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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,1 (1986)

ULTRAFILTERS AND ENDOMORPHIC UNIVERSES
A. TZOUVARAS

Abstract. This paper is in some respects a continuation of[T].
We transfer from the standard literature some further results con-
cerning the Rudin-Keisler ordering and its minimal elements of the
ultrafilters on de. Ramsey ultrafilters are established and we

poirt out that the class of ultrafilters gontaining the supersets
of a countable class is isomorphic to the class of ultrafilters
on FN. At the same time we relate properties of ultrafilters with
properties of endomorphic universes and show the existence of en-
domorphic universes satisfying certain particular conditions.

Key words: Alternative set theory, ultrafilter, minimal
Ramsey, @ -complete, Rudin-Keisler ordering, endomorphic universe.

Classification: 02K10, 02K99

§ 1. Preliminaries and some standard facts. All ultrafilters

considered in the sequel are on the ring de of set-definable
classes, unless otherwise stated; they are non-trivial and contain
sets. Hence for every ultrafilter Wl , WL N V (V is the universe)
is a base of W , and sometimes we identify %! to 2 N V. All
functions considered here are set-definable. If F is a function .
and M is an ultrafilter such that dom(F) ¢ 2 , let F"9 =
= {F"ujucdom(F)Au e @L} ; then F"21 is an ultrafilter.

We say that the ultrafilters m , #  are isomorphic (in sym-
bols 71 = %L ) if there is a permutation F:V—>V such that
F'"W =7 . For each M the class [MWM] = 4N ; W = NYis the

isomorphism class of %Wl . Every isomorphism class is codable.

As usual we shall not make clear distinction between %% and [#t].
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We recall :that the Rudin-Keisler ordering 4« of (isomorphism
classes of) ultrafilters is defined as follows:

M o« N if (1) (dom(f) € P4 A £"21 =901 ).

The following well-known ZF-facts (which justify the term "or-
dering") hold in AST as well.

Lemma 1.1. (i) f£"20 =97 if (3u e % )(fDu = id).
(ii) F "2 2 9 iff (3ue @ ) (fPu is one-to-one).

Proof. The proof of (i) is a trivial modification of the
proof of Lemma 2.3 of [T].

(ii) Let £" Wt = WM There is a permutation F of the uni-
verse such that F"f" @l = (F of)" @1 = W
By (i) there is u € %l | such that Fo fMu = id. Then £ Mu is one-
to-one.

Conversely, let f I u be one-to-one for ue WL . Put w =
= u U f"u. Divide u into two infinite disjoint sets Uy, Uy and sup-
pose u; e M . Since ul& f'u;, it follows w - ul& w - £'u;. Hen-

ce there is a bijection g:w - uy—> w - f"u1 and the function

f(x) if xe uy
ﬂ(x)={
g(x) if xef'uy,

is a permutation of w. Extend ar' to a permutation F of V by put-
ting F(x) = x for x¢w. Then Flu, = a b u; = fMu;, whence " =
= Fr@L e M.

Recall that %1 is minimal (w.r.t. the ordering £ ) if for
every function f with dom(f) € 9% there is some u € W7 such that
fMu is either constant or one-to-one.

The existence of minimal ultrafilters was shown in [T1. The
following stronger result, however, can be proved, imitating the

standard proof (cf. [ B2], Th. 2).
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Lemma 1.2. The class of minimal ultrafilters on de is unco-
dable.

Since every isomorphism class is codable, we have immediately

that:

Corollary 1.3. The class of isomorphism classes of minimal
ultrafilters is uncodable.

Next imitate the proof of Th. 6 of LB2] to get:

Lemma 1.4. There is no £ -maximal ultrafilter on de..

§ 2. w -complete and rich ultrafilters. Recall that 2% is

w -complete if for every sequence -[un;neFN§ € 9 | there is a
u & 9 such that u € Q ug- -

Let us call 2 -rich, if it contains all supersets of a count-
able class X. X is called a nucleus of 27

It is not hard to see that the classes of w -complete and rict
ultrafilters are disjoint.

Let us give some characterizations of them in terms of endo-

morphic universes.

Lemma 2.1. Let F, 7% ,d be coherent, and F"V = A. Then
(1) M is rich iff (3 countable YEA) (deE, (Y))
(ii) M is w-complete iff (¥ countable Y& A) (B (Y) = EA[d-'(Y))

Proof. (i) If X is a nucleus of 7% and Y = F"X, then obvi-
ously de EA(Y) and vice-versa.

(i1) Let Wl be w-complete and Y = {y,,y,,...1€A.

Since A[d) = {£(d);fe A%, it suffices to prove that for eve-

ry ££ A with dedom(f) and Ye £f(d), there is a ue€ A such that
YEusf(d).
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Let f be such a function and f = F(g). Put X = {x;,x,,... %,
where y = F(x,). Then F(xn)tF(g)(d), for every né FN, whence, by
coherence,

Vo = {x;xn eg(x)le 7.
It follows from cw -completeness that there is a v &€ Wl such that

ve v . Then

m N
x&v~—> X&g(x),
heﬁce
(1) X e NV Lgx);xe vl = w
and vedx;weglx)t.

Therefore {x:w¢&g(x)t e w or, by coherence,
(2) F(w) < £(d).
We have from (1) and (2) that
YE F(w) S £(d).
Conversely, suppose E,(Y) = E,;49(Y) for all countable YEA.

Let (v.) be a subclass of 991 . We have to find v € @ with

neFN

Ve Q v, From E,(Y) = EAm(Y) it follows that

n
(3) (YeAk Ysi(d))—> (JueA)(Ysust(d)).

Extend the sequence (v ) .y to a set r =4 Va ;B % «% and define

neF
the function g:Ur~> P(r) as follows:

g(x) ={ver;xs vt.
Then

(Vver)(xave>» veg(x)),

hence

v, = {x;vne g(x)3.
We get by coherence that for all né&FN

Flv,) e F(g)(d),
that is, {F(vl),F(vz),...IS F(g)(d).
By (3) there is a t such that
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{F(v),Flvy), . JEF(E F(g)(d),
thus Lv;,v,,...7 &t and {x;tegx)se W ..
Put v = {x;t€g(x)}. Then
xeve>tegix)
and, since VisVos .- £ t, we get
Xev —>vnag(x)~f—>—xevn
for all ne FN; therefore v ¢ Q Vn and this completes the proof.
Let F be an endomorphism and ‘%! be an ultrafilter. F, /7 are
compatible if there is a d such that F, #1 , d are coherent.

The following is obvious.

Lemma 2.2. F, W are compatible iff N4{F(u);ue Wi=+p
and F , M , d are coherent iff d € N{F(u);u e W13 -

Lemma 2.3. Let F"V = A and let F, ’.Y)ll, dl, and F, mz, d2

be coherent. Then
- — z
Ald1 S Ald,] —> 7L, m,.
Proof. Suppose A[dll = A[d2] . There is some f &€ A such that

£(d,) = d;. Let F(g) = f. Then dom(g) € 1, and for every u ¢ WZZ

such that u & dom(g), we have dst(u)s dom(f). Hence dlé £"F(u),

therefore g"u & ml‘ This proves that g" ’J’ﬂz = ml.

Lemma 2.4. 9t < A iff for every endomorphism F, F, ¥

compatible ~> F, 91 compatible. Specifically, F, 27 , d coherent—
—> F, g"2 ,F(g)(d) coherent.

Proof. Let g"2L =97 and F, ¢ , d be coherent. Then
{x;q;(x,yl,...,yn)} e WM «> g'l"{x;q(x,yl,...,yn)} e YN« >
x5 @(g(x),yy, - hy b € N> (F(g)(d),Fly), ... ,Fly ).

Conversely, suppose the condition is true. There are F, d

such that F, @1 , d are coherent and F"V({d] = V (cf.f{S - V], last
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but two theorems). By assumption there is a d' such that F, 277,
d' are coherent. Since F"vid'l € F"Vi{d), it follows from the prece-

ding lemma that M = 71 .

Lemma 2.5. Let M = N 1t N is w-complete (rich) then

M is @ -complete (rich).
Proof. Straightforward.

Let X be any class. Put

x(2) . {Ax,yl;x,ye XA x+yt.

- D4 (2) ;
Let P = {PI’PZI’ be a partition of X A class Y= X is homogene-

ous for P, or P-homogeneous if Y(Z)é P1 or Y(2)£ P2

The proof of the following is the standard one.

Lemma 2.6 (Ramsey). Let X be an arbitrary infinite class and
(2)

let P = {Pl,Pz} be a partition of X Then there is a countable

P-homogeneous class Y& X.

Corollary 2.7. Let X be an infinite set-definable class and

(2)

P =3P P2} a set-definable partition of X . Then there is an in-

1)
finite P-homogeneous set u< X.

Proof. Find by 2.6 a countable P-homogeneous Y& X and, then,
use the axiom of prolongation to find a P-homogeneous set u, such

that Y& u&eX.

An ultrafilter #! is called Ramsey if for every set-definab-

le partition P =< Pl,PZEOf V(2>, there is a P-homogeneous set
u ¢ N

Lemma 2.8. FEvery Ramsey ultrafilter is minimal.

Proof. Let 7/l be Ramsey and let F be a set-definable func-
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Py =i,y HFOOHF(E, Py ={{x,y};F(x) = F(y)}.
Let u = @ be homogeneous for {P,,P,%. If w2 P, then FMu is

one-to-one; if u(2)§ P2 then F M uw is constant.

Lemma 2.9. There is an uncodable class of (isomorphism clas-

ses of) @ -complete Ramsey ultrafilters.

Proof. Llet T = U{2%; x « %, i.e., T is the complete binary
tree of height &2 . Let w be an infinite set and let (w, ), ., be
an enumeration of P(w) and (P, = 4P£,Pi¢'7)¢é;)_ be an enumeration of

all set-partitions of w(Z),

We shall define a one-to-one mapping
H:T — P(w) such that H is an embedding of <T, € > into <P(w),=>
and
(i) H(s™0)NH(sT1) =@, VseT,
(i1) if dom(s) = « + 1 then H(s) is P _-homogeneous and either
H(s)nw, = B or H(s)s W -

The definition is by recursion on the levels T, = {seT;
dom(s) =% of the tree. .

Put H(@B) = w. At limit levels Too and for se T, choose an ins

finite u ¢ N{H(s M@ ), @ <} such that either ucw

o OT u(\wnc=

= @ and put H(s) = u.
Now suppose H(s) is defined and dom(S) = «¢ . Divide H('s) in-

to infinite sets Ug, uyg. Find v_g Ug, Vi€

0 Y1 such that Vi Wy = ]

Or Vi< W for i = 0,1 and choose v'.l_ vy which are p, -homogeneous.

oG

{

Put H(s™0) = v, H(s™ 1) = v{.\
It is clear that conditions (i),(ii), are satisfied and every

branch of H "T is a base of an w -complete Ramsey ultrafilter.

The corresponding branch of T is a function F: 5 — {0,1% and dif-

ferent branches produce different ultrafilters. But the class of
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_all such F is uncodable and this finishes the proof.

Let now W1 be a rich ultrafilter with nucleus X. It is easy

to see that the class

'mx ={Xnu;ue W}
is a non trivial ultrafilter on the countable class X. If Y is an-
other countable class, F:X-> Y is a bijection and F&£f, then
£ m is rich with nucleus Y and £"®% == 7% . Hence, we may assu-
me that all rich ultrafilters have a common nucleus, say FN. Then
we denote by % the ultrafilter {un FN;u ¢ % on FN.

The mathematics we can do in AST on FN (or any countable class),
is exactly the mathematics we can do in ZFC + CH on @ . This is
easily seen by a simple comparison of the axioms of the two theo-
ries. In particular, all notions and facts developed for the ult-
rafilters on co‘are reasonable and valid for the ultrafilters on
FN. Therefore minimal and Ramsey ultrafilters not only are meaning-
full for a countable class but moreover they coincide (cf. LB1],

§ 1p, Th. 7).

Lemma 2.10. Let W , 7L be rich ultrafilters (with nucleus
FN). Then
(1) M= > M=N
(ii) M £ N> W

U]

(iii) %Y is minimal (Ramsey) iff @Y is minimal (Ramsey). Hence

if M is rich, W' is minimal iff it is Ramsey.

Proof. (i) Obviously 2 ={u;(AYe #;MH(Yeu)l, ie. WL
is a kind of base for 1

(ii) By the convention that 971 , 4L have common nucleus FN
we may suppose that for every f with dom(f) € 9 , £"FNC FN. If
"N =W and F = £DFN then F"#L = W1 . Conversely if F" 21 =é1

- 82 -



and FE £, then £"7L = W

(iii) By the prolongation axiom the properties "minimality"
and “"to be Ramsey" can be transferred easily from countable classes
to sets extending them and vice-versa.

It follows from the preceding lemma that the class of rich ul-
trafilters ordered by £ 1is isomorphic to the class ﬂao of non-
trivial ultrafilters on @ ordered by < . A thorough study of the
latter can be found in [B1].

An interesting subclass of @& are the so-called P-points.
For the ordering of P-points see [B2).

An ultrafilter 21 on FN is a P-point, if for every F:FN —>
—> FN, there is a class Y € 9% such that FMY is either constant
or finite-to-one.

(It is easy to see that this definition transferred to ultra-
filters on de is equivalent to the definition of minimal ultrafil-
ters.)

Let 7% be rich. We call WL P-point if 2L is a P-point.
Since every minimal ﬂit is a P-point , clearly every minimal (rich)
ultrafilter is a P-point. There are P-poknts on FN which are not

minimal (cf. [B2) Th.9).

Lemma 2.11. Let %% be rich. If M is a proper (not minimal)
P-point then M is a proper P-point.

Proof. By assumption for every F:FN—> FN there is a Ye 952
such that FIMY is either constant or finite-to-one and there is so-
me G:FN—»FN such that for all Y & @% G MY is neither constant
nor one-to-one.

Let 6&g. Then g Mu is not constant for any u & %Wt (otherwi-

se G Y unFN would be constant) nor one-to-one (otherwise G MunFN
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would be one-to-one).
Some interesting facts (established in [B11,[B2]) concerning
the ordering of ultrafilters and P-points and which might be rela-

ted to analogous facts for endomorphic universes, are the following:

Fact 1. Every increasing sequence of ultrafilters in @ has

an upper bound.

Fact 2. Every decreasing sequence of P-points has a lower

bound which is a P-point.

Fact 3. There is a P-point such that no minimal ultrafilter
lies below it. (This is announced in [B2] to have been proved inde-

pendently by R.A. Pitt and M.E. Rudin.)

Let A be an endomorphic universe. A universe B is said to be

a successor universe of A if A £ B and there is no universe C such

that AE C & B. It follows from Lemma 1.4 of [ T] that B is a succe-
ssor universe of A iff there are d&B - A and MW? minimal such that
Ald] = B and F, 9 , d are coherent, where F"V = A.

Fact 3 implies the following.

Lemma 2.12. There is a universe A having no successor univer-
se.

Proof. By fact 3 there is a (rich) ultrafilter 2% having no
minimal ultrafilter below it. There are d, F such that F, 21 , d
are coherent and F"V[d] = V (cf.[S - V]). Let A = F"V and suppose
B is the successor for A. Then, there are dlé B - A and Wﬂl mini-
mal such that A[dﬂ = B and F, mnl, d, are coherent. It follows,
from 2.3 that mﬂl £ 9l and this is a contradiction.

i-gmo qon
An immediate corollary is the following.

‘a

Corollary 2.13. There is a class of endomorphic universes
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linearly and densely ordered by inclusion.

The following is a generalization of the last but two theo-

rems of [S - V] which we repeatedly refer to.

Theorem 2.14. Let A be an end.universe and let ’:m, d be such
that d¢ A and 0, 3 , d are coherent. Then there is an endomorphism

F such that F, ¥l  d are coherent and F"V[d] = A.

Proof. Let Fo be an endomorphism such that FO, WL, d are

coherent and let F G be such that FjV = ng[dJ and G"V = A. The

1 1

elements Fil(d), 6"1(d) are connected by the similarity 6-lo Fis
hence there is an automorphism F, such that FZ(FII(CI)) Y
Put H = Go F20 Filand F = HOFD. Then one easily checks that F, 2L,

d are coherent and F"V{d] = A.

Corollary 2.15. For every endomorphic universe A there is a
B'§ A such that A is a successor of B. More generally, for every

A there is a decreasing sequence of universes (An) N such that

nef

A0 = A and for every n, A_ is a successor universe of An+1'

n
Proof. In view of 2.14 and 1.4 of [T) given A it suffices to
find de A and minimal Wl such that 0, ¢ , d are coherent. The
latter means that d belongs to all classes of A defined by formu-
las of FL (i.e. parameter-free). If ¢ (x) is an enumeration of all
these formulas then (3 x)(V n)qan(x). Since A is a universe, we get
(Ixe AV n)c;an(x)A This proves the first claim, from which the

second comes immediately.

Corollary 2.16. There is a maximal universe A such that
Ep(X) = X for every countable XZ A.

Proof. Take by 2.9 an «w-complete minimal ¥ and F, d such

that F, WL , d are coherent and F"V[d] = V. Then the universe
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A = F"V is maximal (by 1.4 of [T]) and from 2.1 (ii) we have
Ep(X) = Ey(X) = X for all countable X£A.

§ 3. More on Ramsey ultrafilters. Given an ultrafilter #¢.put

D D msi .

Since u(Z)f\ v(2) = (ur\v)(z), m(Z) is a filter-base on Sdy. The
following characterization of Ramsey ultrafilters i® immediate

from the definition.

Lemma 3.1. Wl is Ramsey iff m(Z) is an ultrafilter-base.

Fix a definable linear ordering < of V and identify each two-
element set -ix,y} with the pair {x,y> such that x<y. Let

D =4<x,x>;xe V¥, A ={x,y>;x<y}, B =4<x,y>;y< x}.

Then X(2) = XZ(\ A, hence
at? - gulh e WY

Lemma 3.2. For every ultrafilter 01 , the filter generated
by the base Wix M =<{u?;ue M} is contained in at least three

ultrafilters. It is contained in exactly three iff 7¢ is Ramsey.

Proof. The three classes 1 = @t u LA}, W1 < W u il
M ~ M v { B} can be extended to non-trivial ultrafilters which
are apparently distinct. Now % » %% v £A%} is an ultrafilter-base
since it generates the ultrafilter F"? where F(x) = {x,x>
VxeV.

On the other hand, %Wt = M v {A% generates ’m.(Z) =
= {uzn A;u € M3} which , as we remarked earlier, is an ultrafilter
iff M is Ramsey. Similar considerations hold for M = Wluv<{B}
if we identify the set {x,y} with the pair {x,y?, y<x.

Lemma 3.3. Let A be Ramsey. Then (i) w‘? is not minimal.
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(ii) If 9 is w-complete (rich), then m(Z) is w-comple-
te (rich).

Proof. (i) Since (2 - {ulnau e WY | we have
mMm < % £ m(” and if P1 is the projection to the first coor-
dinate, then PY( W = %t ) = Py (2 - | This means that
m < 2 Moreover for every u € #! Py ‘cannot be 1 - 1
on u?n A, hence M < wm (2)
(2))n be a sequence of el:-

(ii) Let @ be w -complete and (uy

ments of elements of 'JYl(Z). Then there is some u & @ such that

ue )\ u_, whence
m n

WP (n @ - QW@

Let 91 be rich with nucleus X and let p2 X(2). Consider the
partition {'p,V(Z) - p%. There is a ue 91 such that either u(z)é

(2)¢ vz If u(z)s v(2) p then ulPn x(2) #, hen-

Eporu p.

ce unxg 1 which is a contradiction. Therefore u(Z)s p and this

means that p < 'm(“. Thus X(z) is a nucleus for 'm“).

Corollary 3.4. Let 91 be Ramsey and F be an endomorphism
such that F, m(” are compatible. Then the universe F"V = A has
at least two successor universes Bl’ Bz. Moreover Bln 82 = A,
Proof. tet F, Wt ?), {d),d,t be coherent. If P,, P, are the
projections to the first and second coordinate then P'l' m(z) =
= Py 'm.(z) = MW . Hence F, M | dy, F, @ , d, are coherent. Put
B, = AldJ, B, = Ald,J, B;, B, are successors because M is mini-
mal and BN B, = A because d § dz (e£. [T], 2.3).

In ZF the properties "to be minimal" and "to be Ramsey" are

equivalent only for uniform ultrafilters.

Since the ultrafilters considered here contain sets which are

not cofinal to the universe, it is likely that there exist minimal
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non-Ramsey ultrafilters.

The question is open to us but we can find some conditions
implying the existence of such ultrafilters.

Let B be a (non-trivial) filter-base or subbase on de. We say
that a class-Z extends B if Bu Z still generates a non trivial fil-
ter.

With no loss of generality we suppose that for every set-de-
!1ﬁable F, dom(F) = V.

B is called minimal if for every Fe de there is a set u such

that {u} extends B and either FMu is 1 - 1 or F"u is finite.

Lemma 3.5. Let B be a minimal subbase. If Z is an at most

countable class and extends B then BuZ is minimal.

Proof. Let Z = iul,uz,...f and B, = BuZ. Pick a funétion
Fe de. By assumption there is u such that {u?} extends B and Ft u

is 1 - 1 if F"u is finite. We have to find v with {v} extending B1
and FPv 1 - 1 or F"v finite.

Case 1. F"u is finite. If un(N Z) is infinite then clearly
u extends Bl‘ Suppose un (N Z) is finite. Without loss of gene-
rality assume that un( N Z) = @.

It (.By)(F'l(y)r\( N Z) is infinite), then there is some u' ¢
€ N Z such that FMu' is constant. Put then v = uuu'.

Suppose (Vy)(F’l(y)n( N Z) is finite. It follows easily

from the prolongation axiom that
(n (3n,ke VY F AN nu, B k).

Let n, k be the natural numbers asserted by (1). Put w = un
Nn... up,. Clearfy w extends Bl‘ The sets F'l(y)n w form a parti-
tion of w into sets, each containing at most Kk elements. Decom-

pose w into at most k sets Viseeea Vi such that F Pvi is' 1 -1
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¥i=1,...,K . Then some of the vy extends B, and this is as

required.

Case 2. F? u is 1 - 1. The non-trivial subcase is again when
un(NZ) = @. If F"(NZ) is finite, by the prolongation axiom we
have that for some n F"(uln ...r)un) is finite and the set v =
=un..onu extends Bl.. Suppose F"(NZ) is infinite. Let E =
= F"(NZ). There is some X& Sdy, such that ENX, EN (Vv - X) are both
infinite. The sets u; = un F'l"X, u, = un Frlogv - X) is a parti-
tion of u. Hence some of them, say up, extends B. Put Y = (NZ)N
A FTIM(V-X). Then F"Y = En(V - X) and F"Yn F'u) = B. Thus F"Y is
infinite and Y is a a-class, hence we can find w& Y such that
FPwis 1 - 1. Since F'wnF'uy; = §, Fe wou, is 1 - 1 and {wnuli

extends Bl‘

Corollary 3.6. A filter-base B containing sets is minimal iff

it can be extended to a minimal ultrafilter.

Proof. " «— " is trivial. Suppose B is minimal . Then B can
be extended by transfinite induction to filter bases 7 such that
W =B and W, is taken by U{ g ; B <x} by adding a set u,.
extending ULy ; B <o} and such that F, P u, is 1 - 1 or £} u,

is finite. By the previous lemma each ?72‘ is minimal and this gua-

rantees the induction step of the construction.

Let P = {Pl,P2§ be a partition of V(Z). We are interested in
partitions with the following property:
(A) For any finite sequence of set-definable classes Xl""’xn’
such that Xl"' Xn =V - u, u finite, some of the Xi is not

P-homogeneous. Given P, let Bp = {X;V - X is P-homogeneous} .

The following is obvious:

Lemma 3.7. The partition P satisfies (A) iff Bp generates a
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non-trivial filter on de. Then every ultrafilter extending Bp is

non-Ramsey .

From 3.6 and 3.7 we get immediately:

Corollary 3.8. There exists a non-Ramsey minimal ultrafilter
iff there exists a pattition P such that P satisfies (A) and Bp is

minimal.

It is not hard to find partitions satisfying (A) (e.g. P1 =
= {{x,y¥;xny = 0}, Py = {<{x,y};xn y+0} is such) but checking of
minimality of Bp seems really hard. However, the following holds.

Lemma 3.9. Any partition for which no proper class is homo-

geneous satisfies the conditions of 3.7.

Proof. Let P be such a partition. Property (A) is obviously
true for P.

Let F be a function with dom(F) = V. We claim that there is
a proper class Xe€ de such that FP X is constant or 1 - 1 . In
fact, if F is not constant on any proper class, then all F'l(y)
are sets forming a partition of V. Choose a set-definable selec-
tor Y for the classes F'l(y). Then Y is proper and FMY is 1 - 1.

By assumption Bp contains only cosets, hence the proper
class X extends Bp.

We close by stating the questions for the existence of

1) non-Ramsey minimal ( w -complete ?) ultrafilters

2) partitions for which no proper classes are homogeneous.
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