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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,1 (1986) 

STABILITY AND SADDLE-POINT PROPERTY FOR A LINEAR 
AUTONOMOUS FUNCTIONAL PARABOLIC EQUATION 

Jaroslav MILOTA 

Abstract: A linear parabolic functional differential equati-
tion Q(t) + Au(t) = Lu. with infinite delay is investigated under 
assumptions that A is a sectorial operator in a Banach space X and 
L is a continuous linear operator from a space Y of continuous 
functions with fading memory norm into X. Values of functions from 

Y are in the domain of fractional power A06, 0 -* oo < 1. The theorem 
on stability and the saddle-point property are proved. 

Key words: Functional differential equations, parabolic equ­
ation s~"~wTtr7"l!iriay, infinite delay, solution operator and its gene­
rator, stability, saddle-point property. 

Classification: 35R10, 34K30 

§ 1. Introduction and results. Two main difficulties occur 

in the investigation of linear functional differential equations 

with infinite delays, namely. 

( i ) The choice of a phase space on which the solution opera­

tor T ( t ) is considered. For example, it is necessary for asympto­

tic stability to endow a phase space with a property of fading me­

mory (compare e.g. the results of 14] with [73). Spaces with fad­

ing memories were introduced by several authors (see e.g. I 3J) and 

their properties were generalized in an axiomatic way in £73and 

later on in ClO]. 

(ii) The solution operator T(t) forms a C -semigroup but it 

is difficult to obtain some information about its infinitesimal 

generator B. T. Naito has shown in £133 that asymptotic properties 
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of T(t) can be deduced from a localization of the essential spect­

rum of T(t) and properties of the point spectrum of B. 

In this paper we follow the main idea of T. Naito for a par­

tial functional differential equation 

(E) u(t) + Au(t) = Lut. 

We suppose that A is a sectorial operator in a Banach space X 

with a compact resolvent. The shift of u is denoted by u,, i.e. 

u. (s) = u(t+s) for se (-00 ,03. In applications a linear operator 

L can depend on lower space derivatives but not on the highest 

ones. In other words, L is defined on a space Y of functions 

which map the interval (- 00 ,03 into X°^ for 0 s. oc *c 1, where X00 

is the domain of the fractional power A00 endowed with the graph 

norm. The spaces Y00 have the properties of an abstract phase spa­

ce from 111 and [103. Some estimates for the operators A are given 

in Section 2. 

In Section 3 we shall prove that the question (E) determines 

a dynamical system T(t) on the space Y°° and this system forms a 

C -semigroup. We remark that this problem for finite delays is ge­

nerally investigated in the recent paper till . If a resolvent of 

A is compact then the system T(t) differs by a compact operator 

from the solution operator of the homogeneous equation 

(EQ) v(t) + Av(t) = 0. 

On the base of the R. Nussbaum formula for the radius of an essen­

tial spectrum (1*141) we obtain an estimate for the essential spec­

trum of T(t) (Proposition 2). The main part of Section 4 is devo­

ted to the investigation of the point spectrum of the generator B 

what leads to Theorem 2. As a corollary of this main result the 

sufficient conditions for asymptotic stability of the equation (E) 

are given (Corollary 1). Conclusions of Theorem 2 also allow to 
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decompose the space Y into the direct sum Y, ® Y0 of T ( t ) - i n v a -

riant subspaces (Corollary 2 ) . The space Y, has a finite dimension 

and T ( t )<p behaves like a solution of a totally unstable ordinary 

differential equation for o? e Y , . These results correspond to 

those ones for ordinary functional differential equations with fi­

nite delays as in £63. 

We note that in tl5] K. Schumacher has recently proved the ex­

istence of a resolvent operator for the equation ( E ) in which A cen 

be time dependent . The stability for the equation (E ) in which L is 

defined on Y, ( i . e . L can depend on the highest d e r i v a t i v e s ) has 

been also recently investigated in Cl], but only for finite de­

lays and Hilbert spaces . 

The author expresses many thanks to H. Petzeltova for helpful 

discussions. 

§ 2. Preliminaries. Let X be a Banach space and let A be a 

sectorial operator in X, i.e. (see [5],[8]) A is a closed operator 

with a dense domain £5 (A) and the spectrum of A lies outside of a 

sector S : = { K e C \ ct & \ argi X -a) \ * W } for some a> 0, &> .< 3t /2, 

and there is a constant M such that the inequality 

( 2 . 1 ) H (M-ArH -* M 

|Л -al 

holds for the resolvent of A and % e S . Under these proper-

-At 

ties, -A generates a C -semigroups e which has an analytic ex­

tension into a domain % : = i z€ C; I Arg z |< Jt 12 - o> } . All frac­

tional powers A are defined, and, moreover, there is a constant 

c (in the sequel we shall denote by c an arbitrary c o n s t a n t ) such 

that 

( 2 . 2 ) H A06 e- A tH * c e"aRe t(Re t ) " * 
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for any teInt 36 . We denote by X°° the domain of A06 endowed 

with the graph norm. 

We need the following generalization of the estimate ( 2 , 1 ) . 

Proposition 1 . Let A be a sectorial operator for which ( 2 . 1 ) 

holds . Then for arbitrary 0*coG-<l,,&-<jr~<t> , there is a con­

stant c such that the inequality 

( 2 . 3 ) II A* (A I + A)"1]!* ^-r-r 
(A +a|1"oC 

is true for I arg(A + a ) U A 

Proof. As (AI+A)" 1 = f*00^3
 e~

As -jS for Re A :> -a, we have 

A* (AI+A)"1 = [*"*'** A* e"As ds. 

Let A = * + i# with r > -s, # * 0. Choose # e (0,^/2 - a ). 

The Cauchy theorem yields the following expression 

A'-CAI.A)-1 = e^f" e- A r e i* A* --*"** dr. 

Define F̂ , (A) by the integral on the right hand side. According 

to the estimate (2.2), FQ is an analytic function in the domain 

M^ := -\ A fc C; larg(A+a) + $ I < # /2j, and there is c such that 

I F̂ , (A)ti £ clA+al*" 1 for all A c M^ . But M^ c <p (-A) and 

A06 (AI+A)""1 = e1 F^ (A) for % e M ^ M A e C ;Re(A+a)?-Oj. By 

the uniqueness theorem, this equality is valid on the whole set 

Mil, . Since the same idea can be used also for G £ 0, 

^ c (-sf/2 + CJ ,0), the estimate (2.3) fo l lows . 

§ 3. A dynamical system. As a space of solutions of the equ­

ation (E) we choose Y r ^ (T): == 4 u : (- co ,TJ—> X
0* ; u is continu­

ous on (- co ,T3, 

\\ u 1SV ,Tx:= sup II e2rtu(t)L < 00? 
Y^OC (T) iec-oQ.TJ * 
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for 0 ̂- oc < 1 and a certain positive number r̂ . For the sake of 

simplicity we denote Ŷ , c< (0) by Y and this space will be the ba­

sic phase space for the eqiation (E). We consider this equation to­

gether with an initial condition 

(3.1) uQ = y c Y. 

A solution (in the space Y ^ ^ d ) , T> 0) of an integral equation 

(IE) u(t) = e~At9(0) + J* e-
A(t-s> Lus ds, uo = j> , 

is said to be a mild solution to the equation (E). We define a 

strong solution to (E) as a function u c Y ^ ^ d ) for some T>0 such 

that u(t) exists, u(t) e 25 (A), and (E) is satisfied for any 

t€(0,T). A strong solution is a mild one as well. 

Theorem 1. Let operators satisfy the following conditions: 

A is a sectorial operator in X with the property (2.1) for 

a>0; 

(HI) -^O^oS-cl, 3">0; 

I L is a continuous linear operator from Y into X. 

Then for any <$ € Y there exists a unique mild solution to the equ­

ation (E) which satisfies the initial condition (3.1). This solu­

tion is defined on the interval (- oo.+ oo ). Moreover, if 

a? (0) c X*"1" for some e > 0, and e^* cp (•) is a Holder continuous 

function on the interval (-oo,0j into X°° , then this solution is 

also a strong solution to (E). 

Proof. (i) To prove the local existence to (IE) we choose 

T> 0, r>0 and set Z(r):= \ u U ^ (T); u = §? , llu(t) -

- ^(O)!'^ -£ r for t £ 10, TJ lr . A map t —•> u. is a continuous map 

of IT 0, T j into Y for any u£Y r | 0 t(T), and the right hand side of 

(IE) determines (for sufficiently small T^O) a contraction of Z(r) 
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into itself. 

(ii) We shall prove the global existence of a solution using 

a Gronwall type estimate. Suppose that for some <p , ye Y the cor­

responding solutions u(*,C4>), u(«,Tf ) exist on the interval (- *Xi ,T) 

and let v(t) : = Hu+(q> )-u. ( y ) II v, w(t) : = sup v(s). With help of 1 x T oss/^t 
(2.2) we have 

v ( t ) = e~T t sup l )e^ s tu (s , 9 ) - u ( s , f ) 11^ ^ s ~ y t ft c>> - Y *'Y
 + 

' + e " ^ sup i i e * s [ e " A s ( ^ ( 0 ) - y ( 0 ) ) + S* e"*is'6\{u. ( * )-

- u ^ ( t ) )d ff M c (ley - Hrtty + c JlLt t 1 ~ c C w ( t ) . 

I f & i s such that c 8 L Ii t 1 " * . * 2 " 1 , then 

(3 .2 ) v ( t ) < w ( t ) « 2c lk? - Y ' Y 

for t 6.1.0, ix J , ttST. In the space Y the fundamental estimate of 

L7J holds, namely 

(3.3) IUJ v£e~
; r ( t"" t ; ) flxJL + sup Hx(3)llflf 

for r*-.t-=T and x <-. Y „ ̂  (T). This means that the estimate (3.2) 

can be iterated and therefore the inequality 

(3.4) v(t)4 2cebt &<$>- y » Y 

holds on the whole interval C 0, T), where b = A " log 2c is inde­

pendent on t,T. 

Suppose now that a solution u(«,<jp) to the solution (IE) ex­

ists on the interval (- «oO ,T) and T is finite. By (3.4) for f - 0, 

this solution is bounded on the interval tO,T). Choose |3 £ (oc ,1) 

and t/> 0. For t e l<f rl) we have 

ilu(t,9)R^ * U A ^ - ^ B ^ V ^ O J + » /* e- A ( t" s )Lu s ds lp £ 

* c * i C - / l 1<*»Y + c T 1 ' ^ c. 

Therefore for t/'a* T <£ t < T we obtain 
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u ( t , 9 ) - u U ' , y ) | i л á íi ( e ^ ^ - ^ - I )u( 'c r ) l l^ + 

( 3 . 5 ) 

Г Ł e - A ( t ~ s ) U І ds c ( t - ' ť ) ' 'fť V c ( t - r ) 1-oí 

since |l ( e " A t - I ) x j l ^ --= c t ' x IĽ foг x e X ^ , O i t ì - -? /3 

(see L8"J). The estimate (3.5) shows that lim u(t) exists in the 
t T 1 

space X°" and therefore the solution u can be continued behind the 

point T. 

(iii) With respect to the general theorem on the regularity 

of a mild solution to a nonhomogeneous equation v(t) + Av(t) = f(t) 

(see e.g. [83, Lemma 3.2.1) it is sufficient to prove that the map 

t - > Lu. is Holder continuous from 10,T) into X, i.e., by the ad­

ditional assumptions on <p , a solution u(»,«p) is Holder continu­

ous from C0,T) into X06 . With help of (2.2) and a local boundedness 

of u. we get 

( l u ( t ) - u ( s ) R^r f II ( e - A ( t " s ) - I ) A - V A s A * + e 9 ( u ) l l + 

+ II _T ( e - A ( t - s ) - I ) e - A ( s - 6 ) Lu6 d t f l l . + 

(3 .6 ) + II £ * e - A ( t - S ) lug 46^ * c ( t - s ) & l y ( 0 ) B _ _ + 6 + 

:(t-s)f' Г j n 

6 /•> " u б " ' ү 
0 (s-6) 

______ dЬ + c ,. f 
Jfi> 

•Vиү 
( t - « r Г 

dб ^ c ( t - s ) s 

for 0 é s &\ <T 

Coro l l a r y . Let the hypotheses (HI) be s a t i s f i e d and l e t 
\ 

u(-,<$?) be a mild solution to (IE) on the interval (- oo ,+ co). If 

T(t)cp denotes u. (9 ) then T(t) is a C -semigroup on the space Y. 

We denote by S(t) the solution operator to the equation (E ) 

in the space Y, i.e. S(t) 9 := v.. (9), where v(« ,9>x) is a soluti­

on to (Eo) with ( 3 . 1 ) . 
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Lemma 1. Let the hypotheses (HI) be satisfied together with 

(H2) A has a compact resolvent in X. 

Then for any t£(Q,+ oo) the operator T(t)-S(t) is a compact map 

from Y into Y. 

Proof. Since [ T(t)-S(t)J <p (<& ) = 0 for & e (-co,-t) it is 

sufficient to prove that the map 

$<p : * _+ p e-A(f-«T) LT(ar ) y dff | r € L0,tJ, 

is compact as a map of Y into C(C0,tJ;Xo<; ). This can be shown by 

the Arzeli-Ascoli theorem. If 3 is a bounded set in Y then func­

tions from $ ( 3 ) are equicontinuous because of (3.6). According 

to (2.2) and (3.4) a set $(J&)(l?) is bounded in X***' for 

oC < ot + e < 1. Since the hypothesis (H2) implies that the imbed­

ding of X**+e into X*96 is compact (see e.g. £83), the result follows. 

§ 4. Spectrum of T(t) and of its generator. For a closed ope­

rator B with a dense domain in a Banach space X we denote N. (X,B): = 

:= Ker( ft,I-B)k and N(A,B): = .U i N k(A,B). We shall use the notion 

of an essential spectrum in the sense of F. Browder (123), i.e.A is 

said to belong to the essential spectrum of B (Afe ess(B)) whenever 

at least one of the following conditions is satisfied: 

(i) (Xl-B) is not closed; 

(ii) the dimension of N(A,B) is infinite; 

(iii) X is a limit point of the spectrum of B. 

The radius of ess(B) will be denoted by r (B). R. Nussbaum proved 

in U43 that 

(4.1) re(B) = inf { k * R; ct(B(M))*k oC(M) for every bounded 

set M f, 

where c'v(M) is the Kuratowski measure of noncompactness of M. 
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If A belongs to the spectrum of B but not to the essential spec­

trum then A is an eigenvalue of B (denotation «̂  £ P$* (B)) and 

the dimension of N( .A ,B) is said to be the multiplicity of A . 

We note that A is a pole of the resolvent of B as well and the 

projector P which is given by 

( 4 . 2 ) P = y-i-r / (AI-B)"1 dA 

( P ( A ) is a sufficiently small circle with the center in A ) 

decomposes the space X into two B-invariant subspaces and 4t(P) = 

= N(A ,B). Moreover, there exists n such that N (A ,B) = 
n 

= Nn (A Q ' .B ) fo r a l l n r n Q and (Jt ( I -P) = ft(AQI-B) ° . 
o 

Proposition 2. Let the hypotheses (H1),(H2) be satisfied. 

Let T(t) be the solution operator to the equation (IE). Then for 

the radius of its essential spectrum the estimate 

r e(T(t))^ce-
m i n ( a^ ) t 

holds. 

Proof. By the R. Nussbaum result (4.1) and Lemma 1, we have 

re(T(t)) = re(S(t)). Obviously, re(S(t)) -S »S(t)|| , and 

|IS(t)9«Y = -e*^ maxC ^sup 1 e
r{U^ q (t+ 1») ll̂  , 

sup i i e r ( ^ e - A ( t ^ ) (0)|( . 

Thus the estimate (2.2) yields the result. 

In the sequel B will stand for the infinitesimal generator of 

the C -semigroup T(t). 

Lemma 2. Let the hypotheses (HI) be s a t i s f i e d . Then: 

(i) If B9 = Ag> with cp -fc 0 then Re A > - y and T(t)y> = 

= e^cp . Moreover, cp(i>) = e A^d, where d «£ 2) (A) and it solves 

the characteristic equation 
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(4.3) D(A)d := A d + Ad - L(e** d) = 0. 

(ii) If Re A z -'y and (4.3) has a nontrivial solution, 

then .A € Pg. ( B ) . 

(iii) It ^ c P& (T(t)) and <u ** 0, then there exists a fini­

te number of A & p^ (B) such that e M = (>*> . 

Proof. (i) The function z(t) *= T(t)<gp is a solution to 

z(t) = T(t)B<$> = A z(t), i.e. z(t) = e^iop By the definition 

of T(t), we have z(t)(o9-) = u%(& , <$> ) = ut+i?.(0,^ ) = e
a(t+l5l) <p (0) 

for t + ># > o. Thus <f(>&) = e^^9(0) for any -& £ 0 and Re A > -

- f . The function u(t,<j») solves (IE) and the function 

s —> L(e 9> ) = e SL(9>) has a bounded derivative on the interval 

LQ,T3, T < oo . This means (see the third part of the proof of The­

orem 1) that u(t,<j») is a strong solution to (E), i.e. g>(0)€oD(A) 

and 

-|f eXt 9 (0) + A(e M 9(0)) = L(eat f ). 

Hence d = <J> (0) solves the characteristic equation (4.3). 

(ii) Under the assumption the function g> (i5) = e ^ d e Y and 

At 
T(t)c$> = e ty .By the definition of the generator, Bq = Ag> . 

(iii) With the exception to the number of A , the assertion 

can be found in [9], Th. 16.7.2. All solutions to the equation 

e^1 s 4U, have the form A = t log /a + i2jrnt . As A is a 

sectorial operator, all A , . nl£n , belong to the resolvent 

set of -A. This means that for this A the equation (4.3) is equ­

ivalent to the equation 

(4.4) d = ( A I -f A)""1 L(e** d) . 

If A n& p0 (B) then there is a solution d of (4.4) such that 

ldl^ = ! e n d!y = l. But from the estimate (2.3) we get 

1 - Id 1̂  = I! A*6 (A^I+Ar1 L(e*n*d)IU ol Ll U n + a ) W . 

- * 4 



As the right hand side tends to zero for I nI —> co , the result 

follows. 

More information about the structure of spaces N. (J\ ,B) is in-

he following lemma. Notice that 

D(A)d = - L('£JeA^d) for j;>l. 

eluded in the following lemma. Notice that D 3 (A)d 

dЛ
J 

Lemma 3. Let the hypotheses (HI) be satisfied and Let 

Re % > - X •
 T n e n 

(i) xeN
k
(A,B) if and only if 

(4.5) x(*> = «**.£ ^ T - ^ - 5 V 

where d , , . . . , d . e 2 ) (A) s a t i s f y the r e l a t i o n s 

(4.6) S r i - l l L D
( i ) ( A ) d. „ = 0, j = l , . . . , k . 

i f o I ! 3'1 

( i i ) I f x i s of the form U . 5 ) then 

(4 .7) T ( t ) x = e W ^ ^ t \ . , 

where 

(4.B) x . ( -#) = e ^ j £ ( " 1 ) 3 " a> j"X d# , j - l , . . . , k . 

Proof. We proceed by induction. For k=l the assertion is true 

according to Lemma 2. Suppose first that x& Nk ,(A,B) and set 

y = ?lx - Bx€.Nk(&,B). Therefore, by (4.7), 

T(t)y-.*\V i=lii t̂  yfc 
^•0 j! K J 

Solving the differential equation —-rr-T(t)x = .3\,T(t)x - T(t)y, 

we find 

(4.9) T(t)x = eXt
 # Z izDi t3xk. ., 

a-* ° i! K+i-j 

where x,+1 . x, x.(*) - y j (* ) . . * * £ { $ ^ - ^ " ' * , 
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K(t) --**.£ -4*- t-dL 

j = l,...,k, and d1,...,dk satisfy (4.6). Taking t = - # > 0 in (4.9) 

we obtain 

»(o) - .-**«(•) • k X* (-1)k"3"' *M-* H -

= e"**x(*) + 1 (-Dk^ ^k+1-/ 
**4 (k+l-i)1 * 

It remains to prove that dk , := x(0) fulfils the relation 

0(A)dk+1+J^ J^LD^
)(A)dk+1.<e =0. 

But this follows by substituting 

a-:« ~fr ^ u k+ i - j 

(set 4 = 0 in (4.9)) into the equation (E). 

Conversely, let x be given by (4.5) with k+1. Put 

,» m - -** v <--)j tJv 
9 ( t ) - e ji-p — J T t xk+i-j». 

where xi>---*xk+i satisfy (4.8). Then it is easy to prove that g> is 

a solution to (E) which satisfies the initial condition y> (0) = 

= xk - = x. As the initial problem for (E) has a unique solution, 

o?(t) = T(t)x and thus Bx = lim y ( t )7y ( 0 ) = A x - x. . By the in-
•* t —¥ o * K 

ductive assumption, xkcNk(3t,B) and
 X*N. ,(A,B) follows. 

We remark that the explicit form of N2(A,B) yields a condi­

tion on A to be a simple eigenvalue of B. It follows from (4.7), 

(4.8) that T(t)x is a solution of a system of ordinary differential 

equations in the Jordan canonical form for xcN(A,B). 

Corollary. Under the assumptions of Lemma 3, the space 

Nk(ft,B) is T(t)-invariant and Nk(X ,B)c Nk(eM,T(t)). 

Theorem 2. Let the hypotheses (H1),(H2) be satisfied. Then 

for any e > 0 the set G = -C A c C;Re A > - min(a, j ) + &} 
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contains only a finite number of points of ?c (B) and all of these 

points are of the finite multiplicity. 

Proof, (i) The s*t G is a subset of the resolvent set of 

the operator -A and there,ore the equation (4.3) is equivalent to 

(4.4). If we denote the right hand side oi (4.4) as F(&)d, we have 

^ o c P* (B^n G if and only if le Ptf ( F(& 0))- But the operator 

F( & ):X^—> X** is compact what implies that 1 is an isolated 

point of the spectrum of F(C/V ). It is easy to see that the func­

tion A —* F(A ) is analytic in G. According to the Smulyan theo­

rem (116} or [113, Th. 7.1.9) there are two possibilities: 

G C P ^ (B) or P^ (B) is isolated in G. By Lemma 2, the first case 

is impossible. Similar arguments as in the end of the proof of Lem­

ma 2 show that P 6 (B)r\ G is finite. 

(ii) Now, we prove that ft e P̂ - (B)n G is of the finite mul­

tiplicity. .According to Corollary of Lemma 3, the multiplicity of 

% cannot exceed the multiplicity of e A te P^ (T(t)). For t> tQ 

we have 

|eAt,jfe(-nin(a,j-)*-)t> ce-t min(a,jr)2. F e ( T ( t ) ) 

-*\t 

This means that e ^ ^ e s s 1 ^ for sufficiently large t and the 

proof is complete. 
The last theorem has two important corollaries: 

Corollary 1 (asymptotic stability). Let the hypotheses (HI), 

(H2) be satisfied and let Re A < 0 for any solution to the charac­

teristic equation (4.3). Then 0 is an asymptotically stable solu­

tion to (£). Moreover, there is <f >• 0 and a constant c such that 

(4.10) II T(t)| * ce"*^. 

Proof. By assumptions and Theorem 2, A := sup Re P,~ (B)<0. 

This means that sup { I % I ; A «. P^ (T(t))} = e *t (Lemma 2). With 

respect to an estimate of a radius of an essential spectrum 
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(Proposition 2) there is </. > 0 and a constant c such that 

r(T(t)) •<£ ce This implies the result by standard arguments 

(see Lemma 7.4.2 in I6J). 

Corollary 2 (saddle-point property). Let the hypotheses (HI), 

(H2) be satisfied. Then there exists a decomposition Y = Y,® Y? 

such that 

(i) Y, has a finite dimension; 

(ii) Y,. Y2 are T(t)-invariant; 

(iii) the zero solution is asymptotically stable for 

T(t)/Y ; 
Y2 
(iv) Y, c 3)(B) and B/Y is a continuous linear operator ge-

1 Yl 
nerating a group which is an extension of T(t))/Y . 

Tl 

Proof. According to Theorem 2, the set &+ :=J&c ?& (B); 

Re & 2" 0$ is finite and for any ^ n ^ & the projector P(X ), 

which is given by (4.2), has a finite dimensional range N(A ,B). 

The projector P(A ) commutes with T(t) as well. If we set P = 

= 2L. P(A ) then P is a continuous projector onto Y, = fo N(A,B) 

with Ker P = Y2 and the spaces Y,, Y2 satisfy (i) - (iv). 
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