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SHORT BRANCHES IN THE RUDIN-FROLIK ORDER
Eva BUTKOVICOVA

Abstract: We oconstruoct in the Rudin-Frolik order an un-
bounded chain order-isomoxphic to oy .
Key vords: type of ultrafilters, Rudin-Frolik order

Classification: 54 A 25, O4 A 20

O, Introduction

The Rudin-Frolik order of types of ultrafilters in (Bco has
the following properties:

(1) each type of ultrafilters has at most 2w predecessors
- [1”] ’

(2) the cardinality of each branch is at least 2% .

Hence, the cardinality of a branch in the Rudin-Frolik order
omn only be 2% or (2%)" ., It is shown in [B1)] that there
exists a chain order-isomorphioc to (2%)* ,

The aim of this paper is to prove the following result whioch
solves the problem of the existence of a branch having smaller

cardinality,
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Theorem: In the Rudin-Frolik order there exists an unbounded
chain order-isomorphic to co 1

By (1) and (2) the branch containing this chain has cardi-
nality 2% .,

This result was announced in [B2].

1, Preliminaries

We shall mneed the standard set theoretical notation and
terminology. By ultrafilter we mean an ultrafilter on w ,

The type of an ultrafilter p is
T(p) ={q ;3h homeomorphism from (3> onto (<) such that
h(p) = q}.

Let p, @ be ultrafilters on ¢ . Then T (p) ¢ T (q) in
the Rudin-Frolik order iff there exists a countable discrete set
X ={x, jne€co} of ultrafilters such that q = S(x, p) where

S(X, p) ={ajfn; Ae x } e p} . (Defined in [F1].)

Proposition 1,1: [F2]. For each ultrafilter p the set
{T(q) : T(a)< T(p)} is linearly ordered,

Proposition 1,3: let X ={x ; n € o}, Y= {y 1 n € co}
be disorete sets of ultrafilters and p € % , Then,

2(x, p) < 3(Y, p) 4iff {ny x < ¥y} € p.

2, Proof of the Theorem

We want to construot an unbounded chain of types of ultra-
rilters { T(p ); £ € o )} such that T (p;) < T (py) whenever
< <P,

To do this we shall construot sets {X_,.; L € ca‘}

- 632 -



satisfying the following conditions:
(1) x_ =(x!': 4 n €W} is a discrete set of ultrafilters
of mutually incomparable types,
(11) (n; T (x;:) ¢ T(x))} is cofinite for each /5 ¢ ¥ ,
(111) 1{ps ¢ (xf) < T(xX)} ¢ o for each £ € oo,
neco,

(iv) 4f p < s and T(x?) ¢ T(x)) them T (x7) 2 T(xF) .

Let X ={x: jn€c} be an arbitrary discrete set of
minimal incomparable ultrafilters, Suppose that X ) is defined
for all < & .

let « =% + 1 . Define a disorete set X, in such a
way that for each nec> T (xf) is a successor of 7T (xh”) .
It is trivial that all four oonditions are fulfilled,

Let £ be a limit ordinal., Then there exists a sequence
{"k ; K€ W} of ordinals converging to « . Let us define

Aoaw and

Ak

It is evident that N A =§ .
kew

Put zk = Ak - Ak+1 « The set Zk is finite by inductive

o L
e A 'T(‘lk) > T(‘;‘-i)} - [0, kK] for each k> O ,

assumption, For n € 7 define x: in such a way thnz X¢
is a discrete set and T (x’f) is a auooo:lor of @ (!‘hk)
incomparable with all successors of T (&k) which were choosen
already.

Again, all four oconditions are trivially fulfilled.

Let p be an arbitrary nontrivial ultrafilter, Define
p, = 3(X,, p) . Ve prove that {t(p. )1 L € “’1} is the
required chain,

Condition (41) and Proposition 1.2 yield that T (ps)< T (py)
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it s < P,
Suppose now that there exists an ultrafilter y such that
T(y)> T(p,) for each & € cO, ., Hence, there exists
a countable discrete set Y = { Yo s n € e}l such that
y= 2(v,p).
By Proposition 1.2 the set { k;T (y,)> T (x:)} belongs

to p for each £ € cO, , The set Y is countable therefore

1
there exists an £ € <) such that |{ AT (y,)> T(x)}| = co,
By oconditions (1) and (iv) all types of the ultrafilters
from the sets X _ ; £ € co, are distinct, Hence the set
{t (xf) 1T (x§) < T (y,)] has oardinality c>, end by Proposi-
tion 1,1 it is linearly ordered,
Now we have a linearly oxrdered set of cardinality co, and
by the condition (1ii) each point from this set has finitely

many predecessors, This is a contradiotion,

We oan take in the construction immediate successor instead
of sucocessor and p a minimal ultrafilter, Themn we get a chain
such that each point (except p ) in the branch containing this
chain has an immediate predecessor,
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