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STABILITY AND SADDLE-POINT PROPERTY FOR A LINEAR
AUTONOMOUS FUNCTIONAL PARABOLIC EQUATION
Jaroslav MILOTA

Abstract: A linear parabolic functional differential equati-
tion TCE) + Au(t) = Lut with infinite delay is investigated under

assumptions that A is a sectorial operator in a Banach space X and
L is a continuous linear operator from a space Y of continusus
functions with fading memory norm into X. Values of functions from

Y are in the domain of fractional power A°°, 0=occ < 1. The theorem
on stability and the saddle-point property are proved.

Key words: Functional differential equations, parabolic equ-
ations with delay, infinite delay, solution operator and its gene-
rator, stability, saddle-point property.

Classification: 35R10, 34K30

§ 1. Introduction and results. Two main difficulties occur

in the investigation of linear functional differential equations
with infinite delays, namely:

(i) The choice of a phase space on which the solution opera-
tor T(t) is considered. For example, it is necessary for asympto-
tic stability to endow a phase space with a property of fading me-
mory (compare e.g. the results of [4] with [7]). Spaces with fad-
ing memories were introduced by several authors (see e.g. [3]) and
their properties were generalized in an axiomatic way in [7land
later on in [10]. '

(ii) The solution operator T(t) forms a C,-semigroup but it
is difficult to obtain some information about its infinitesimal

generator B. T. Naito has shown in [13] that asymptotic properties
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of T(t) can be deduced from a localization of the essential spect-
rum of T(t) and properties of the point spectrum of B.

In this paper we follow the main idea of T. Naito for a par-
tial functional differential equation
(E) at) + Au(t) = Luy.
We suppose that A is a sectorial operator in a Banach space X
with a compact resolvent. The shift of u is denoted by Ugs i.e.
ut(s) = u(t+s) for se (-o00 ,0). In applications a linear operator
L can depend on lower space derivatives but not on the highest
ones. In other words, L is defined on a space y % of functions
which map the interval (- c0,0] into X*® for D < o« < 1, where X<
is the domain of the fractional power A®™ endowed with the graph
norm. The spaces Y® have the properties of an abstract phase spa-
ce from [71 and [10]. Some estimates for the operators A are given
in Section 2.

In Section 3 we shall prove that the question (E) determines
a dynamical system T(t) on the space Y® and this system forms a
Co—semigroup. We remark that this problem for finite delays is ge-
nerally investigated in the recent paper [12]. If a resolvent of
A is compact then the system T(t) differs by a compact operator

from the solution operator of the homogeneous equation

() V(t) + Av(t) = 0.

On the base of the R. Nussbaum formula for the radius of an essen-
tial spectrum ({14]) we obtain an estimate for the essential spec-
trum of T(t) (Proposition 2). The main part of Section 4 is devo-
ted to the investigation of the point spectrum of the generator B
what leads to Theorem 2. As a corollary of this main result the
sufficient conditions for asymptotic stability of the equation (E)

are given (Corollary 1). Conclusions of Theorem 2 also allow to
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decompose thg\space Y% into the direct sum Y1€B Y2 of T(t)-inva-
riant subspaces (Corollary 2). The space Yl has a finite dimension
and T(t)¢ behaves like a solution of a totally unstable ordinary
differential equation for g € Yl‘ These results correspond to
those ones for ordinary functional differential equations with fi-
nite delays as in [6]. '

We note that in [15] K. Schumacher has recently proved the ex-
istence of a resolvent operator for the equation (E) in which A cen
be time dependent. The stability for the equation (E) in which L is
defined on Y1 (i.e. L can depend on the highest derivatives) has
been also recently investigated in [1], but only for finite de-

lays and Hilbert spaces.

The author expresses many thanks to H. Petzeltovd for helpful

discussions.

§ 2. Preliminaries. Let X be a Banach space and let A be a
sectorial operator in X, i.e. (see [5],[8]) A is a closed operator
with a dense domain £ (A) and the spectrum of A lies outside of a
sector Sa,w: ={Ne C;w = }arg(A-a)! €x} for some a>0,w< a/2,
and there is a constant M such that the inequality

(2.1) P (a1-m) 2 —M
lh.~a‘

holds for the resolvent of A and A < Sa w - Under these proper-

ties, -A generates a Co—semigroups e'At

which has an analytic ex-
tension into a domain & :={zeC; | Arg z|< or/2 - @?}. All frac-
tional powers A% are defined, and, moreover, there is a constant
¢ (in the sequel we shall denote by c an arbitrary constant) such
that

(2.2) hoa* e At 2 ¢ gmaRe tip, 4y-%
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for any teInt 3 . We denote by X% the domain of A% endowed
with the graph norm.

We need the following generalization of the estimate (2,1).

Proposition 1. Let A be a sectorial operator for which (2.1)
holds . Then for arbitrary 0 £ <1, A < & - @ , there is a con-

stant ¢ such that the inequality

c
(2.3) A (AT + e ——

) I A +a] ™
is true for larg(A+ a)l & A

Proof. As (AI+A)"1 - f“oe'a's e ?S ds for Re A > -a, we have
I (}

A% (A T+A)7L = f*’oe_ﬁs A% e RS gs.
0
Let A = v + i8 with ¥ > -s, € « 0. Choose % e (0,7/2 -@).
The Cauchy theorem yields the following expression

; i B
A% (ATsn)L = el? _/;"’ e Are

i
A% g-ATe dr.

Define Fg (A ) by the integral on the right hand side. According
to the estimate (2.2), Fg is an analytic function in the domain
Mg := { A e C;larg(A+a) + & 1< 3/2%, and there is c such that
NFg (AN & clA+al™ ! for all A e My . But My © @(-A) and

A% (A1sa)" L = i Fa (A) for A € MgniA e C;Re(A+a)>0F. By
the uniqueness theorem, this/ equality is valid on the whole set

Md)" Since the same idea can be used also for 6 Z 0,

Qe (-/2 + @ ,0), the estimate (2.3) follows.

§ 3. A dynamical system. As a space of solutions of the equ-

ation (E) we choose Y,

o (1):=4fu:(-0 ,T2— X® ; u is continu-

ous on (- o ,T1,

bl S eftunn, < o}

Yoo (T) Cil e LTI
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for 0 @ oc <1 and a certain positive number 3 . For the sake of
simplicity we denote Y;nnc (0) by Y and this space will be the ba-
sic phase space for the eg'ation (E). We consider this equation to-
gether with an initial condition

(3.1 up = weY.

A solution (in the space ngac(T)’ T>0) of an integral equation

(IE)  u(t) = et @(0) + j;t e Alt-s) Lug ds, u, = &

is said to be a mild solution to the equation (E). We define a
strong solution to (E) as a function u¢ Y6 (T) for some T>0 such
that G(t) exists, u(t) e & (A), and (E) is satisfied for any

te (0,T). A strong solution is a mild one as well.

Theorem 1. Let operators satisfy the following conditions:

A is a sectorial operator in X with the property (2.1) for
a>0;
(H1) 0£<1, gy > 0;

L is a continuous linear operator from Y into X.

Then for any g € Y there exists a unique mild solution to the equ-
ation (E) whigh satisfies the initial condition (3.1). This solu-
tion is defined on the interval (- ©0,+ o0 ). Moreover, if

@(0)e X**® for some € > 0, and e¥" 4 (+) is a Holder continudus
function on the interval (-c0,0] into X%, then this solution is

also a strong solution to (E).

Proof. (i) To prove the local existence to (IE) we choose
T>0, r>0 and set Z(r):={ue Yoo (T)5 Uy = 5, fuCt) -
- q(ﬂ)ﬂw < r for tc(0,T]J% . A map t —» u; is a continuous map
of [0,T] into Y for any u Yo (T), and the right hand side of

(IE) determines (for sufficiently small T>0) a contraction of Z(r)
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into itself.

(ii) We shall prove the 3lobal existence of a solution using
a Gronwall type estimate. Suppose that for some g ,y ¢ Y the cor-
responding solutions u(e, ‘j’)v u(v, y) exist on the interval (-«e ,T)

L v(s). With help of

and let v(t):= Il ug (o )-ut(v)ll yr w(t):= gtépm_
(2.2) we have
s Yty

v(t) = e Tt sup, l)exs[u(s,q)—u(s,'y')ilqo z F - ”Y +

A -
et sup NeF® [eTM9 (o (0)- y(0)) 5 e Ay (g )-
—uglyNNd e < c g - q'“Y codtt 1w,

If & is such that c Ll t1"%e 271, then

(3.2)  vit)ew(t)=2c g - w‘iiY

for tel0, al , t<T. In the space Y the fundamental estimate of
L7} holds, namely

(3.3) uxtuvé e"r(t_t) “x.r“Y + rst:g‘

for v £t €T and xeY, o (T). This means that the estimate (3.2)

. x(s)hy

can be iterated and therefore the inequality
bt .
(3.4) v(t) £ 2ce ﬁq:— '\y"Y

holds on the whole interval [0,T), where b = Al log 2c is inde-
pendent on t,T.

Sup‘pose now that a solution u(e,9 ) to the solution (IE) ex-
ists on the interval (- w’,T) and T is finite. By (3.4) for y= 0,
this solution is bounded on the interval [0,7). Choose 3 € (oc,1)
and o> 0. For t e [d’,T). we have

“u(t,‘-‘?)uﬂ a i AB""C'B'AtA“‘g»(O)“ « 0 fot e‘A(t'S)Lu5 ds i, £

IB P2
&cd* P “CP“Y + ch'Fé c.

Therefore for o' * £ t<T we obtain
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ult, @)-ula, g, 2 § e O inyceyn, «
(3.5)

+ N e A(t-s) Ltug ds I« c(t-w W= o(t-a)t

)

tDx h, = ct"”“‘“xli[s for xe xP, 02w = f3

since fi(e™"
(see [B87). The estimate (3.5) shows that a}p1 u(t) exists in the
space X and therefore the solution u can be continued behind the
point T.

(iii) With respect to the general theorem on the regularity
of a mild solution to a nonhomogeneous equation v(t) + Av(t) = £(t)
(see e.g. [8), Lemma 3.2.1) it is sufficient to prove that the map
t--> Luy is Holder continuous from L0,T) into X, i.e., by the ad-
ditional assumptions on @ , a solution u(s, ¢) is Holder continu-
ous from [0,T) into X* . With help of (2.2) and a local boundedness

of u, we get

ut)-u(s) ¢ I (e A3 1) A= % RS+ o (o)) +

+

. "'ﬁb (e A(t-8)_1y-A(s-6) Lug g6 I

ot e-A(t-G) L

.o+ W ug d6h, £ c(t-5)% g (O, +

&
"uglly

(5-8)%*®

.

t lul
d6 + c/; -J—ldﬁé c(t-s)f

17 »
(t-s)
rene fo (-6 )%

for D¢é¢s£t<T

Corollary. Let the hypotheses (H1) be satisfied and let
u(-,e) be a mild solution to (IE) on the interval (- o0 ,+ c0). If

T(t)e denotes ut(@ ) then T(t) is a C,-semigroup on the space Y.

We denote by S(t) the solution operator to the equation (Eo)
in the space Y, i.e. S(t)@ := vt(9 ), where v(-,®") is a soluti-
on to (E ) with (3.1).
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Lemma 1. Let the hypotheses (Hl1) be satisfied together with
(H2) A has a compact resolvent in X.
Then for any te [0,+ co ) the operator T(t)-S(t) is a compact map

from Y into Y.

Proof. Since [T(t)-S(t)1 @ (®) = 0 for Y€ (- @ ,-t) it is

sufficient to prove that the map
2g v~ [T ey a6, v e to,1,

is compact as a map of Y into (:([l],'c];X"c ). This can be shown by
the Arzeléd-Ascoli theorem. If BB is a bounded set in Y then func-
tions from & (B ) are equicontinuous because of (3.6). According

o+ E
for

to (2.2) and (3.4) a set $(B)(w) is bounded in X
« < o + € <« 1. Since the hypothesis (H2) implies that the imbed-

ding of X**€ into X* is compact (see e.g. [81), the result follows.

§ 4. Spectrum of T(t) and of its generator. For a closed ope-

rator B with a dense domain in a Banach space X we denote Nk(A,B);=
:= Ker( AI-B)X and N(A,B)::kl::,),, N (A ,B). We shall use the notion
of an essential spectrum in the sense of F. Browder (12)), i.e.A is
said to belong to the essential spectrum of B (A e ess(B)) whenever
at least one of the following conditions is satisfied:

(i) (AI-B) is not closed;

(ii) the dimension of N(A ,B) is infinite;

(iii) A is a limit point of the spectrum of B.
The radius of ess(B) will be denoted by r,(B). R. Nussbaum proved
in [14] that
(4.1) r (B) = inf {keR; «(B(M)) &k (M) for every bounded

\ set M},

where ¢, (M) is the Kuratowski measure of noncompactness of M.
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It A o belongs to the spectrum of B but not to the essential spec-
trum then 7&0 is an eigenvalue of B (denotation ‘?Loe’ Pe (B)) and
the dimension of N(.’AD,B) is said to be the multiplicity of .?uo.
We note that A’o is a pole of the resolvent of B as well and the

projector P which is given by
= -1
(4.2) Peggr [ (al-m)lan
M (A
(T"(?\o) is a sufficiently small circle with the center in 7&0)
decomposes the space X into two B-invariant subspaces and R (P) =

= N(?\o,B). Moreover, there exists n, such that Nn(ho,B) =

n

n
. - )
Nno( ?\.O.B) for all nz Ny and R (I-P) = R ( KOI-B) .

Proposition 2. Let the hypotheses (H1),(H2) be satisfied.
Let T(t) be tﬁe solution operator to the equation (IE). Then for
the radius of its essential spectrum the estimate
r (T(t)) e ceMin(a, Nt
holds.
Proof. By the R. Nussbaum result (4.1) and Lemma 1, we have

r (T()) = r (S(t)). Obviously, r (5(t)) = ks(t)|l , and

IIS(t)q“Y = e Tt max| 5up, | eT(t+0)?(t+1}) lg
sup,  Nle¥(t+8) o-A(t+d) o (Ol . «

~ted<0
Thus the estimate (2.2) yields the result.

In the sequel B will stand for the infinitesimal generator of
the C -semigroup T(t).

Lemma 2. Let the hypotheses (Hl) be satisfied. Then:
(i) If By =A@ with ¢ % 0 then Re A > -y and T(t)yp =
= eMry . Moreover, ¢ (2%) = ea""d, where d e D (A) and it solves

the characteristic equation
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(4.3) D(ADD := Ad + Ad - L(e? d) = 0.

(i) It ReAZz -7
then A € Pe (B).

(1i1)

and (4.3) has a nontrivial solution,
If we Py (T(t)) and @ =* 0, then there exists a fini-
te number of A e P, (B) such that e - w .

The function z(1) = T(t) ¢
2(t) = T(1)Bg = A z2(t), i.e. z(t) = erlg

Proof. (i} is a solution to

By the definition

of T(1), we have 2(+)() = u, (¥ ,¢) = u 40,9) = Do ()

for t + % 2 0. Thus @ () = e‘“’*(y(ﬂ) for any %< 0 and Re A > -
- % . The function u(t,q ) solves (IE) and the function

s — L(ezsq') = ea'sL(qJ) has a bounded derivative on the interval

[0,T), T < o0 . This means (see the third part of the proof of The-

orem 1) that u(t,q ) is a strong solution to (E), i.e. P (0)e & (A)

and
Tt e 0+ A g @) = LM 9.

Hence d = @ (D) solves the characteristic equation (4.3).

(ii) Under the assumption the function ¢ (%) = e d ey and

Tty = e % . By the definition of the generator, Bg = A9 .

(iii) With the exception to the number of A , the assertion

can be found in [ 9], Th. 16.7.2. All solutions to the equation
et - @ have the form Z.n = 71 log s+ i2arnt™l. As A is a

sectorial operator, all A Inizn,, belong to the resolvent

set of -A. This means that for this A the equation (4.3) is equ-

jvalent to the equation

(4.8) d=(A1+ a0t L.
It Ans

hdal,

Pg (B) then there is a solution d of (4.4) such that

Apd
Ve d‘Y = 1. But from the estimate (2.3) we get
1

[]

A )
Nabe = DA% (A Ten) P L(e™ D4 chiiIn sall™
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As the right hand side tends to zero for In|— oo , the result

follows.

More information about the structure of spaces Nk(‘}\,B) is in-
cluded in the following lemma. Notice that D(j)(l'\,)d 1=

3 .
= 8 (A = - L(-8Ie? ) for 3>1.

dad

Lemma 3. Let the hypotheses (H1) be satisfied and let
Re A > - 7 . Then

(1) xeN (A,B) if and only if

k-3
(4.5) x(9) = e?? z G 123 5,
where d;,. ..,d, € D (A) satisfy the relations
y -1
(4.6) %

(1) £) .
2 7 D (}\,)dJl 0, 3=1,...,k.

(ii) If x is of the form (4.5) then

. i
(4.7) T(t)x = eM bz-" GO thk s
é:o jl -J
where
(- 1)3 3-£ .
(4.8) () = d, , =1, ,k
E YE Gor e

Proof. We proceed by induction. For k=1 the assertion is true
according to Lemma 2. Suppose first that xe Nk+1(?\,,B) and set
y = Ax - Bxe N, (A ,B). Therefore, by (4.7,

_ JV; ot (o) g
T(t)y = € %go ——j! t k-3

Solving the differential equation %T(t)x = AT(t)x - T(t)y,

we find

ot & (DI g
(4.9) T(t)x = e ‘}?‘o ——j! t Xk+1-3

" 1yt L
where x, ., = X, xj(19~) = yj('ﬁ) = ea&.ﬁi" -E-j—f-)z—)—!—'ﬂ“] . d
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3=1,...,k, and d;,...,d, satisty (4.6). Taking t - -9 >0 in (4.9)

we obtain

Ao fevd-q k-3j-£
x(0) = e M y(p) + = ¥ _ eI
=1 L1 31(k+l-3-2 )

k+1-£
dp

-rp N Pt Y.
e x(B) +"§Z4 ORETEY Ly dy

It remains to prove that d, , := x(0) fulfils the relation

Ao £
(-1) @)
D(A )dk+l *£§4 ——2——'—-— D (A )dk+1-l = 0.

But this follows by substituting

% 3
At (1)
x(t) = e, T, 5T a0y

(set © =0 in (4.9)) into the equation (E).
Conversely, let x be given by (4.5) with k+1. Put

at & (-1I 3
g (t) = ¢ %§o T t3xk+1_j,'

where Xpoe e Xkel satisfy (4.8). Then it is easy to prove that @ is
a solution to (E) which satisfies the initial condition ¢ (0) =
= Xppp T X As the initial problem for (E) has a unigue solution,

= - (t)-(0) _ <
¢@(t) = T(t)x and thus Bx —tl-}’mol———t—z—- = Ax - x,. By the in-
ductive assumption, x € Nk(ﬁ,B) and chk+1(.7\,B) follows.

We remark that the explicit form of N2(.'7L,B) yields a condi-
tion on A to be a simple eigenvalue of B. It follows from (4.7),
(4.8) that T(t)x is a solution of a system of ordinary differential

equations in the Jordan canonical form for x& N(A ,B).

Corollary. Under the assumptions of Lemma 3, the space
Nk(.’h.,B) is T(t)-invariant and Nk(?t.,B)c Nk(e’“t,T(t)).

Theorem 2. Let the hypotheses (H1),(H2) be satisfied. Then
for any ¢ > 0 the set 6 ={A € C;Re A > - min(a,y) + &}
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contains only a finite number of points of Pg (B) and all of these

points are of the finite multiplicity.

Proof. (i) The set G is a subset of the resolvent set of
the operator -A and there.nre the equation (4.3) is equivalent to
(4.84). If we denote the right hand side ot (4.4) as F(A )d, we have
A€ Py (B)A G if and only if le Py (F(Q\.O)). But the operator
F( fho):X‘—-) X¥ is compact what implies that 1 is an isolated
point of the spectrum of F(mo). It is easy to see that the func-
tion A — F(A ) is analytic in G. According to the Smulyan theo-
rem ([16) or [11), Th. 7.1.9) there are two possibilities:
GC Py (B) or Py (B) is isolated in G. By Lemma 2, the first case
is impossible. Similar arguments as in the end of the proof of Lem-
ma 2 show that Pg (B)n G is finite.

(ii) Now, we prove that A e Pg (B)n G is of the finite mul-
tiplicity. According to Corollary of Lemma 3, the multiplicity of
A cannot exceed the multiplicity of eMe Pg (T(1)). For tz t/

we have
M) > g(-min(a,p)vedt -t min(a,x)Z £ (T(1)).

This means that EAt L 3 GessT(t) for sufficiently large t and the
proof is complete.
The last theorem has two important corollaries:

Corollary 1 (asymptotic stability). Let the hypotheses (H1),

(H2) be satisfied and let Re A < 0 for any solution to the charac-
teristic equation (4.3). Then 0 is an asymptotically stable solu-
tion to (E). Moreover, there is d’ > 0 and a constant c such that

(4.10) Tk € ce 9t

Proof. By assumptions and Theorem 2, A := sup Re Py (B)<O.
This means that sup {IAl; A Pg (T(1))} = e at (Lemma 2). With

respect to an estimate of a radius of an essential spectrum
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(Proposition 2) there is Jl>-0 and a constant c such that

-dt
r(T(t)) 2 ce ! This implies the result by standard arguments

(see Lemma 7.4.2 in [6]).

Corollary 2 (saddle-point property). Let the hypotheses (H1),

(H2) be satisfied. Then there exists a decomposition Y = Y185 Y2
such that

(1) Y, has a finite dimension;

(ii) Y, Y, are T(t)-invariant;

(iii) the zero solution is asymptotically stable for
T(t)/YZ;

(iv) Y, ¢ D (B) and B/Yl is a continuous linear operator ge-

nerating a group which is an extension of T(t))/y .
1

Proof. According to Theorem 2, the set &, :={ A ¢ Pg (B);
Re A z 0} is finite and for any A, e &, the projector P(ﬁ.o),
which is given by (4.2), has a finite dimensional range N(J\D,B).
The projector P(i\o) commutes with T(t) as well. If we set P =

- = P i N N -
aZe, P(A) then P is a continuous projector onto Y, 3;@6* N(A ,B)

with Ker P = Y, and the spaces Y,, Y, satisfy (i) - (iv).
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