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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,2 (1986) 

APPROXIMATION OF IR* WITH COUNTABLE SUBSETS 
OF CJX) AND CALIBERS OF THE SPACE C « ) 

" \i U Tlf Arf*l IV P V. V. TKAČUK p 

Abstract: Suppose that X is a Tychonoff space and every f c 

e IR is an accumulation point for some countable AcC (X) . Then 
y (X) = co and x =cf(r ) > co implies f is a caliber of C (X ) . 

The main result of this paper : If a space X can be mapped conti
nuously and injectively onto a metrizable space, then every regu
lar uncountable cardinal is a caliber of C (X ) . An example of a 

P ,X space X is constructed for which (CD(X))C0 =/R but there exists 
no continuous injection f.X—>Y as soon as % (Y) = co . 

Key words: co-closure, caliber, Sanin property, pseudocha-
racter, pointwise convergence , countable approximation. 

Classification: 54A25, 54C40, 54D60 

All spaces are assumed to be Tychonoff. If X is a space, then 

T ( X ) is its topology, rT^CX) = CT(X) \ f0i and CT(x,X) is the fa

mily of all open neighbourhoods of the point xeX. By Y (C (X,Y)) 

is denoted the set of all (continuous) mappings from X to Y endow

ed with the topology of pointwise convergence. Let X be a space 

and AcX. The a>-closure ( A ) ^ of A in X is the set U{B:Bc A 

and |B| = co } where the bar denotes the closure in X. 

Let C (X) = C(X, IR) c IRX. It is well known that C (X) is 
P P P 
Y 

dense in IR . We are going to study the situation, when the <s> -
V 

closure of C (X) is equal to IR . It occurs, for example, when 

C (X) is separable (and hence so is IR ), or if X is discrete. In 

both cases the pseudocharacter of the space X is countable. Our 
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first observation is the following 

1. Proposition. If (C (X))^ = |RA then y(X) = o> . 

Proof. Take any x e Xd = CycX: -tyl 4. T(X)i. The function 

^ e |R X with ^ x (x) = 1 and q r ^ U M x l ) = -£01 can be approxi

mated by a sequence s - If :n c o> Jc C (X) i.e. Sfx e "s\s. Obser

ve that F = CM f^Xfn(x):n € o>} = ix}. In fact, if y e F\{xl then 

there is an n e o) such that f (y)-<"A, f (x)>-j and therefore 

f (y )=4» f (x) in contradiction with the definition of the set F. 

As F is a Gj'-set in X we have i f ( x , X ) = o> . Of course, the pseu-

docharacter of any x c X \ X is countable, so i fr(X) = co . 

It is not difficult to see that the countable pseudocharac-
-— y 

ter of a space X in no way implies (C (X))^ = IR . A.V. Arhan-

gel'skii and D.B. Sahmatov proved that there are even metrizable 

spaces in which it is impossible to approximate all real-valued 

functions by countable subsets of continuous functions. 

Recall that a cardinal r is a caliber of a space Z (notati

on x s Cal(Z)) if for every y c T*(l) with | y\ = f there is 

a subfamily y. c y such that H Yj 4- 0 and | y, \ = *t .A space 

Z is called Sanin space, or the space in which the Sanin conditi

on holds, iff every uncountable regular cardinal is a caliber of 

Z. 

2- Proposition. Let X be a space and (Y)^ = X. If X is a Sa

nin space, then so is Y. 

Proof. Take any x c 3"*(Y) s u c n t n a t I T I - ̂  = c f (t )>---* • 

Choose a family (U, e <T*(X), <u = {V y:U e x * a n d v u n Y = u f o r 

every U 6 -y • There is a subfamily ^t, c tu of power f with 

nonempty intersection. Pick an x e H |U. and a sequence 
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s = "*yn:n € w j approximating x. For every U e t̂c, there is a 

y(U)€ sAl). Therefore KU e (ti-̂ yCU) = yn}| = X for some n e o>. 

Hence the family f has the order x at the point y i.e. there 

are X elements of *f containing y . This completes our proof. 

3- Corollary. For every space X if (C (X))^ = IRX then 

C (X) is a Sanin space. 

*• Theorem. If X is a metrizable space, then C (X) is a 5a-

nin space. 

Proof. Let y c ^*(C (X)) and | >$ \ = X = cf (<r ) > &) . The 

family *t = -tt-Kxj , . . . ,xn; 01,...,0n) = -f f e C (X) :f (x^ e 0. , i = 

= 1, . . . ,nV .x. € X, 0. c 1ft are intervals with rational endpoints, 

i = l,...,n$ is a base of the space C (X). The elements of *£ will 

be called standard open sets of C (X). It is evident that we can 

assume that f c *i .It follows from X = cf (t ) > o> that there 

is an n 6 o)\{0j, rational nonempty intervals 0,,...,0 such 

that |{U € r : U = M(x", . . . ,xJJ; Op.,.,0 )*| = X . So it is suf

ficient to prove our theorem in case every element U €. T is "the 

set M(x5J,...,xJJ; O 1 , . . . , 0 n ) for some x ^ , . . . , x ^ e X . Let K(U) = 

= X|,,..,x . Fix a metric p on the space X generating CT(X). 

Using the A-lemma (see, e.g. CI, p. 12]) choose a subfamily 

t-> c j such that 

(1) I r j = * ; 
(2) there is a finite Kc X with K = K(U)nK(V) for every 

U,V € r1$ U*V; 

(3) tj>(K,K(U)N K) > of for some if > 0 and all U € ri • 

Let K -h 1,...,x kHit might happen that k = Oi.e.K = 0). 

It is possible to guarantee after renumerations of the sets K(U) 

and choosing y2 C fl with | T2I
 = * tha* every U c tf2 will equal 
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a set 

M(x1,...,xk,x^...,x^: 0 ^ . . . , 0 * , 0 * + 1 , . . . , 0 ^ m ) 

for some xfj1,. . .,xj^€X and m = n-k. Put L(U) = { xij1,. . . ,xjj { = K(U)\ K. 

It follows from (2) that L(U)nL(V) = 0 for different U,V e T2-

Let L t
2 = {x^U 4.y2l, iipi. Consider the set H = -f i e-fl, . . . ,mr: 

*2 

:s(L. ) < ti i . Since in metric spaces X and for our X every dis

crete subset B of cardinality x contains a closed in X subset Ac B 

of cardinality x , we can find X3 c T? of P o w e r f for which the 

following conditions are satisfied: 
T T 

(4) f (U-CL.?i€ Hf, U^Li?ic-Cl,...,ro1\Hi)>0; „ -_ 

(5) w(U-CLi?i€.Hl) -* X ; 
or 

(6) L. is closed and discrete in X for i e -fl, . . . ,m }\ H. 
Pick i, , . . . , i^ € «fl, . . . , mr such that H = -f i-, . .. ,i ? and consider 

the family of standard open sets -fWy = H(x,,...)xk,x. , . . . ,x. ; 

0*,...,d^,0*+i ,...,0*+."):U e r3f °f the space Cp(Y) where Y = 

= KuL. 3u ...uL.3 . We conclude from (5) that nw(C (Y)) = 
l l l& P 

* nwfY) < X , 121. Thus there is an f€ C (Y) and T 4 <- T3
 of P°wer 

_ _ 
x for which f e fHWy:U € j 4 J . The set K u Ull^-.p £ Z\ is C-em-

P 
bedded in X, so there is a g eC (X) such that g|Y = f and g(xV) € 
c 0i+j< for every i € -Cl, . . . ,m|\ H and U € x 4- Therefore geO-iU: 

:U € y.} and we are done. 

-̂ Corollary. If there is a one-to-one mapping f:X—> Y of 

a space X onto a metrizable space Y, then C (X) is a Sanin space. 

Proof . The d u a l mapping f * : C ( Y ) — > C
D ^ X ^ which takes an 

h € C (Y) to h * f e C (X) i s an embedding and f * ( C ( Y ) ) i s dense i n 
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C ( X ) . Now 5 follows from well known facts about calibers [ 2 J . 

6- Example. There exists a space X such that ( C - 0 0 ) ^ = 'R 

and there is no one-to-one continuous mapping of X onto a space 

of countable charac ter . 

Construction. Let r > 2 .We are going to construct a spa

ce X with the following properties: 

(7) X = U-C X. : i e *» ? where X. is closed and discrete in X; 

( 8 ) c (X ) = CO ; 

( 9 ) ( C p ( X ) ) ^ = IRA; 

(10 ) | X | > * : 

We shall need the following 

aX 7. Lemma. For any space X we have (C_(X ) ) % = IR iff 

( c p ( x ) ) w - . o , n * . 

Proof . We must prove on ly the " i f " p a r t of the lemma. Es ta 

b l i s h f i r s t t h a t the set C X i s c j -dense in IRX where 03 c IR i s 

the set of a l l r a t i o n a l numbers. . (For an a r b i t r a r y f e IR and 

m c &>\m l e t f (x) = £ iff £ &t (x) j£---ii, n c 2 , xcX. I t i s m m m m ' 
y 

c l e a r t h a t if :m 6 c~»NiO$ converges to f . ) Let us approximate 43 m 

w i th countable subsets of C ( X ) . Let Z = 4 z , f , + . . . + z f : z . e <Q, 

f i € i O , l 5 X J . I t i s ev iden t t h a t ( 7 ) ^ 3 <QX and in view of 

(C_ (X )^ o Z we have lRXc ( 1 5 X K c ( Z ) c ( C _ ( X ) K and the lemma 
P CO C*J Gt> p C-» 

is proved. 

Let <t = t and ^ n +i = 2 for n e <~> . Consider the spa-
xf_ 

ces IR , n 6 w . Denote by Z the discrete space of cardinality 
t r _ **•* n 

2 and fix a bisection P n:Z-—* IR , n e c-> . For every n € co let 
j :z —p. az be the natural embedding of Z_ into its Cech-Stone Jn n • n n 
compactif ication (3 Z . 

It follows from w ( (_Z_ ) = t _+, that there is an embedding 
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q : (3Z — > IR n . The diagram below might be of help in grasping 

the construction. 

£•—~~.R~-
< 

P- f JL-Í0 r-

• * 
Z . ___.*_.. Zг- - ^ . - . *-*Z 

Here h„ = q_, 
n ^n 

aпd g n -ñ ìx- 3_ so our diagram 

i s commutat ive . Fo r m<: n l e t ri = h_, , © . . . ° h : IR —> IR 
m n - 1 m 

L e t T o = Zo> X n + 1 = Zn+1N P n i l ^ P Zri^ f o r a 1 1 n 6 °> a n d 

X = t H X _ : n 6 <*>* . 

Fix a point xcX and k e ~o\-_0V Say that a set UcX belongs 

to the family B^ iff there exists a sequence S^ = -C< Ai ,VjL ,f .U^: 

:iZ n + k\ with the following properties: 

hn+k, 
"n+k * a nn Krn* 

(12) A.c IR*1, fjSC (IR*1, 10,13), fi|Ai- 1 ; 

(13) Vj = fi
1((o,U), vtn ^ i . l - 3i_1(Zi„1)\ A,) - 0 ; 

(14) Ai + 1 = hi(Vi), i_T n+k; 

(15) U. = pT^V^nX^ 

(16) U = h i - t'iU.:i_ n+k ?. 

The sequence S will be called corresponding to the set U. Let 

'3 - U{,fD :kc cJ\i0lj. The families VB being constructed for 

all xtX announce a set UcX open (i.e. Ue-T(X)) iff for every 

x*'U there is a V <s .&x with VcU. 

We can treat the topology T'lX) as satisfactory in case we 
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check the following three properties: 

I. For x,y € X, Ux c J3 , Uy e JR and zc U X A Uy there exists 
x y 

a Uz e %z such that Uzc U x n U y . 

II. (X, CT(X)) is a T -space, which is trivial. 

III. The small inductive dimension of (X,tT(X)) equals zero. 

I. Take n n n k k e ai with x e X y e Xn , z e Xn , 
k k x y z 

Ux € 3 x Uy € :B y and the sequences x y 

Sx =KAj.,vJ,fJ,uJ>:i>n x +k ) c} and 

S = 4< A^,vV,fY>uV> :i>n +k } corresponding to the sets 

Ux, Uy. Choose an arbitrary U c .B* and let SU = {< A. ,V±,f.,Ut> : 

:i> n + lj be its corresponding sequence. Put A? = A.r.Axr>AV, 

Vi = V i r > V i n V i ' fi = fi* fi , fi and Ui = U i A U i ° U i ' for i- n z * l' 
It is sufficient to prove that Uz = 4. z 1 u UiU?: i£-n + l § e £ * . 

Let us establish that S 2 = -{< A
z , Vz , fz ,UZ > :i>n z+ li will corres

pond to Uz. It is obvious that (11) and (12) are fulfilled. Of 

course V? = (f z) _ 1( (0,1}). Let x* £ Vzr, (q.^ " Ji-l(Zi-l):) • T h e n 

x*£A xr.AYnA. so the second part of (13) holds, too. It follows 

from Az
 + 1 = A . + 1 n A

x
 + 1 n A

y
 + 1 = h.(V. ) n h.(Vx) o ht(V

y) = h ^ n 

n V x n v Y ) = hi(V
z) that (14) takes place as well. The property (15) 

is fulfilled. Thus, we finished with I. 

III. Take a U x£ 35 and its corresponding sequence S = 

= *< Ax Vx fx Ux> :i? n +kv} where x c- Xn and k v r 1. We may additi-

onally assume (taking a smaller element of .'B if necessary) that 

for our S the following condition is satisfied: 
ri 

(17) for every i>n x+k x there is a gjiC ( IR ,[0,1]) with 

g-|Vx s 0, Oitqi.i^ 3i_l ( Zi-l ) x Ai s- 1. Suppose that ye X m\ U
x. 

Pick an n e w such that n >max -f m,n +k ] . Let Ay , = 
' x xJ n+1 

= \hn + 1(p ( y ) ) V It is clear that Ax r. Ay , = 0. If the sets AY m m ' n+i n+i l 
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for n+l^i^k and v][, fY for n+l^i<k are chosen so that (12)-(14) 

and 

(18) A*nA][ = 0 for n+l^i^k, 

(19) V*n vY = 0 for n+1* i* k 

take place, let V* = (gk)
_1((0,13), f* = g£ and Ay

+1 = hk(v}(). 

Now it follows from (17) that (18)-(19) hold if we replace k by 

k+1. 

Once the sets AY, VY, fy are constructed for all i>n+l, let 

Ui = p i 1 ( V i ) n Xi' i2> n + 1' T h e s e t uV = *y* u u*U][:i.2*n+l} is a 

member of ft , having 4<AY,vY,fY,uY> .ii-n+l? as its corresponding 

sequence. It follows from (19) that Uyn Ux = 0, so Ux is closed 

in X and ind X = 0. 

We now turn to prove that c(X) = &-> . If on the contrary the

re is an uncountable disjoint family ~y, c ^'(X) then there exist 

different points x^ , oc < eJ. belonging to X for some n c co and 

k£l such that there are U* c &* with U*n Uĵ  = 0 for /3 #- oc . 
^ TV 

But then the family <y = 4pk(Uk): oc < o>^\ c T*( IR ) and X is dis-
ck joint in contradiction with c( IR ) = o-» . Hence c(X) = co . 

Let us prove that (Cn(X))a) = IR . It is sufficient by Lemma 
P 

7 to show that (C (X))u 3-C0,l! . Take any AcX. We must approxi

mate the function ;r. (Jl*(A) = ill, ^.*(X\A) =-f0}) with a coun

table subset ScC (X). Let An = (XQu . . . u XR) n A. Show that there 

is an f ncC (X) with f j (XQ u . . . ^XR) = * A . Let A* = A ^ X . and 

An + 1 = U<h n + 1(p i(A
1)):0^i^n}, Bn+1 = U-L hJ+1(p.(XA A1) ) :0 4 i & 

£ nr.Then A n + 1n B n + 1 = 0 and there exists a 9 n + 1^C (IR
 n+1,C0,13) 

such that gn+1lA
n+1 s 1, 9 n + 1lB

n + 1~ 0. Let Vn+1 = gn
1
1((l/2,13). 

i i i ^ i 

If the sets Ax, B , Vx and functions gi& C ( ?R ,C0,11) are const

ructed fo^n+l=ii^k so that V1 = g^X((l/2,1]), V ^ B1 = 0. Let 
AK + 1 = hk(V

K), B**1 = hk( IR
 K)\A K + 1. Také any 9k + 1 c C ( IR

 K+1,[0,13) 
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with 9 k + 1lA
k + 1 £ 1, 9 k + 1lB

k + 1 ==" 0 and put V k + 1 = g " ^ (1/2 ,13 ) . 

Once the sequence -f< A1 ,Vl ,g.> :i>-n+li is constructed let U1 = 

= p^(V1)nX. and U = A u U-tU1: i? n+1?. By the same reasoning as 

in III one can prove that U is clopen in X so \«j€C (X) and 

^ly|(X0u . . . ^ X n ) = X A • L e t fn = ^ U a n d c n e c k t n a t S = ^ f
n
: 

:n e a} approximates ^ A . In fact, if Kc X is finite, there is an 

n £ CJ with Kc X Qu . . . u XR. Then f n 1K = X ^ lK = * A ' K a n d a 1 1 p r o" 
n 

perties of our space are established. 

Take any space Y for which there exists a continuous mapping 

f:X - £ ^ Y . If ^(Y) = o> , then | Y | * 2 ^ ( Y ) * c ( Y ) = 2 *\ So f is 

not infective in view of x ;> 2 

8- Example. There is a space X with y(X) .> cJ and X G 

€ CaKC (X)) for every x = cf ( X ) > <v . 

Proof. Take a set A of power A = co^ and a £ A. Let X = 

= -(ami.u A. As to T(X) it will contain all points of A and 

^(a^.X) = -U a^} KJ U:Uc A, |A\ U| <r u\ } . For an arbitrary x = 

= c f ( t r ) ^ ^ we have t; > A 2 nw(C (X)) so x e CaKC (X)). If 

X < A and y= ^U^ : oo <: x} is a family of standard open sets of 

C (X) we may assume that there is an n € O.\N-LOJ and rational in

tervals 01,...,0p such that U^ = M(x*, ...x*; 01,...,0n) for all 

oo < x . Let K^ = 4xJ°, . . . ,x^J and H = U\ K^ : ot * x I . It is clear 

that H is closed, discrete and C-embedded in X. As IR is a Sanin 

space, there exists an f e <R such that f ( x p e O . for >JC ^ x and 

ic-Cl,...,nl. Then f fc f U U ^ : oc < o>] for any f e C (X) with f |H = 

= f, and this proves that x € CaKC (X)). 

9- Remark. Reasoning as in 6 (when proving c(X) -co) one 

can prove that the space X from the example 8 is a Sanin space. 

It follows from (7) that X has a Gj'-diagonal. Thus we have another 
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answer to 3. Ginsburg and R.G. Woods' question [4]. The space X, 

be irifj Sanin space, yields a generalization of the result of D.B. 

Sahmatov [J],[5]. Sahmatov's example was originally the first ans

wer to the question in 14J. 
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