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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,1 (1986) 

ULTRAFILTERS AND ENDOMORPHIC UNIVERSES 
A. TZOUVARAS 

Abstract. This paper is in some respects a continuation ofLT]. 
We transfer from the standard literature some further results con­
cerning the Rudin-Keisler ordering and its minimal elements of the 
ultrafilters on Sdy. Ramsey ultrafilters are established and we 

point out that the class of ultrafilters pontaining the supersets 
of a countable class is isomorphic to the class of ultrafilters 
on FN. At the same time we relate properties of ultrafilters with 
properties of endomorphic universes and show the existence of en-
domorphic universes satisfying certain particular cond i t ions . 

Key words: Alternative set theory, ultrafilter, minimal 
Ramsey, co -complete, Rudin-Keisler ordering, endomorphic universe. 

Classification: 02K10, 02K99 

§ 1. Preliminaries and some standard facts. All ultrafilters 

considered in the sequel are on the ring Sdy of set-definable 

classes, unless otherwise stated; they are non-trivial and contain 

sets. Hence for every ultrafilter W , Tflt 0 V (V is the universe) 

is a base of W , and sometimes we identify OT to 3̂ 1/1 V. All 

functions considered here are set-definable. If F is a function . 

and W is an ultrafilter such that dom(F) e WL , let F " W = 

= U"u;uc dom(F)A u e 931 } ; then F " W is an ultrafilter. 

We say that the ultrafilters Ttl , JX are isomorphic (in sym­

bols ffl %• *til ) if there is a permutation F:V—& V such that 

F" m = 9t . For each W the class COTJ = K7l\ 9ft ff %\ is the 

isomorphism class of 97t . Every isomorphism class is codable. 

As usual we shall not make clear distinction between 'M% and C&t]. 
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Ke recall vhat the Rudin-Keisler ordering £ of (isomorphism 

classes of) ultrafilters is defined as follows: 

<tfl £ 1ft if (3f) (dom(f)eatA f3t = 7fr ) . 

The following well-known ZF-facts (which justify the term "or­

dering") hold in AST as w e l l . 

Lemma 1 . 1 . (i) f"W = Ttl if (.3 u e #t )(f Is u = id). 

(ii) F"32t a W iff (3 u c W. ) (f ru is one-to-one). 

Proof. The proof of (i) is a trivial modification of the 

proof of Lemma 2.3 of t TJ . 

(ii) Let f" W 3- W . There is a permutation F of the uni­

verse such that F"f"33t = (F of)" Tti = 1& . 

By (i) there is u £ ^ , such that F © f Is u = id. Then f r u is one-

to -one . 

Conversely, let ffu be one-to-one for u c ItL . Put w = 

= u U f"u . Divide u into two infinite disjoint sets u,, u« and sup­

pose u, e Wt . Since u^&* f"u,, it follows w - u,A w - f"u, . Hen­

ce there is a bijection g:w - u,—>- w - f'u, and the function 

f(x) if X€ u. {n.x; ii x € u, 

g(x) if x e f u p 

is a permutation of w. Extend 3f to a permutation F of V by put­

ting F(x) = x for xf w. Then F Is u, = srru, = f ru,, whence f" %tl * 

= F " m ^ m • 

Recall that W is minimal (w.r.t. the ordering -fe ) if for 

every function f with dom(f) 6 W> there is some u e W such that 

f Is u is either constant or o n e - t o - o n e . 

The existence of minimal ultrafilters was shown in ill. The 

following stronger result, however, can be proved, imitating the 

standard proof ( c f . tB2J, Th. 2). 
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Lemma 1 .2 . The class of minimal ultrafilters on Sdy is unco-

dable . 

Since every isomorphism class is codable, we have immediately 

that: 

Corollary 1 .3 . The class of isomorphism classes of minimal 

ultrafilters is uncodable. 

Next imitate the proof of Th. 6 of IB23 to get: 

Lemma 1.4. There is no -£• -maximal ultrafilter on Sdy.. 

§ 2. CJ -complete and rich ultrafilters. Recall that '37L is 

6J -complete if for every sequence 4u ;ne FN \ & 1ft> , there is a 

u £ Ittl such that u £ Q u„.. m n 

Let us call Vtl 'rich, if it contains all supersets of a count­

able class X. X is called a nucleus of Ttl . 

It is not hard to see that the classes of co -complete and rich 

ultrafilters are disjoint. 

Let us give some characterizations of them in terms of endo-

morphic universes. 

Lemma 2.1. Let F, W ,d be coherent, and F"V = A. Then 

(i) W is rich iff (3 countable Y£A) (deEA(Y)) 

(ii) W is ^-complete iff (V countable Y£A) (EA(Y) = EA[d3(Y)) 

Proof, (i) If X is a nucleus of 2# and Y = F"X, then obvi­

ously d€-EA(Y) and v ice-ve rsa . 

(ii) Let Tftl be co-complete and Y = «£ y1,y2> • • •* - A. 

Since ACd3 = -Cf(d);f £ A? , it suffices to prove that for eve­

ry f e A with d £ dom(f) and Y e f(d), there is a u c A such that 

YS u£f(d). 
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Let f be such a function and f = F(g). Put X = -fx^x-,,... \ , 

where y = F(xn). Then F(x )eF(g)(d), for every n6 FN, whence, by 

coherence, 

vn = ^ X ; X n e 9(x)ì € '-Яť 

It follows from co-completeness that there is a v e ffil such that 

x e v —* X£ g(x) , 

v -? O v „ . Then «i* n 

hence 

(1) X s O tg(x);x« vl = w 

and v5{x;wS g(x){. 

Therefore -( x :w £ g(x)$ e W or, by coherence, 

(2) F(w)£f(d). 

We have from (1) and (2) that 

Y£ F(w)Sf(d). 

Conversely, suppose EA(Y) = E.r.-j(Y) for all countable Y&A. 

Let (v ) F N be a subclass of W .We have to find v e Ml with 

v £ <£)vn . From EA(Y) = E A W ] ( Y ) i t fo l lows that 

(3) ( Y C A & Y £ f ( d ) ) - * ( 3 u £ A ) ( Y 5 u £ f ( d ) ) . 

Extend the sequence (v ) -N to a set r = Iv^ ;fc*Lao\ and define 

the function g:Ur~-> P(r) as follows: 

g(x) ={ver;xevi. 

Then 

(v/ver)(x4v *~> v e g(x)), 

hence 

vR = 4 x ; v n e g ( x ) j . 

We get by coherence tha t fo r a l l n e FN 

F(vp)€ F(g)(d), 

that is, ̂ F(v1),F(v2),.. .*£ F(g)(d). 

By (3) there is a t such that 
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* F ( v 1 ) , F ( v 2 ) , . . . } £ F ( t ) . S F ( g ) ( d ) , 

thus J L v l t v 2 , . . . } f i t and-vx;tSg(x)? i 6 Wl . . 

Put v = < x ; t S g ( x ) } . Then 

xe v -*-* t £g (x ) 

and, since v , , v 2 > . . . £ t , we get 

X € V — > V e g ( X ) < - * - X € V 

for all ns-FN; therefore v & r^ v and this completes the proof. 

Let F be an endomorphism and 1?l be an ultrafilter. F, 'Ml are 

compatible if there is a d such that F, 'fltl , d are coherent. 

The following is obvious. 

Lemma 2.2. F, $1 are compatible iff iO-lF(u);u & W j 4 * 0 

and F , W , d are coherent iff d £ (\ \ F(u) ;u €. W ? .. 

Lemma 2.3. Let F"V = A and let F, ^ , d^ and F, W-,, d2 

be coherent . Then 

ACd 14^ACd 23 — > m>x * <m2. 

Proof. Suppose AtdJ £ Atd2l . There is some f €A such that 

f(d2) = 6l. Let F(g) = f. Then dom(g) <s ̂ 2 and for every u e 3# 2 

such that uS-dom(g), we have d2 e F(u) £ dom(f). Hence d-£f MF(u), 

therefore g"u £ W>x. This proves that g" iat 2 = tfl^. 

Lemma 2.4. ^t ^ 71 iff for every endomorphism F, F, MX 

compatible — > F, "dt compat ib le . Specifically, F, ft , d coherent--? 

— > F, g"7t ,F(g)(d) coherent . 

Proo f . Let g"?l = W and F, 71 , d be coheren t . Then 

•{x;9(x,y1,...,yn){ & M <-> g"lM-Cx; ̂  (x,ylt . . . ,yn)} € ft <- > 

•fx;«y(g(x),y1,...,yn)} e # «-> 9 (F(g)(d) ,F( y i), . . . ,F(yn)). 

Conversely, suppose the condition is true. There are F, d 

such that F, m , d are coherent and F"Vi.d] = V (cf.ES - VI, last 
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but two theorems). By assumption there is a d* such that F, 771 , 

d' are coherent. Since F"Vtd'l £ F"VCdl*, it follows from the prece­

ding lemma that W — ^ • 

Lemma 2.5. Let ^ ^ ^ . If ^ is <i>-complete (rich) then 

'ffl is <*> -complete (rich). 

Proof. Straightforward. 

Let X be any class. Put 

X ( 2 ) = •Ux,yi;x,y«. X A x+yi. 

Let P = "CPpPo^ b e a P a r t i t i o n o f x A class Y£X is homogene-
(?) (2) 

ous for P, or P-homogeneous if Y^ y£ ?l or Yv JS ?2-

The proof of the following is the standard one. 

Lemma 2.6 (Ramsey). Let X be an arbitrary infinite class and 

(2) 
let P = 4P-I,P-,} be a partition of X Then there is a countable 

P-homogeneous class Y£X. 

Corollary 2.7. Let X be an infinite set-definable class and 

(2) 
P = fP-,P2s

 a set-definable partition of X . Then there is an in­
finite P-homogeneous set u<- X. 

Proof. Find by 2.6 a countable P-homogeneous Yf X and, then, 

use the axiom of prolongation to find a P-homogeneous set u, such 

that Y v u£ X. 

An u l t r a f i l t e r "bfl is called Ramsey if for every set-definab­

le partition P -^P-^P^of V ( 2 \ there is a P-homogeneous set 

U < '.w" 

Lemma 2.8. Every Ramsey ultrafilter is minimal. 

Proof. Let 7/t be Ramsey and let F be a set-definable func-
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PL Mlx)y!;F(x)4-F(y)i, P2 = Ux,y};F(x) = F(y)J . 

Let u %= ttl be homogeneous for -[P-jP*^ 1f u S Pi then F Is u is 

(2) one-to-one; if u '«= P« then F r U' is constant . 

Lemma 2 .9 . There is an uncodable class of (isomorphism clas­

ses of) <-U-complete Ramsey ultrafilters. 

Proof. Let T = IH200; oc « &-\, i.e., T is the complete binary 

tree of height Si . Let w be an infinite set and let (w^^ e j i, be 

an enumeration of P(w) and (P^ = 1 Pj? .P^/T)^^ _a be an enumeration of 
(2) all set-partitions of w . We shall define a one-to-one mapping 

H:T —> P(w) such that H is an embedding of <T, € > into <P(w),^> 

and 

(i) H(s"0)riH(sr,l) = 0, V s *T, 

(ii) if dom(s) = <?c + 1 then H(s) is P,-homogeneous »nd either 

H(s)n w„, = 0 or H(s)s W. -

The definition is by recursion on the levels T^ = <s£T; 

dom(s) = oc} of the tree. 

Put H(0) = w. At limit levels T, and for s «= T, choose an in-; 

finite u v H4 H( s f' /S ), ft -̂  oc $ such that either u £ w . or u f) w_ = 

= 0 and put H(s) = u. 

Now suppose H(s) is defined and dom(S) = oC . Divide H(s) in­
to infinite sets u . u, . Find v £ u . v^r-u, „,,„», + K „ + 4, ~ ,, ^ a 

o' 1 o o' 1 1 such that v.*> w^ = v 

or v.c w. for i = 0,1 and choose v1. -v. which are p^ -homogeneous. 

Put H(srN0) = v'0> H(s^l) = \i\. \ 

It is clear that conditions (i),(il)#are satisfied and every 

branch of H "T is a base of an o> -complete Ramsey ultrafilter. 

The corresponding branch of T is a function F: Sx. —* <0,l| and dif­

ferent branches produce different ultrafilters. But the class of 
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,all such F is uncodable and this finishes the proof. 

Let now #t be a rich ultrafilter with nucleus X. It is easy 

to see that the class 

Wx = (Xnu ;u e W } 

is a non trivial ultrafilter on the countable class X. If Y is an­

other countable class, F:X—> Y is a bisection and F £• f, then 

f" W is rich with nucleus Y and f"W> £& 7A . Hence, we may assu­

me that all rich ultrafilters have a common nucleus, say FN. Then 

we denote by Oft the ultrafilter -tur>FN;u e #1? on FN. 

The mathematics we can do in AST on FN (or any countable class), 

is exactly the mathematics we can do in ZFC + CH on o) . This is 

easily seen by a simple comparison of the axioms of the two theo­

ries. In particular, all notions and facts developed for the ult­

rafilters on co are reasonable and valid for the ultrafilters on 

FN. Therefore minimal and Ramsey ultrafilters not only are meaning-

full for a countable class but moreover they coincide (cf. tBU, 

§ 10, Th. 7). 

Lemma 2.10. Let 1/L , ^ be rich ultrafilters (with nucleus 

FN). Then 

(i) m cr at <-> m * it 

di) w ^ n*~* tft * & 
(iii) #t is minimal (Ramsey) iff Hfl> is minimal (Ramsey). Hence 

if W is rich, 1ft is minimal iff it is Ramsey. 

. Proof, (i) Obviously Wft = -Cu;(3 Y * m )(Y5u)}, i.e. jfl, 

is a kind of base for <$t 

(ii) By the convention that Itl , It have common nucleus FN 

we may suppose that for every f with dom(f) £ 7fi , f"FN£-FN. If 

f"7t = m and F = f Is FN then F"W = #t . Conversely if F" % = 8ft 
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and F£ f, then f"?l = M . 

(iii) By the prolongation axiom the properties "minimality" 

and "to be Ramsey" can be transferred easily from countable classes 

to sets extending them and vice-versa. 

It follows from the preceding lemma that the class of rich ul-

trafilters ordered by £ is isomorphic to the class ($<*> of non-

trivial ultrafilters on CO ordered by ^ . A thorough study of the 

latter can be found in C BlJ . 

An interesting subclass of flo are the so-called P-points. 

For the ordering of P-points see TB2J. 

An ultrafilter VXl on FN is a P-point, if for every F:FN — * 

— * FN, there is a class Y e W such that F f* Y is either constant 

or finite-to-one. 

(It is easy to see that this definition transferred to ultra-

filters on Sdv is equivalent to the definition of minimal ultrafil­

ters. ) 

Let 7fl> be rich. We call '#1 P-point if Iftl is a P-point . 

Since every minimal 1Jt is a P-point , clearly every minimal (rich) 

ultrafilter is a P-poin t . There are P-points on FN which are not 

minimal (cf. I B2} Th.9). 

lemma 2.11. Let #t be rich. If ifl is a proper (not minimal) 

P-point then W is a proper P-point. 

Proof. By assumption for every F:FN—> FN there is a Ye 3^ 

such that F T Y is either constant or finite-to-one and there is so­

me G:FN—*FN such that for all Y & Wl GhY is neither constant 

nor one-to-one. 

Let GCg. Then g f* u is not constant for any u e 3£t (otherwi­

se GtunFN would be constant) nor one-to-one (otherwise Gf^unFN 
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would be one-to -one) . 

Some interesting facts (established in [Bl],LB2]) concerning 

the ordering of ultrafilters and P-points and which might be rela­

ted to analogous facts for endomorphic universes, are the following: 

Fact 1 . Every increasing sequence of ultrafilters in Q has 

an upper bound . 

Fact 2, Every decreasing sequence of P-points has a lower 

bound which is a P-point. 

Fact 3. There is a P-point such that no minimal ultrafilter 

lies below it. (This is announced in [B2] to have been proved inde­

pendently by R.A. Pitt and M.E. Rudin.) 

Let A be an endomorphic universe. A universe B is said to be 

a successor universe of A if A $ B and there is no universe C such 

that A | C ^ 8 . It follows from Lemma 1.4 of C T3 that B is a succe­

ssor universe of A iff there are d £ B - A and W. minimal such that 

A[d] = B and F, 321 , d are coherent, where F"V = A. 

Fact 3 implies the following. 

Lemma 2.12. There is a universe A having no successor univer­

se . 

Proof. By fact 3 there is a (rich) ultrafilter ffll having no 

minimal ultrafilter below it. There are d, F such that F, TOl , d 

are coherent and FMVCdJ = V (cf. i S - V]). Let A = F"V and suppose 

B is the successor for A. Then, there are d,e B - A and '$£, mini­

mal such that AfdJ = B and F, W , , d, are coherent. It follows,. h 

from 2.3 that Wl* *& QTl and this is a contradiction. A 

i «j— *3r»ox"n 
An immediate corollary is the following. w 

Corollary 2.13. There is a class of endomorphic universes 
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linearly and densely ordered by inclusion. 

The following is a generalization of the last but two theo­

rems of IS - VJ which wc repeatedly refer to. 

Theorem 2.14. Let A be an end.universe and let 33t , d be such 

that d€ A and 0, W , d are coherent. Then there is an endomorphism 

F such that F, Tt\» , d are coherent and FnV[dJ = A. 

Proof. Let F be an endomorphism such that F , ffll , d are 

coherent and let F][, G be such that FJV = F^VtdJ and G"V = A. The 

elements F7 (d), G~ (d) are connected by the similarity G~ © F,, 

hence there is an automorphism F2 such that F2(F7 (d)) = G~ (d). 

Put H = G c F ^ F ^ a n d F = H«F o. Then one easily checks that F,23t, 

d are coherent and F"V[d] = A. 

Corollary 2.15. For every endomorphic universe A there is a 

B ̂  A such that A is a successor of B. More generally, for every 

A there is a decreasing sequence of universes (A ) ru such that 

A„ = A and for every n, A„ is a successor universe of A„ ,. o J ' n n+1 

Proof. In view of 2.14 and 1.4 of ill given A it suffices to 

find d€A and minimal <#l such that 0, W , d are coherent. The 

latter means that d belongs to all classes of W> defined by formu­

las of FL (i.e. parameter-free). If cp (x) is an enumeration of all 

these formulas then (3 x)(Vn)tp (x). Since A is a universe, we get 

(3 x £ A)( V n) cj» (x). This proves the first claim, from which the 

second comes immediately. 

Corollary 2.16. There is a maximal universe A such that 

E*(X) = X for every countable X£ A. 

Proof. Take by 2.9 an to -complete minimal W and F, d such 

that F, 13t , d are coherent and F"Vild~J = V. Then the universe 
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A = F"V is maximal (by 1.4 of LTJ) and from 2.1 (ii) we have 

EA(X) = Ey(X) = X for all countable X£A. 

§ 3. More on Ramsey ultrafilters. Given an ultrafilter #-#.put 

w ( 2 ) s ^U(2);|J ^ m ? m 

Since u ( 2 ) n v
( 2 ) = (unv) ( 2 ), ? # ( 2 ) is a filter-base on Sdy. The 

following characterization of Ramsey ultrafilters i#immediate 

from the definition. 

lemma 3.1. W is Ramsey iff 3ft is an ultrafilter-base. 

Fix a definable linear ordering < of V and identify each two-

element set4x,yl with the pair<x,y> such that x-cy. Let 

A = 4<X,X>;X£ V$, A =-(<x,y>;x< y y , B =i< x,y>;y< XT. 

Then X ( 2 ) = X 2 0 A, hence 

7Я 
(2) <{u

2
n A;u £ Wt, î • 

Lemma 3.2. For every ultrafilter 3/t , the filter generated 

by the base 7A X 0tft = -Cu ;u & 12ft \ is contained in at least three 

ultrafilters. It is contained in exactly three iff 7$l is Ramsey. 

Proof. The three classes ^ x ^ t u - C A ^ , 3ft ~ '3ft u -C A}, 

tti, x W u 4 Q] can be extended to non-trivial ultrafilters which 

are apparently distinct. Now Ktl *> W >J 4. &} is an ultraf ilter-base 

since it generates the ultrafilter F"?ft where F(x) =<fx,x> 

V x e V. 
( 2 ) On the other hand, 'til * W u-tAl. generates # v J = 

= -fun A;u €. W } which , as we remarked earlier, is an ultrafilter 

iff flt is Ramsey. Similar considerations hold for #t x. ' W u l B i 

if we identify the set -lx,y} with the pair<x,y>, y-cx. 
1 (2) 

Lemma 3.3. Let W, be Ramsey. Then (i) fflV is not minimal. 
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(2) 

( i i ) I f ^ i s 6>-complete ( r i c h ) , then 7 f t ' i s ^ - c o m p l e ­
te ( r i c h ) . 

Proof, ( i ) Since OftiiS2^ = K u2n A;u e Tfti , we have 
(2) 

nP/L x 7ft -* 7ft and i f P, i s the p ro j e c t ion to the f i r s t coor­

d ina te , then PJ( 7ft x 7ft ) = p«« <ajf(2) = tf?t . This means tha t 

Tft 4 7ftK . Moreover fo r every u € 7ft P. cannot be 1 - 1 

on u2r> A, hence 7ft < 7ft ( 2 ) . 
( 2) ( i i ) Let 7ft be a>-complete and (u*: ' ) - be a sequence of e l a -

ments of elements of 7ft . Then there i s some u B 7ft such tha t 

u s O u . whence •n n ' 

u ( 2 ^ ( n u n ) ( 2 ) = £ u
( 2 ) . 

Let W be rich with nucleus X and let p.? X . Consider the 

partition «(p,V - p5 . There is a u € 7ft such that either u^ '£ 

£ p or u(2)£ v ( 2 ) - p. If u(2)c V ( 2 ) - p then u(2)r. X ( 2 ) = 0, hen-

ce U A X ^ 1 which is a con t rad ic t ion . Therefore u £ p and this 

means that p * W ( 2 ) . Thus X ( 2 ) is a nucleus for 7ftf2\ 

Corollary 3 .4 . Let 7ft be Ramsey and F be an endomorphism 

(2) 
such that F, 7ft are compatible. Then the universe F"V = A has 

at least two successor universes B,, B2. Moreover B,nB« = A. 

Proof. Let F, 7ftv , -td̂ d-,* be coherent. If P^, P2 are the 

(2) projections to the first and second coordinate then PV 7ft = 

= P£ ^ t ( 2 ) = 7ft . Hence F, 7ft , d-., F, 7ft , d2 are coherent. Put 

B, = ACdJ , B2 = ACd23, B,, B2 are successors because 7ft is mini­

mal and BXA B2 = A because dx y d^ (cf. t T], 2.3). 

In ZF the properties "to be minimal" and "to be Ramsey" are 

equivalent only for uniform ultrafilters. 

Since the ultrafilters considered here contain sets which are 

not cofinal to the universe, it is likely that there exist minimal 
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non-Ramsey ultrafliters. 

The question is open to us but we can find some conditions 

implying the existence of such ultrafilters. 

Let B be a (non-trivial) filter-base or subbase on Sdv. We say 

that a class Z extends B if Bu Z still generates a non trivial fil­

ter. 

With no loss of generality we suppose that for every set-de­

finable F, dom(F) * V. 

B is called minimal if for every Fe Sdy there is a set u such 

that -Cul extends B and either F r u is 1 - 1 or F"u is finite. 

Lemma 3.5. Let B be a minimal subbase. If Z is an at most 

countable class and extends B then BuZ is minimal. 

Proof. Let Z = \ u^.u^,. . .1 and B, = BuZ. Pick a function 

F*Sdy. By assumption there is u such that -iu} extends B and F!> u 

is 1 - 1 if F"u is f i n i t e . We have to find v with -fv} extending Bĵ  

and FT v 1 - 1 or F"v f i n i t e . 

Case 1. F"u is f i n i t e . If u o ( H Z) is infinite then clearly 

u extends B-̂ . Suppose U A ( A Z) is finite. Without loss of gene­

rality assume that u r\ ( f. Z) = 0. 

If (3y)(F~1(y) n ( O Z) is infinite), then there is some u1 £• 

S H Z such that Fr u1 is constant. Put then v = uuu1 . 

Suppose (Vy)(F""1(y)A( 0 Z 

from the prolongation axiom that 

Suppose (Vy)(F (y)r\( 0 Z) is f i n i t e . It follows easily 

(1) (3n,kcFN)(Vy)(F"1(y)r»u1r» ... nu n S: k ). 

Let n, k be the natural numbers asserted by (1). Put w = u,n 

n ... u . Clearly w extends B,. The sets F~ (y)r» w form a parti­

tion of w into sets, each containing at most k elements. Decom­

pose w into at most k sets vi>--»vt such that F r v. is 1 - 1 

48 -



\/i = 1 , . . . , K • Then some of the v, extends B, and this is as 

required . 

Case 2 . Ff u is 1 - 1 . The non-trivial subcase is again when 

un(flZ) = 0, If F"(fl Z) is finite, by the prolongation axiom we 

have that for some n F"(u,n ...flu ) is finite and the set v = 

= u,n ...nu extends B,.. Suppose F"(flZ) is i n f i n i t e . Let E = 

= F " ( 0 Z ) . There is some X l Sdy such that EDX, E/KV - X) are both 

i n f i n i t e . The sets u, = un F~ "X, u« = unF~ "(V - X) is a parti­

tion of u . Hence some of them, say u,, extends B. Put Y = (HZ) A 

n F""1"(V-X). Then F"Y = En(V - X) and F"Yn F"ul = 0. Thus F"Y is 

infinite and Y is a jf-class, hence we can find w£ Y such that 

F I* w is 1 - 1. Since F"w n F"u, = 0, F (* wuu, is 1 - 1 and -f wn u,l 

extends B,. 

Corollary 3 .6 . A filter-base B containing sets is minimal iff 

it can be extended to a minimal ultrafilter. 

Proof. " < — " is t r i v i a l . Suppose B is minimal . Then 8 can 

be extended by transfinite induction to filter bases Wt^ such that 

W Q = B and 1Pfl^ is taken by U { Wh^ ;fi*zctf by adding a set u^ 

extending U1 Wh^ ; ($<<*>} and such that F̂  r urf is 1 - 1 or F^ u^ 

is finite. By the previous lemma each Ity^, is minimal and this gua­

rantees the induction step of the construction. 

Let P = *CP1,P2^ be a partition of V^ . We are interested in 

partitions with the following property: 

(A) For any finite sequence of set-definable classes X.,...,X , 

such tha t X,... X = V - u, u finite, some of the X. is not 

P-homogeneous. Given P, let B = *X;V - X is P-homogeneous} 

The following is obvious: 

Lemma 3.7. The partition P satisfies (A) iff B generates a 
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non-trivial filter on Sdy. Then every ultrafilter extending B is 

non-Ramsey. 

From 3.6 and 3.7 we get immediately: 

Corollary 3.8. There exists a non-Ramsey minimal ultrafilter 

iff there exists a partition P such that P satisfies (A) and B is 

minimal. 

It is not hard to find partitions satisfying (A) (e.g. P, = 

" ii x»y$;x A y = 0}, ?2 = "f*-* >y} ;*A y4-0} is such) but checking of 

minimality of B seems really hard. However, the following holds. 

Lemma 3.9. Any partition for which no proper class is homo­

geneous satisfies the conditions of 3.7. 

Proof. Let P be such a partition. Property (A) is obviously 

true for P. 

Let F be a function with dom(F) = V. We claim that there is 

a proper class XcSdy such that Fr X is constant or 1 - 1 . In 

fact, if F is not constant on any proper class, then all F~ ( y ) 

are sets forming a partition of V. Choose a set-definable selec­

tor Y for the classes F~ ( y ) . Then Y is proper and F r Y is 1 - 1. 

By assumption B contains only cosets, hence the proper 

class X extends B . 

We close by stating the questions for the existence of 

1) non-Ramsey minimal ( <o -complete ?) ultrafilters 

2) partitions for which no proper classes are homogeneous. 
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