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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26,3 (1885) 

SHORT BRANCHES IN THE RUDIN-FROLIK ORDER 
Eva BUTKOVIČOVA 

Abstract : ¥e construct in the .Rudin-Frolik order an un
bounded chain order-isomorphic to Co., . 

Key words: type of u l t r a f l i t e r s , Rudin-Frolik order 

Classification: 5^ A 25, Ok A 20 

0, In t roduct ion 

The Rudin-Frolik order of types of u l t r a f l i t e r s in ftoo has 

the following p r o p e r t i e s : 

(1) eaoh type of u l t r a f l i t e r s has a t most Zco predecessors 

- t>.] . 
(2) the cardinality of eaoh branch is at least Z03 . 

Henoe, the cardinality of a branch in the Rudin-Frolik order 

oan only be 2 W or (2C0)'1' . It is shown in [BI] that there 

exists a chain order-isomorphic to (2°*)* . 

The aim of this paper Is to prove the following result whioh 

solves the problem of the exietenoe of a branoh having smaller 

cardinality. 
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Theorem; In the Rudin-Frolik order there exists an unbounded 

ohain order-isomorphio to Co 1 • 

By ( 1 ) and (2) the branch containing this chain has cardi

nality 2 Q . 

This result was announced in [B2] # 

1. Preliminaries 

We shall need the standard set theoretical notation and 

terminology. By ultrafliter we mean an ultraf liter on CJ # 

The type of an ultraf liter p is 

T(p) ss {q ,Jh homeomorphism from £co onto (bcJ such that 

h(p) a q} . 

Let p, q be ultraf liters on GJ . Then t (p) $ T (q) in 

the Rudin-Prolik order iff there exists a countable discrete set 

X = (x ( n € C J ] of ultraf liters such that q = ]£ (X, p) where 

2(X, p) a U , {n, A C J^} € p} . (Defined in [Pi].) 

Proposition 1.1: [P2]« Por each ultrafliter p the set 

{*r (q) t T (q) < T (p)} is linearly ordered. 

Proposition 1.2: Let X a {x^, n €<-->} , Y « {ya, n e co} 

be discrete sets of ultraf liters and p € fico 0 Then 

2(X, p) < 5(Y, p) iff {n, xn< yn} € p . 

2f Proof of the Theorem 

Ye want to construct an unbounded chain of types of ultra-

filtere { T(prf), X 6 co f } euoh that T (prf) < X (pfi) whenever 

* < (b . 

To do this we shall construct sets {X£ , JL € co..} 
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satisfying the following conditions: 

(i) X^ a { x-f | a 6 w J is a discrete set of ultraf liters 

of mutually incomparable types, 

(ii) fn i T (x£) < T (a-jf)} *•» oofinito for each (b < Y* , 

(iii) |{ (hi T (x^) < T(x«)}| < co for each *C € cj>% , 

n € co , 

(iv) if (b < *C and T (x£) i T (x£) than T(x^)^T(x^) . 

Let X =(x° i n 6 Co } be an arbitrary discrete set of 

minimal incomparable ultraf liters. Suppose that X A la defined 

for all (b < -C . 

Let X « r + 1 . Define a diaorete set X^ in auoh a 

way that for each n € co T (x£) ia a auooaaaor of T (a^) . 

It ia trivial that all four conditions are fulfilled* 

Let -£ be a limit ordinal. Then there exists a sequence 

{ ̂  . j k e co > of ordinals converging to «C . .Let ua define 

A_ s co and o 

A^ = U € Ak-1 fT(x^) > T(x^ - 1)} - [0, k] for eaoh k > 0 . 

It ia evident that O A. m 0 . 
k€co * 

Put 2^ a A-̂  - Aj£+1 . The set Z^ is finite by inductive 

assumption. For n € z. define x^ in such a way that X<c 

is a diaorete set and T (xjf) la a successor of T (*L ) 
-*£"-_ 

incomparable with all successors of T (x ) which were ohoosen 

already. 

Again, all four conditions are trivially fulfilled. 

Let p be an arbitrary nontrivial ultraf liter. Define 

P-c * ^(x-c » P) • *• V*av «-»t { T (prf )| X 6 ca.,) U the 

required chain* 

Condition (ii) and Proposition 1.2 yield that T(p/5)< T (pr) 
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it A < r . 
Suppoaa no* that th«x* •xiata an ultraf i l t t r y »uoh that 

T (y) > t (p^) for eaoh JC 6 co^ . Hanoo, thara ax i s t s 

a oountabla dlaorata sat Y a { y n » n « co } ouoh that 

y - 2(Y> P) . 

By Proposition 1#2 tha aat { kf T (yk) > X (x£) } balonga 

to p for •aoh «C « CJ . , lh* sat Y ia oountabla tharafo.ro 

thara axiata in / € CJ ouoh that | { (!> j T (y^ ) > T (x£) ] | a co 1 . 

By conditions ( l ) and ( iv) a l l typo a of tha ultraf i l t a r s 

from tha aat a Xrf \ X < co . ara dist inct* Hano« th* aat 

{T (x / ) } T (x£) < T (y^ ) } haa cardinality co t and by Proposi

t ion 1.1 i t l a l inearly ordar«d. 

Now mm hava a l inearly ordorod aat of cardinality w 1 and 

by tha condition ( i l l ) •aoh point from th i s aat haa f i n i t e l y 

many pradaoassors. This ia a contradiction* 

Ya oan taka In tha construction immadiata auooaaaor instead 

of suooossor and p a minimal u l traf l l tar* Than na got a ohaIn 

suoh that aaoh point (axoapt p ) in tha branch containing th i s 

chain has an immodiato predooossor. 
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