properties of the solutions of (1)' near the boundary $\partial \Omega$ which follow from results in [6]. The other detail were more or less familiar. While identities of Pohozaev type remain valid also for polyharmonio semilinear problens, the results of [6] oannot immediately be carried over to the case under congideration. Thus, we have to look for other techniquea which allow to attack higher order problems.

In our apeaial situation (problem (1) with $\Omega=B$ and $u=$ - $u(|x|))$ we use an explicit description of the Green sunction of the corresponding ordinary differential equation. Thie yields some analytioal properties of positive, radial mymetric molutions of (1) which allow to eatablish in combination with the idean ured in [1] satisfactory a priori entimaten and exdetence results. A momewhat aimplified but typical result for problew (1) is the following:

tion satiafying the conditions
(i) $\underset{u \rightarrow+\infty}{\operatorname{IIm}} g(u) \cdot u^{-1}>\lambda_{1}$, where $\lambda_{1}>0$ is the firat eigenvan lue of Δ^{2} with respect to Ω (superlinearity)
(ii) if $\mathrm{I} \geq 4$ then $g(u) \cdot u^{-\beta}$ is deoreand $n g$ for large u and wome $\beta<\sigma=(H+4) /(H-4)$ (regularity and growth condition). Then and positive, radial symmetric solution $u \in C^{4}$ (B) of (1) mam tisfies (with a constant independent of u)
(2) $\|u\|_{\infty} \leq c<\infty$.

For illustration, consider the pure power oase $(\beta>1)$

$$
\Delta^{2} u=\lambda \cdot u^{\beta} \quad \text { in } B
$$

$$
\begin{equation*}
u=\frac{\partial u}{\partial n}=0 \quad \text { at } \partial B \tag{3}
\end{equation*}
$$

Then, by our reaults, a priori 4∞ bounde for positive, radial symmetric solutions of (3) hold for arbitrary $\lambda>0$ and $\beta<\infty$ if $H \leq 4$ reap. $\beta<6$ if $I>4$. Thus, by the fixed point theorems quoted in [1] (propositions 2.1-2.3) the existence of at least one positive solution $u_{\lambda, \beta}=u_{\lambda, \beta}(|x|)$ of (3) follows for all these parameters. Further information on the behaviour of the mon lutions (e.g., ooncerning their dependence on λ) oan be obtained.

On the other hand, in the remaining cases, i.e., $M>4$, $\beta \geq \sigma$, and $\lambda>0$, no positive solutions of (3) ad at at all. This is an easy consequence of the Pohozaer type identity given below (cf. Corollary 1). Thue, the growth oondition in (ii) seems to be sharp in some sense. It should be mentioned that (in analogy to [1]) it is an open queation whether a priori estimates in I^{∞} hold under the less restrictive and more natural condition
(ii) $\lim _{\mu \rightarrow+\infty} g(u) \cdot u^{-\sigma}=0$
ingtead of (ii).
2. Prelimimarieg. Let Ω be a bounded, mooth domein in $R^{I N}, B=\left\{x \in \mathbb{R}^{H}:|x|<1\right\}, N \geq 1, g \in C\left(R^{1}\right)$, and $u=u(x) \in C^{4}(\bar{\Omega})$ any molution of (1).

Irame 1. (Pohozaev type identity.) With these assumptions we have
(4) $\frac{N-4}{2} \cdot \int_{\Omega}|\Delta u|^{2} d x-N \cdot \int_{\Omega} G(u) d x=-\frac{1}{2} \cdot \int_{\partial \Omega}|\Delta u|^{2} \cdot(n \cdot x) d x$ where $G(x)=\int_{0}^{\mu} g(t) d t$.

Papef. Multaplying equation (1) by $\nabla u \cdot x$ and integrating (over Ω) by part we obtain (we use the notations $n=n(x)$ for the outer unit normal vector at $x \in \partial \Omega ; x_{i}, n_{i}$ for the components of $x, n ; u_{1}=\frac{\partial u}{\partial x_{i}}$ eto.; $w=\Delta u$, and the gummation convention)

$$
\int_{\Omega} g(u) n_{1} x_{1} d x=\int_{\partial \Omega} G(u) n_{1} x_{1} d x-M \cdot \int_{\Omega} G(u) d x
$$

and

$$
\begin{aligned}
& \int_{\Omega} w_{j j} u_{i} x_{i} d x=\int_{\partial \Omega} n_{j} w_{j} x_{i} u_{i} d x-\int_{\Omega} w_{j}\left(u_{j}+x_{i} u_{i j}\right) d x \\
& =\int_{\partial \Omega}\left\{n_{j} w_{j} u_{i} x_{i}-w\left(n_{j} u_{j}+n_{j} x_{i} u_{i j}\right)\right\} d x+\int_{\Omega} w\left(2 u_{j j}+x_{i} w_{i}\right) d x \\
& =\int_{8 \Omega}\left\{n_{j} w_{j} u_{i} x_{i}-w\left(n_{j} u_{j}+n_{j} x_{i} u_{i j}-\frac{1}{2} n_{i} x_{i}\right)\right\} d x+\left(2-\frac{N}{2}\right)
\end{aligned}
$$

$$
\cdot \int_{\Omega} \varpi^{2} d x
$$

Thues,
(5) $\left.\frac{H e l}{2} \cdot \int_{\Omega} \right\rvert\, \Delta u^{2} d x-H \cdot \int_{\Omega} G(u) d x$

$$
\begin{array}{r}
=\int_{\partial Q}\left\{\frac{\partial}{\partial n} \Delta u \cdot(x \cdot \nabla u)-\Delta u\left(\frac{\partial u}{\partial n}+\frac{\partial}{\partial n}(x \cdot \nabla u)-\frac{1}{2}(x \cdot n)\right)-\right. \\
-G(u)(x \cdot n)\} d x
\end{array}
$$

Pinally, taking into account $u=0, \nabla u=0$ at $\partial \Omega$ we get (4).
Corollary 1. Assume that $\Omega \subset R^{I N}$ is bounded, smooth, and that there exists a point x_{0} such that $n \cdot\left(x-x_{0}\right)>0$ for $a l$ $x \in \partial \Omega$ (e.g. let Ω be convex). Let $\mathbb{N}>4$ and auppose $t-g(t) \geq$ $\geq 2 \mathbb{N} /(\mathbb{N}-4) \cdot G(t) \geq 0$ for $t>0$. Then no positive molutions $n \in$ $\in C^{4}(\bar{\Omega})$ of (1) exist at all.

Proof. Without loss of generality, let $x_{0}=0$. Multiplying in (1) by u and integrating by part we get

$$
\begin{equation*}
\int_{\Omega}|\Delta u|^{2} d x=\int_{\Omega} \Delta^{2} u \cdot u d x=\int_{\Omega} g(u) \cdot u d x \tag{6}
\end{equation*}
$$

Prom our assumptions, (4), and (6), it immediately follows that $w=\Delta u=0$ at $\partial \Omega$. But $\Delta w=\Delta^{2} u=g(u) \geq 0$, by the maximum principle this gields $w \leqslant$ in Ω. Thus, $\Delta u \leqslant 0$ in Ω, $u=0$ at $\partial \Omega$, and the Hopf maximum principle (cf. [7]) given either $u=0$ in Ω or $\frac{\partial u}{\partial n}<0$ at $\partial \Omega$ whioh is the desired contradiction.

How we pecify to the case $\Omega=B$. We need some informetion concerning the corresponding linear eigenvalue problem.

Lemme 2. There is a $\lambda_{1}>0$ such that the problen
(7) $\Delta^{2} V=\lambda_{1} \cdot v$ in $B, V=\frac{\partial r}{\partial n}=0$ at ∂B
possenses a positive, radial mymetric solution $\nabla_{1}(x)$ whioh mex tisfies
(8) $c_{1} \cdot(1-|x|)^{2} \leq \nabla_{1}(x) \leq C_{2} \cdot(1-|x|)^{2}, x \in B_{,} C_{1}>0$.

Iemma 3. Let $u=U(r), r=|x| \in[0,1]$, be a radiel mymetric $C^{4}(B)$-wolution of (1) where $\Omega=B$. Then $U(x) \subset C^{4}(0,1)$ and satisfies
(9)

$$
\begin{aligned}
& U^{(4)}+\frac{2(N-1)}{r} U^{(3)}+\frac{(H-1)(N-3)}{r^{2}}\left(U^{n}-\frac{1}{r} U^{0}\right)=g(U), \\
& 0<r<1,
\end{aligned}
$$

$$
\nabla^{\prime}(0)=\sigma^{(3)}(0)=0, U(1)=U^{\circ}(1)=0
$$

Inversely, any solution $U(r) \in C^{4}(0,1)$ of (9) gives a radial symmetric aolution $u=U(|x|)$ of problem (1).

The proof of Lemma 2 and 3 is obvious. The next lemma ∞ ntains the desired results concerning the Green's function of the linear problem corresponding to (9). Unfortunately, we have not found these fomulae in the literature (except the ceses $\mathbb{H}=1,2$).

Lemma 4. If the kernol function is defined by (10) $K(r, s)= \begin{cases}a_{H}(s)+r^{2} b_{H}(s), & 0 \leqslant r \leqslant a \leqslant 1 \\ (a / r)^{H-1}\left(a_{H}(r)+a^{2} b_{H}(r)\right), & 0 \leqslant a \leqslant r \leqslant 1\end{cases}$
where
(11) $a_{\pi}(\mathrm{s})=\left\{\begin{array}{l}\frac{\mathrm{s}^{3}}{4(\mathrm{~N}-2)(\mathrm{H}-4)}\left(2+(\mathrm{N}-4) \mathrm{s}^{\mathrm{H}-2}-(\mathrm{N}-2) \mathrm{s}^{\mathrm{N}-4}\right) \text { if } \mathrm{H} \neq 2,4 \\ \left(\mathrm{~s}-\mathrm{s}^{3}(1-\mathrm{ln})\right) / 8 \text { if } \mathrm{E}=2 \\ \left(\mathrm{~s}^{5}-2 \mathrm{~s}^{3} \text { Ins }-\mathrm{s}^{3}\right) / 8 \text { if } \mathrm{H}=4\end{array}\right.$
and

thon any solution $U(r) \in C(0,1)$ of the integral equation
(13) $\sigma(r)=\int_{0}^{1} k(r, s) \cdot g(J(s)) d s, \quad r \in[0,1]$,
actually belongs to $\mathrm{C}^{4}(0,1)$ and solvas (9). The following properties hold for arbitrary r, $\in \in[0,1]$
（14） $0 \leq k(r, s) \leq C \cdot H^{H-1}(1-s)^{2} \cdot \begin{cases}1 & H<4 \\ (1+|\ln (\max (r, s))|), & 耳=4 \\ (\max (r, s))^{4-N I}, & H>4\end{cases}$
（15） $0 \geq \frac{\partial}{\partial r} k(r, s)$
（16）$\left.\frac{\partial^{2}}{\partial r^{2}} k(r, s)\right|_{r=1}=\frac{1}{2} \cdot s^{\pi-1}\left(1-a^{2}\right)$ ．
The proof of this lemme is a simple but tedious verificati－ on of all the propertien stated，the details will be omitted．

3．I^{∞} a priori estimateg．How we are going to prove the main result．

Theorem Let $g \in C(R)$ be a given nonlinearity satisfying
（1） $\lim _{u \rightarrow+\infty} g(u) \cdot u^{-1}>\lambda_{1}$ ，where λ_{1} is defined in Lemma 2，
（i1） $\lim _{u \rightarrow+\infty} g(u) \cdot u^{-6}=0, \sigma=(\mathbb{N}+4) /(N-4)$ ，if $N>4$ （resp．， $\lim _{u \rightarrow+\infty} g(u) \cdot u^{-\beta}=0$ for some $\beta<\infty$ if $⿴ 囗 十 ⺝ 丶$ 4）
and
（ii）＂if $\mathbb{N}>4$ then there exists $\propto \in[0,2 \mathbb{N} /(\mathbb{N}-4))$ suoh that

$$
\overline{u T m}_{u_{\rightarrow+\infty}}(u \cdot g(u)-\alpha \cdot G(u)) \cdot\left(u^{-2} \cdot g(u)^{-4 / K}\right) \not \Leftrightarrow 0
$$

Then the estimate
（17）$\|u\|_{\infty} \in c<\infty$
holds for any positive，radial symmetric molution u of（1）（with $\Omega=B$ ）where C does not depend on u_{0}

Proof．We mainily proceed in analogy to［1］，pp．44－50．Let $\Omega=B$ and $u=u(x)=U(r),|x|=r \in[0,1]$ ，be ony positive，ram dial symmetric molution of（1）．

Step 1．We prove
(18) $\quad \int_{\Omega} u \cdot \nabla_{1} d x \leqslant c, \quad \int_{\Omega}|g(u)| \cdot v_{1} d x \leqslant c$
undor the only condition (i):

$$
\int_{\Omega} \lg (u) \mid \cdot v_{1} d x \equiv C+\int_{\Omega} g(u) \cdot v_{1} d x=c+\int_{\Omega} \Delta^{2} u \cdot v_{1} d x
$$

$=c+\int_{\Omega} u \cdot \Delta^{2} v_{1} d x=c+\int_{\Omega} \lambda_{1} u \cdot v_{1} d x \leqslant c+q \cdot \int_{\Omega} g(u) \cdot v_{1} d x$ Wth some $q<1$, and (18) follows.

Let us mention that (18) yields (17) for $\mathbb{N}<4$: sccording to (8), Lemma 3 and 4 (especially (14)), and (18) we get
$|u(x)| \leqslant_{n \in[0,1]} \int_{0}^{1} k(r, s)|g(U(s))| d s \leqslant C \int_{0}^{1} s^{N-1}(1-s)^{2}|g(U(s))| d s$ $\leqslant C \int_{0}^{1} s^{I-1} \cdot \nabla_{1}(s)|g(U(s))| d s \leqslant C \int_{B} \nabla_{1} \cdot|g(u)| d x \leqslant c$.

Thus, in the following, let $\mathbb{V} \geqq 4$.
Step 2. We prove the estimates $U(r) \leqslant C$ for $r \in[2 / 3,1]$ and
(19) $\frac{\partial^{2}}{\partial n^{2}} u(x)=U n(1) \leqslant C, x \in \partial B, \int_{B}|g(u)| d x \leqslant C$
if (i) is fulfilled For this we introduce the function
$\sigma(r) \leqq U^{+}(r)=\int_{0}^{1} x(r, s) \lg (U(s)) \mid d s \leqslant U(r)+C$
(the latter inequality easily follows from (i)). Because of (15), $\mathrm{U}^{+}(\mathrm{r})$ is decreasing in r and, therefore, for arbitrary $x \in[2 / 3,1]$ we have (cf. also (8),(18))

$$
\begin{aligned}
U^{+}(x) & \leqslant V^{+}(2 / 3) \leqq 3 \cdot \int_{1 / 3}^{2 / 3} U^{+}(s) d s \leqq c \cdot \int_{0}^{1} s^{N-1}(1-s)^{2} \cdot V^{+}(s) d s \\
& \Leftrightarrow c \cdot\left(1+\int_{B} v_{1} \cdot u d x\right) \leqq c .
\end{aligned}
$$

Thile proves the first inequality which now jields (19) by analogoue considerations (use (16) resp. (18) and once again (8)). As imediate consequence of (19) and the Pohosaer type identity (4) we obtain
$\left.\left.\left|\frac{N-4}{2} \cdot \int_{\Omega}\right| \Delta u\right|^{2} d x-\mathbb{N} \cdot \int_{\Omega} G(u) d x \right\rvert\, \leq C$.
Step 3. Now we additionally suppose (ii)" to ontabliah
(21) $\quad \int_{\Omega}|g(u)| \cdot u d x \leqslant c, \quad \int_{\Omega}|\Delta u|^{2} d x \leqslant c$.

This can be done by a straightforward adaption of step 3 in [1], p. $47 / 48$, the details will be left to the reader (the noeded facts from the preceding steps are (19),(20), and (6)). It ehould be mentioned that now the case $N=4$ can already be finished by using the growth restriction in (ii) ${ }^{\prime}$, the π_{2}^{2} bound from (2i), and the usual embedding and regularity results for the (linear) biharmonic equation.

Step 4. Finally, we get (17) for $\mathbb{N}>4$. By the considerations in Step 2 it is clear that (cf. (10) - (11))

$$
\|u\|_{\infty} \leq U^{+}(0) \leq \int_{0}^{1} k(0, s)|g(U(s))| d s \leq C \cdot \int_{0}^{1} s^{3}|g(U(s))| d s
$$

We denote $g^{+}(u)=\max _{t \in[0, u]}|g(t)|$ and take an arbitrary $r \in(0,1)$.
Then, by Hölder's inequality, (i1)', and (21) we have

$$
\begin{aligned}
& \|u\|_{\infty} \leqslant C \cdot\left\{\int_{0}^{r} s^{3} \cdot g^{+}(U(s)) d s+\int_{r}^{1} s^{3} \lg (U(s)) \mid d s\right\} \\
& \leqslant C\left\{r^{4} \cdot g^{+}\left(\|u\|_{\infty}\right)+\left(\int_{n}^{1} s^{\gamma(\sigma+1)} d s\right)^{\frac{1}{6+1}} \cdot\right. \\
& \left.\cdot\left(\int_{0}^{1} s^{N-1} \left\lvert\, g(U(s))^{\frac{\sigma+1}{\sigma}} d s\right.\right)^{\frac{\sigma}{\sigma+1}}\right\}
\end{aligned}
$$

$$
\leqq C \cdot\left\{r^{4} \cdot g^{+}\left(\|u\|_{\infty}\right)+\left(\int_{n}^{1} s^{-N-1} d s\right)^{\frac{N-4}{2 N}}\right.
$$

$$
\cdot\left(\int_{0}^{1} s^{N-1}|g(U(s))| U(s) d s\right)^{\frac{N+4}{2 N}}
$$

$$
\leq C \cdot\left\{r^{4} \cdot g^{+}\left(\|u\|_{\infty}\right)+r^{2-N / 2}\right\} \text {, where } \gamma=3-(N-1) \cdot \frac{6}{6+1} \cdot
$$

Taking in this inequality the infimum with respect to r we get
$\|u\|_{\infty} \leqslant c \cdot\left(1+g^{+}\left(\|u\|_{\infty}\right)^{1 / 6}\right)$.
But this entimate yielde (17) ance (ii) implies $g^{+}(t)=\sigma\left(t^{f}\right)$
for $t \rightarrow+\infty$.
Thus, the Theorem is completely proved.
Remark 1. Por applications it is importent to observe that the constant in (17) can be ahomen independent of the parameter $t \in\left[0, t_{0}\right], 0<t_{0}<\infty$, if we consider positive, radial symetric solutiong of (1) for the family of nonlinearities $g_{t}=g(u+t)$.

Remartc 2. A careful analyais shown that exoept Step 2 the proof could be carried out for more general domains Ω. This ramark is obvious for Stop 1 and 3, in Step 4 you might follow the line of argumentation in [1], p. 49/50, if the identity

$$
\begin{aligned}
\int_{\Omega}\left|\Delta\left(u^{2} \eta\right)\right|^{2} d x=\frac{\eta^{2}}{\eta-1 / 4} \cdot \int_{\Omega} g(u) \cdot u^{p} d x & +\frac{(p-1)^{2}}{\eta^{2}} \cdot \\
& \cdot \int_{\Omega}\left|\nabla\left(u^{\eta}\right)\right|^{4} d x
\end{aligned}
$$

whioh is satisfied for pomitive molutions of (1) and $p \geqq 3, \eta=$ = ($p+1$)/4, will be explored.

Remark 3. Clearly, oondition (ii)" is technical and not neoessary for obtaining a priori estimates. For instance, if $g(u)=u^{\sigma} \cdot\left(\ln _{++} u\right)^{-\alpha}$ where $1 n_{++} u=\max (1,1 n u)$ for $u>0$, $\propto>0$, and $K>4$, them (i),(ii) hold but condition (ii)" does not. Fevertheless, a might modification of the above coneiderations gives (17), at least, for $\propto>4 /(\mathbb{H}-4)$. We only aketch the proof of this etetement. A direct verification ahows that
$G(u)-\frac{I-4}{2 N} \cdot u \cdot g(u)= \begin{cases}\frac{\alpha}{\sigma+1} & \cdot \int_{e}^{u} t^{\sigma} \cdot(\ln t)^{-\alpha-1} d t, u>e \\ 0, & u \leqslant e\end{cases}$
Hence, by (6), (20) we have

$$
\int_{0}^{1} s^{y-1} \cdot g(U(s)) \cdot U(s) \cdot\left(\ln _{++} U(s)\right)^{-1} d s \leq i=
$$

and, repeating the eatimations as in Step 4 of the above proof, we obtain
$\|u\|_{\infty} \leq C\left\{r^{4} \cdot g^{+}\left(\|u\|_{\infty}\right)+r^{2-N / 2} \cdot\left(\ln _{++}\|u\|_{\infty}\right)^{\frac{6}{6+1} \cdot \max (0,1-\alpha / 6)}\right\}$
It remains to check the infimum.
Furthermore, if $N=4$ then the growth restriction in (ii) can easily be weakened to
$\overline{\lim }_{u \rightarrow+\infty} \operatorname{lng}(u) \cdot u^{-1}<4$.
Finally, it should be mentioned that condition (ii) stated in the Introduction obviously yields (ii)', and (ii)".

Remark 4. We only considered radial symmetric solutions but it is not yet clear whether there can exist non-radial symmetric solutions of (1) for $\Omega=B$ at all (concerning (1)'cf. [6]).

We close the exposition by atating an exiatence result (the anslog of Theorem 2.1 in [1]) which immediately follows from our Theorem (for other assertions which can be obtained on the basis of the L^{∞} bounds we refer to [1], [4]).

Corollary 2. Let $\Omega=B$ and $g: R^{+} \rightarrow R^{+}$be continuous. If g satiskies (i),(ii)',(ii)", and
(1ii) $\overline{u l n}_{u^{i m}} g(u) \cdot u^{-1}<\lambda_{1}$.
then there exists at least one positive, radial symmetric solution $u=U(r) \in C^{4}(\Omega)$ of (1) which has the additional properties $\|^{\prime}(r)<0$ for $0<r<1$ and $U^{\prime \prime}(1)>0$.

Proof. Let us consider the compact map $F: K \times[0, \infty) \rightarrow K$ where $K=\{U \in C(0,1): U(r) \geq 0\}$ is the closed cone of nonnegative functions in $C(0,1)$ given by the formula
$F(U, t)(r)=\int_{0}^{1} k(r, s) \cdot g(U(s)+t) d s$.
The following properties hold:
(a) Any non-zero solution of the fixed point equation $U=\Phi(U)=F(U, 0), \quad U \in K$,
is, actually, a positive solution of (9) and, thus, $u(x)=U(|x|)$ is a positive, radial symmetric solution of (1).
(b) $U \neq \lambda \cdot \Phi(U)$ for arbitrary $\lambda \in[0,1]$ and $U \in K$ wi.th $\|U\|_{G}=R$ for sufficiently small $R_{1}>0$ since according to (iii) $g(u(x)) \leqq$ $\leq q \cdot \lambda_{1} \cdot u(x), q<1$, and, therefore,
$\lambda_{1} \int_{\Omega} u v_{1} d x=\int_{\Omega} u \cdot \Delta^{2} v_{1} d x=\int_{\Omega} \Delta^{2} u \cdot v_{1} d x=\int_{\Omega} g(u) v_{1} d x \leq$ $\leqslant q \cdot \lambda_{1} \cdot \int_{\Omega} u v d x$
for sufficiently small solutions of (1) which is a contradiction. (0) There exists t_{0} such that $U \notin F(U, t)$ for arbitrary $U \in K$ and $t \geqq t_{0}$ because for some finite t_{0} we have from (i) $g(u+t) \leq \lambda \cdot u$ uniformly in $u \geqq 0$ and $t \geqq t_{0}$ where $\lambda>\lambda_{1}$ (then proceed as in Step 1 of the proof of the Theorem or as in (b) to obtain a contradiction).
(d) Finally, according to the Theorem, (c), and Remark 1 we can choose a sufficiently large $R_{2}>R_{1}$ such that $U \neq F(U, t$) for arbitrary $t \in[0, \infty)$ and $U \in K$ with $\|U\|_{C}=R_{2}$.

Now, the Krasmosel skii type fixed point theorem from [1]
(of. Proposition 2.1 and Remark 2.1) can be applied. Hence, the existence statement is proved, the additional properties are obvious consequences of Lemma 4.

References

[1] D.G. de FIGUEIREDO, P.-I. IIONS, R.D. NUSSBAUM: A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. pures et appl. 61(1982), 41-63.
[2] R.E.I. TURNER: A priori bounds for positive solutions of nonlinear elliptic equations in two variables, Duke Matb. J. 41 (1974), 759-774.
[3] R. NUSSBAUM: Positive solutions of some nonlinear elliptic boundary value problems, J. Math. Anal. Appl. 51 (1975), 461-482.
[4] H. BREZIS, R.E. H. TURNER: On a class of superlinear elliptic problens, Comm. in P.D.E. 2(1977), 601-614.
[5] S.I. POHOZAEV: Eigenfunctions of the equation $\Delta u+$ $+\lambda \cdot f(u)=0$, Soviet Math. Dokl. 6(1965), 14081411.
[6] B. GIDAS, W.-M. NI, L. NIRENBERG: Symmetric and related properties via the maximum principle, Comm. Math. Phys. 68(1979), 209-243.
[7] M. PROTTER, H. WEINBERGER: Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, 1967.

Sektion Mathematik, Technisahe Universität Dresden, 8027 Dreaden Mommsenstr. 13, G D R
(Oblatum 12.11. 1984)

