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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,1 (1986) 

APPROXIMATE SYMMETRIC DERIVATIVE AND MONOTONICITY 
Jiří MATOUŠEK 

Abstract: It is proved that, if f is a measurable function 
on the real line with the lower approximate symmetric derivative 
nonnegative, then it is essentially nondecreasing on some interval. 

Key word: Approximate symmetric derivative 

Classification: 26A24 

This note gives a partial answer to the following problem: 

If f is a continuous function on an interval I and if the (lower) 

approximate symmetric derivative is nonnegative, is f necessarily 

nondecreasing? 

Though several authors have presented incorrect proofs of the 

positive answer (cf. £23, [33,[53; for a survey see [4]), the pro

blem remains open, even in the case f̂  = 0 everywhere on I. Our 

partial answer is given in the following statement. 

Theorem: If f is a measurable function defined on an open 

interval I and with f„„ >0 on I. then there is an open interval 3 
-ap * r 

included in I such that f is nondecreasing on the set of those 

points of 3 at which it is approximately continuous. 
Recall that f^5(x) = ap lim inf (f(x+t) - f(x-t))/2t. 

aP t -*Q 

To prove the theorem, we need the following lemma. 

Lemma: Suppose that f is a measurable function defined on a 
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bounded interval (c,d), r>s are real numbers, 0<h<(d-c)/2, 

Hx;c< x< c+2h and f(x)> rj I > 3h/2 and 

Ux;d-2h< x< d and f(x)< sJI > 3h/2 . 

Then there is a nonempty open subset G of (c+h,d-h) with 

U t ; 0 < t < h and f (x-t)> f (x+t)}I > h/9 

for every x in G. 

Proof of the theorem; Suppose first that JOD ° o n I* U s i n g 

the Baire Category Theorem, we can find an open interval 3 = (a,b) 

contained in I and cf* > 0 such that we have (a- d\a+ d)c I and the 

set 

E = «{xc3; Kt;0< t< h and f (x-t)> f (x + t)} | < h/9 

for every h €(0,<f )J 

is dense in 3. We prove that f is nondecreasing on the set of those 

points of 3 at which it is approximately continuous. Assume, on the 

contrary, that a < c < d < b , f is approximately continuous at c as 

well as at d and that f(c)>f(d). Then there is h from 

(0,min(</,(d-c)/4)) such that 

Kx;c< x< c+2h and f (x) ?- 2/3.f (c) + l/3.f(d)}| > 3h/2 

and 

Ux;d<x<d-2h and f(x)< 1/3.f(c) + 2/3.f(d)}i> 3h/2. 

But this obviously contradicts the previous lemma. 

To prove the general case, we use the above result to infer 

that the function x~>f(x)+x is nondecreasing on the set of points 

of approximate continuity belonging to the open interval 3 = (a,b). 

Hence there is a function g on 3 such that g = f a.e., and x -> 

->g(x)+x is nondecreasing. Whenever a < c < d < b , we get 

(g(d)+d) - (g(c)+c) > f (g (x)+l)dx = 
• *c 

- Xj iaj ) ( x ) d x + <--e)*(d-c), 
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hence g is nondecreasing on 3, which implies our statement since 

f (x ) = g(x) whenever x '„s in 3 and f is approximately continuous 

at x . 

Proof of the lemma; Let g = (r+s ) /2 and E =4x;c<x<d and 

f ( x ) £ q 3 and F = (c ,d ) - E. We define the function 

g:x H-* i it;0< t < h and f ( x - t ) > q >f ( x+ t )3 I = I (x ,x+h ) n F n 

n (2x - E ) | = C** .\c(t) ( 2 x - t ) d t . 

Consider the d i f fe rence 

Jg(x+cT) - g ( x ) U 2 1 cT 1 + J ^ I \^l(*+df )-t)- %A2x - t ) | d t i ? 

«|<T| + f»h\ ^ ( t ) -%t,(t-2<n dt ; E' = 2x - E 

(E' is a measurable set of a finite measure). The last integral 

tends to zero as (f goes to 0 (this easy fact is mentioned, for 

example, in [1], part VI.8, proof of Thm. 20), hence g is continu

ous on (c+h,d-h), so it is sufficient to find x e ( c + h , d - h ) such 

that g ( x ) > h / 9 . 

Since f(x-h,x)r\ E \ > 3h/2 - h = h/2 if xc[c+h,c+2h3 and 

| (x ,x+h )o Ei< 2h - 3/2h = h/2 if xeCd-2h,d-hj, the number 

z = sup \x t[c+h,d-h]; |E A (x-h,x )J > h/2} 

is well-defined and belongs to the interval I c+2h,d-2h]. Therefo

re, 

i E n ( z - h , z ) | > h/2 and also 

| F n ( z , z + h ) | > h /2 . 

Thus, using the s u b s t i t u t i o n x = z+u-v, y = z+u+v, we get 

h2 /4 £ K ( x , y ) c ( z - h , z ) x ( z , z + h ) ; f ( x ) £ q > f ( y ) } | -

h/2 
= 2 f i i ve (lui ,h-lul ) ; f(z+u-v)> q>f(z+u+v)] | du £ 

ZJh/2 

£2 fV 2 | {v e ( 0 , h ) ; f(z+u-v)2: q >f(z+u+v)3I du. 
ijk/2 

Consequently, there is u fe ( -h /2 ,h /2 ) such that 
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g(z+u) - K v e ( O . h ) ; f (z+u-v)2* q >f (z+u+v) } | > h/8> h/9 
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