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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,2 (1986)

APPROXIMATION OF IR* WITH COUNTABLE SUBSETS
OF C,(X) AND CALIBERS OF THE SPACE C_(X)
V. V. TKACUK s

Abstract: Suppose that X is a Tychonoff space and every f e
3 mx is an accumulation point for some countable Ac C_(X). Then
v (X) = w and v=cf(v) > w implies ¥ is a caliber of Cp(X)‘

The main result of this paper : If a space X can be mapped conti-
nuously and injectively onto a metrizable space, then every regu-
lar uncountable cardinal is a caliber of C_(X). An example of a

space X is constructed for which (Cp(X)hu = RX but there exists
no continuous injection f:X-—>Y as soon as x (Y) = w

Key words: w -closure, caliber, Sanin property, pseudocha-
racteT, pointwise convergence , countable approximation.

Classification: 54A25, 54C40, 54D60

All spaces are assumed to be Tychonoff. If X is a space, then
J°(X) is its topology, T*(X) = F(X)N{#} and T (x,X) is the fa-
mily of all open neighbourhondé of the point xe€ X. By YX(CD(X,Y))
is denoted the set of all (continuous) mappings from X to Y endow-
ed with the topology of pointwise convergence. Let X be a space
and Ac X. The c-closure (A),, of A in X is the set U{B:Bc A
and |[B] = w3} where the bar denotes the closure in X.

Let € (X) = C (X, R) c IR, Tt is well known that C,(X) is
dense in IRX. We are going to study the situation, when the @ -
closure of Cp(X) is equal to IRX. It occurs, for example, when
CD(X) is separable (and hence so is IRX), or if X is discrete. In

both cases the pseudocharacter of the space X is countable. Our
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first observation is the following

X

1. Proposition. 1If (Cp(X))a,= R™ then w(X) = w

Proof. Take any xexd = fyex: {yt ¢ T(X)3. The function
Ax € RX with o, (x) = 1 and %x(X\{xi) = {0} can be approxi-
mated by a sequence s = {tn:n € wic Cp(X) ie. o€ s\s. Obser-
ve that F = ﬂ{f;llfn(x):ne w? ={x}. In fact, if ye F\N{x? then
there is an n € @ such that fn(y)<-%,‘fn(x)>-% and therefore
£ (y)=£ (x) in contradiction with the definition of the set F.
As F is a Gy-set in X we have y (x,X) = « . Of course, the pseu-

docharacter of any xe€ X\ x9 is countable, so ¢y (X) = @

It is not difficult to see that the countable pseudocharac-

ter of a space X in no way implies (Cp(X))a, = lRX.

A.V. Arhan-
gel “skii and D.B. Sahmatov proved that there are even metrizable
spaces in which it is impossible to approximate all real-valued
functions by countable subsets of continuous functions.

Recall that a cardinal © is a caliber of a space Z (notati-

on v e Cal(Z)) if for every ~ c T%(Z) with || = v there is

a subfamily 7y, ¢ 7y such that Ny =+ Band | | = ¥ . A space
7 is called Sanin space, or the space in which the 3anin conditi-
on holds, iff every uncountable regular cardinal is a caliber of

Z.

2. Proposition. Let X be a space and (73&, = X. If X is a Sa-

nin space, then so is Y.

Proof. Take any c J*(Y) such that || =% = ¢ f(2z)> ®.
Choose a family we *(X), m=4V THLUEC r ¥ and Vyny = U for
every U ¢ 7 . There is a subfamily My € @ of power 7 with

nonempty intersection. Pick an x €N ﬁtl and a sequence
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s = 4yn':n e wl approximating x. For every U € My there is a
y(U)e sny. Therefore |{U e @y = yn}i = v for some ne w.
Hence the family 9 has the order ¥ at the point Ya i.e. there

are T elements of 7 containing Yo This completes our proof.

X

3. Corollary. For every space X if (Cp(X))w = IR" then

Cp(X) is a Sanin space.

4. Theorem. If X is a metrizable space, then Cp(X) is a Sa-

nin space.

Proof. Let y e F*(C (X)) and |l =7 =ct(x) > @ . The
family ¢ = Mg, eeeyxps 0p,00.,00) = Jte Cp(X):f(xi)e 0;, 1=
= 1,...,n}:xie X, Uic IR are intervals with rational endpoints,
i=1,...,n% is a base of the space Cp(X). The elements of € will
be called standard open sets of Cp(X). It is evident that we can
assume that o < ¢ . It follows from T = cf(r ) > @ that there
is an n € w \ {03, rational nonempty intervals 01""’0n such
that [{U e 7 : U= MG, xD5 0,,...,003] = = . So it is suf-
ficient to prove our theorem in case every element U ¢ 3 is the

U U 1] U
set M(xp,...,x05 04,...,0) for some xi,...,x eX. Let K(U) =

x&j,...,xg . Fix a metric P on the space X generating J°(X).

Using the A-lemma (see, e.g. [1, p. 12]) choose a subfamily
£, € 7 such that

MW oyl ==

(2) there is a finite Kc X with K = K(U)nK(V) for every
U)v € Tl' U*V;

(3)  @(K,K(U)NK) > " for some 4" > 0 and all Ue ;.

Let K =§x1,...,x Y (it might happen that k = 0 i.e. K = #).
It is possible to guarantee after renumerstions of the sets K(U)

and choosing 72C 7 with |'B“'2| = x that every U e ’f2 will equal
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a set

U U ¥ K X *
M(xl,...,xk,xl,...,xm: 01""’Uk’0k+1""’0k+m)

for some x?,...,xge X and m = n-k. Put L(U) = {x?,...,xg }= KU\ K.
It follows from (2) that L(U)nL(V) = @ for different U,V e 7.

7
tet 1,2 = {x}:U ¢ 7,3, i2p. Consider the set H = {ie{l,...,m}:

7
:s(Liz) < v t. Since in metric spaces X and for our ¥ every dis-
crete subset B of cardinality «# contains a closed in X subset AcC B
of cardinality « , we can find ¥3C ¥ of power 7 for which the
following conditions are satisfied:
% 3
(4) @ (Uil fiend, UlLFiedl, ... ,mINHD >0;
D O
(5) wUiLFieHD < 7 ;

%
(6) Li3is closed and discrete in X for ie{1,...,m}\ H.

Pick i;,...,i5€ {1,..., m? such that H = {il,...,;e} and consider
the family of standard open sets {wu = M(xl,...,xk,xgt,...,x2£ ;
01""’DE’D:+ir""’0z*H?:U e 75} of the space Cp(Y) where Y =

= KLILi;U ...L’Li; . We conclude from (5) that nw(Cp(Y)) =

"

nw(Y¥) < ¥ , [2]. Thus there is an fe Cp(Y) and 7, ¢ 73 of power

————
% for which f&NiWj:Ue 7, . The set KuU4L,”:p < £} is C-en-
p

bedded in X, so there is a ge Cp(X) such that g|Y = £ and g(xg) €
€ 0:+k for every ie{l,...,miNH and U € 7,. Therefore g eNfu:

:U € y,} and we are done.

5. Corollary. If there is a one-to-one mapping f:X—> Y of

a space X onto a metrizable space Y, then Cp(X) is a Sanin space.

Proof. The dual mapping f*:Cp(Y)~—>Cp(X) which takes an
he Cp(Y) to he fe Cp(X) is an embedding and t’(Cp(Y)) is dense in
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Cp(X). Now 5 follows from well known facts about calibers [2].

6. Example. There exists a space X such that (Cp(X))a)= 1RX

and there is no one-to-one continuous mapping of X onto a space

of countable character.

Construction. Let v > 2% . We are going to construct a spa-
ce X with the following properties:

$7) X = L'{Xi:i € w? where Xi is closed and discrete in X;

(8) c(X) = w ;

(9 TC0M,, = RS

(10) x| = =

We shall need the following

7. Lemma. For any space X we have (Cp(X)%a = RX iff

T a3} X
(c, 00, 2 10,13%.

Proof. We must prove only the "if" part of the lemma. Esta-
blish first that the set QX is w-dense in IRX where Q < R is
the set of all rational numbers.. (For an arbitrary f e IRX and

h

me @\0d let £ (x) = Darr Der0e®l ez, xex. It is

clear that {fm:m € w\{0} converges to f.) Let us approximate OX

with countable subsets of Cp(X). Let Z = {zlf1 oo+ z fiz0€ Q,
t,€40,13%F. It is evident that (2),, > @ and in view of
(€, (X)), > Z we have RX e (’@X)w c@, ¢ (€ (X)), and the lemma

is proved.
Ztn
Let T, =T and They = 2 for n € «@ . Consider the spa-
v
ces IR ", n e @ . Denote by Zn the discrete space of cardinality
T
2 " and fix a bijection pn:Zn-le n, new ., For every n¢ w let

ip:l,—> (7, be the natural embedding of Z_  into its Cech-Stone
compactification @7 .
It follows from w(fZ ) = = n+1 that there is an embedding
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[
Q,: @Zn —> R n+1. The diagram below might be of help.in grasping
the construction.

P’ ' Zo rg. r,., Z h PM-!-

I Vs n Yo
Z ————— ’-‘---»Za—- --vZ;t--.—-f'L-»Z

nea """

: -1 -1 : .
Here hn =a,<3, P, and 8, ° Ppy1° 9, J, so our diagram

: : no_
is commutative. For m<n let hy = h_ _;*

Let T, = Z,, X

= U : }
X \.{Xn.néw .

T T
cehpt IR m_> 1R "

-1
nel = Zpat® pml(qn(ﬁzﬁ)) for all ne <« and

Fix a point X € X and k ¢ @w\140%. Say that a set UcX belongs
to the family .13: iff there exists a sequence Sg = 4< Ai,vi,fiui):
:iZn + k¥ with the following properties:

an A, = AnKG (03

.| L1
(12) Ajc R, fie Cp(lR , [0,11), filAizs 1
-1 .
(13) vy = £770C0,10), Vyn ey e 35 (2 P\R) = 8

(18) Ay = hy(V)), 3T nek;

?

.-l .
(15) Uy = P (VA Xy
(16) U

= {x} v UtUi:iz n+k?.

The sequence Sg will be called corresponding to the set U. Let
B

x = \,‘{.f:‘»t:ke w \N410}%. The families ‘Bx being constructed for

all x& X announce a set Uc X open (i.e. U e F(X)) 1iff for every

x< U there is a V ¢ fﬁx with Vo u.

We can treat the topology 7’(X) as satisfactory in case we



check the following three properties:

I. For x,ycX, X e ‘Bx’ e ‘By and ze U~ UY there exists
a U¥e B, such that U%c U*n UY.

II. (X, (X)) is a To—space, which is trivial.

III. The small inductive dimension of (X, °(X)) equals zero.

I. Take NNy n kz,ky € w with xe Xr| , YE€E Xn , Z€ Xn ,

X y z

y’'z’

k k
v e BXX, we %yy and the sequences
X .
S, = <ALV, £],U] > siz n +k,} and
S =-{<A¥,V¥,f{,U{> :i2 ny+ky} corresponding to the sets

s uY. Choose an arbitrary U e:ﬂl and let Sg =-{<Ai,Vi,fi,Ui> :

z
iz n,+ 1} be its corresponding sequence. Put Ai = Ain A;/\A¥,

z _ X uY  fZ o oo L eX. pY z _ X Y

V.1 = Vin Vitwvi, fi = f.1 f.1 fi and Ui Uiﬁ Uieri, for i> n,+ 1.
It is sufficient to prove that U% = {z?% u(JiufziZ'nz+ 13 e 3;.
Let us establish that S, =4{< A;,Vi,fi,Uf) i1z« 1§ will corres-
pond to U%. It is obvious that (11) and (12) are fulfilled. Of

z _ zy-1 x - yZ .

course Vi = (£7)77((0,1)). Let x*e Vin(a;_ye3;_1(Z;_1)). Then
x* < A?(\A{r\Ai so the second part of (13) holds, too. It follows

z _ X y
from A = A f\Ai+ln Al

i+l i+l
n vfr\V{) = hi(Vi) that (14) takes place as well. The property (15)

_ . X Yy =
i+l = hi(Vi)()hi(Vi)(whi(Vi) = hi(vir\
is fulfilled. Thus, we finished with I.
III. Take a UXe 3x and its corresponding sequence Sx =

=£<AL VL BT, UT> iz ok b where x ¢ X and k, Z 1. We may additi-
X

onally assume (taking a smaller element of fﬁx if necessary) that
for our SX the following condition is satisfied:
7
(17) for every iz n +k  there is a g} ¢ C,C IR 110,11) with
. X

g?lvg'z 0, g;|q1—1° 3@ N A; = 1. Suppose that ye X ~\U".

. ) y -
Pick an n & ©w such that n>max {m,nx+kx;. Let An+1 =

_ n+1 p s X y _ y
= ih (pm(y))r. It is clear that An+1r‘An+1 = @. If the sets A
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for n+l<£ i<k and V{, f{ for n+1£ i<k are chosen so that (12)-(14)

and

(18) AYnA) = @ for n+l£isk,

(19) VIf‘V¥ = @ for n+lgi<k
take place, let V) = (g)71((0,13), 1) = g and AY,, = h (V).
Now it follows from (17) that (18)-(19) hold if we replace k by
k+1.

Once the sets A{,
v = p (VN Xy, 1z nel. The set WY = £y} u U{U):iznel} is a

V{, f{ are constructed for all i n+l, let

member of :By, having 4<A¥,V¥,f¥,ug> :i2 n+1}¥ as its corresponding
sequence. It follows from (19) that UYn U* = @, so U* is closed

in X and ind X = 0.

We now turn to prove that c(X) = @ . If on the contrary the-
re is an uncountable disjoint family 7 < J*(X) then there exist
different points x_, , < < aﬁ.belonging to Xn for some n e w and

kZ1 such that there are U¥c BX with U Ul = ¢ for B +
oG

But then the family = ‘fpk(u‘f): x < wll <T*(R k) and 7y is dis-
w

joint in contradiction with c( IR k) = @ . Hence c(X) = @

Let us prove that (C (X)), = RX. It is sufficient by Lemna

7 to show that (Cp(X))Q > {U,llx. Take any Ac X. We must approxi-

mate the function 7, (2 ,(A) = {1}, x,(X\A) = 103) with a coun-

table subset Sc Cp(X). Let A, =_(X0(J.. .L‘Xn)f\A. Show that there
- _ i,

is an rnccp(x) um.a fnl(Xou... uX,) = ngn. Let AL = A oX; and

AL UARI o by ioci2nt, 8™ S GARTTp (xph Al 0 <

. T
2 nt.Then AM1AB"L © g and there exists a 9p,1 € CoCIR n+l t0,13)

n+l

such that g 1aA" 1 =1, g 18" = 0. tet V™! = g7! c1/2,10).

i i

. v
If the sets AY, B, v! 'and functions g;€ Cp(!R i,[O,l]) are const-

ructed for_n+l= i< k so that vie gil((l/z,ll), vinel - g, Let

k ky gk K ¥
AL h (9, B s RO AL Take any gy, e e (R KT T0,10)
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k+1 1

: k+1l _ - k+l _ -1 .
with gk*1|A =1, gB+1iB = 0 and put V = gk+1((1/2,1J).
Once the sequence {(Al,vl,gi> :i> n+1} is constructed let U' =
= p{%Vi)n.Xi and U = An\;L}{Ui:iz n+1?. By the same reasoning as
in III one can prove that U is clopen in X so 1y€ Cp(X) and
mul(xou...uxn) = XAn. Let £ = % and check that § = if :

:n & w} approximates 7 ,. In fact, if Kc X is finite, there is an
new with KeX u...uoX_ . Then ntK = xAnix =>£A|»< and all pro-
perties of our space are established.

Take any space Y for which there exists a continuous mapping
£:x 2000 v 15 4 () =@ , then |v|=2(Y)e(Y) L pe gh 4 g

3 N N 3 o
not injective in view of v > 27 .

8. Example. There is a space X with y(X) > ¢ and 7 €

€ Cal(Cp(X)) for every ¥ = cf(7) > @

Proof. Take a set A of power A= Doy, and a, ¢ A. Let X =
={a,}JuA. As to J(X) it will contain all points of A and
T(a,,X) =4{a,} v U:UcA,|ANU|< A} . For an arbitrary T =
=cf(T)>A we have v > A Z nw(Cp(X)) S0 T e Cal(Cp(X)). If
T <A and ¥=4{U_ :o <} is a family of standard open sets of

Cp(X) we may assume that there is an n e «w~N10} and rational in-

tervals 0;,...,0 such that Uy = M(x"f,...x"rf"; 0y,..-,0,) for all
~ < v . Let sz-(x‘f’,...,x;"} and H = U4K, : x < ©f. It is clear

that H is closed, discrete and C-embedded in X. As IRH is a $Sanin

H and

In -

space, there exists an f ¢ IR" such that f(x?)e 0; for x <

T
~
f

iedl,...,nt. Then TeNLU_ : x <} for any fe Cy(X) with

= f, and this proves that v e Cal(Cp(X)).

9. Remark. Reasoning as in é (when proving c(X) = e« ) one
can prove that the space X from the example B8 is a Sanin space.

It follows from (7) that X has a Gy-diagonal. Thus we have another
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answer to J. Ginsburg and R.G. Woods question [4]. The space X,
benq Sanin space, yields a generalization of the result of D.B.
Sahmatov [31,{5). Sahmatov’s example was originally the first ans-

wer to the guestion in L&),
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