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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,2 (1986) 

A NOTE ON NONUNIFORM NONRESONANCE 
FOR JUMPING NONLINEARITIES 

Sergio INVERNIZZI 

Abstract: We prove some lemmas as technical bases for existence results 

for nonlinear noncoercive problems with jumping nonlinearities and nonuniform 

nonresonance conditions. 

Key words: jumping nonlinearities, nonuniform nonresonance, BVP's for ODE's . 

Classification: 34 B 15, 34 C 25, 47 H 12. 

0. We consider a positively homogeneous scalar real ODE: 

u" + g (t)u+ - g_(t)u~ = 0, (1) 

a.e. on an interval [o,TJ, T > 0, where "=d/dt, u~ = max(±u, 0), and where g 

are measurable mappings from [o,Tj into the real line JR. Equ.(l) is one of the 

simplest examples of an ODE with jumping nonlinearity. We recall Fucik's clas

sical book [4] as main reference for nonlinear noncoercive problems with jumping 

nonlinearities. See Drabek [2] for a survey of recent results in this field. 

We confine here our attention to (1) because, in the framework of the so-called 

nonlinear Fredholm alternative, the problem of the existence of solutions for the 

periodic BVP on [O,T] for an ODE like 

u" + cu' + f(t,u) = h(t), (2) 

where f is jumping (in the sense that there are measurable functions a , a , 8 , 

B such that the inequalities 

a (t) £ liminf f(t,u)/u £ limsup f(t,u)/u £ B (t) (3) 
± u -*• ±qD u -*• ±°° -

hold uniformly a.e. on [O,T]), can be reduced by degree arguments to the unique

ness of the trivial solution of (1) joint with the following boundary conditions: 

u(0) = u(T) = 0, sign u* (0) = sign u'(T). (4) 

See Dancer [l] for a particular case; see Drabek and the author [3J for a more 

general one. In the last mentioned paper the authors prove the uniqueness for 

(l)-(4) assuming that the range of the map g = (g ,g ) : [O,T] ->• K 2 is contained 

into some compact subset having empty intersection with a closed set A 
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This set A is the set of all pairs (u,v) SUCh that the problem u
M+uu -vu =0, 

joint with boundary conditions (4), has nontrivial solutions: it can be comple

tely described; see [4], or [3]. Thus the main result of [3] is based on a 

uniform nonresonance condition. 

Therefore, the recent successful application of nonresonance conditions of 

nonuniform type (Mawhin and Ward [5-6], Mawhin [7],..) to existence problems for 

BVP's, suggests the study of (l)-{4) allowing, in a controlled way, nonempty in

tersection of the range of g with A . We give our pertinent result in Sect.l. 

In Sect.2. we exemplify the possible applications of the preceding results con

sidering- the periodic BVP for equation uM + f(t,u) = h(t) on [O,T]. However, 

it is possible to give existence results, using the same methods, for the perio

dic BVP for (2), and for some BVP's for suitable PDE's, as the periodic-Dirichlet 

problem for the telegraph equation, as well. We will not discuss here in de

tails these further applications. 

Acknowledgement. This paper was written during a stay at the International 
School for Advanced Studies, in Trieste, and it was presented at the 6th Czecho
slovak Conference on Differential Equations and their Applications 'Equadiff 6', 
held at the J.E. Purkyne University, Brno, August 26-30, 1985. The author is 
grateful to both Institutions for their pleasant hospitality. 

1. Let m be the Lebesgue measure on the real line K . Let K and H £_ K be 
N r «i N 

closed subsets of I* , and let g:L0,Tj *• » be a measurable map. We shall write 

g(t) e K * H on [O,T] 

when: (*) g(t) e K a.e. on [O,T], but there is a subset J of [O,T] with m(J) > 0 

such that g(t) 6 K \ H for every t 6 j. It is important to remark that condi

tion (*) imply that an inequality dist(g(t),H) £ e holds true for some £ > 0 

and for all t in a subset of J having positive measure too. In fact, (*) im

plies J = (t € j| dist(g(t),H) £ 1/nl * J ; the continuity of m from below gi-

n 
ves m(J ) > 0 for sufficiently large n. In the sequel, for short, I = [O,T]. 

n 

The condition (*) with N--1 was first introduced in the study of BVP's for 

differential equations by Mawhin and Ward [5-6]. See also Mawhin [7] . In these 

cases a typical choice for K is a compact interval [x ,X 1, or a closed half-

line {-«,X ], where X < X < ... are the distinct eigenvalues of a linear pro

blem associated to the considered BVP, and H is the boundary 3K of K. Assuming 

the terminology of these authors, we will call (*) a nonuniform nonresonance con-
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dition. We will apply a condition of this type to a case where N»2. Let us 

consider the BVP (l)-(4). We introduce a 'singular set' A (corresponding to 

the spectrum {X , X , ...} in the 1-dimensional case), defined as the union of a 

sequence {c , C , ...} of curves, where, for any k _ 1, 

C, = {(u,v) G » 2|uv>0, 2*/jj/v/(»/i7+»/v) - k(2ir/T)}. 
k 

Then we introduce the set K, closed and with nonempty interior, of three possi

bly different types: the product of two compact intervals, of a compact interval 

and a closed half-line, of two closed half lines. We fix the position of K in 

JR 2 in such a way it intersects A only at some of its vertexes. We define H 

as the set of all boundary points of K having at least one coordinate in common 

with some of these vertexes. Then we prove that the condition g(t) e K ̂  H on I 

(provided g is integrable) implies that (l)-(4) admits only the trivial solution. 

We will cons.i der separately each possible form of K in the following lemmas . 

Lemma 1. Let R - fr ,s 1 x Tr ,s 1, r < s , ( r , r ) e c , ( s , s ) < = C , «-++-» - _ _ < - + ± + _ fc + - k+1 

for some fixed k _ 1. Let g=(g ,g ) be a measurable map I -+]R2 such that 

g(t) G R -v 3R on I. 

Then the BVP 
+ 

u" + g (t)u - g (t)u = 0 a.e. on I, 

u(0) = u(T) = 0, sign u'(0) • sign u'(T), 

admits only the trivial solution. 

Proof. Let u be a possible nontrivial solution. Then (by Uniqueness) u va

nishes only at a finite number of points. Let I (i*l,...,P) (resp. I 

(i=l,...,M)) be all the different connected components (open intervals) - if any 

- of the subset of I where u > 0 (resp. u < 0). Then the boundary conditions im

ply P=M. We claim that the 2P relations 

Tr//s~ _ m(I(i)) _ w//F (i=l,...,P) (5) 

+ . + + 

ir//T _ m(I(l)) _ 1.//T (i*l,...,P) (6) 

hold, and that there are strict inequality signs in at least one of them (more 

precisely in any relation corresponding to an interval t having intersection 

of positive measure with a subset of I where dist(g(t),3R) - e > 0 holds). This 

is sufficient to get a contradiction. Namely, adding (5) and (6) and taking in

to account of the strict inequality signs in at least one relation, we get 
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P(тт//s" + тr//ś" ) < T < P(тí//ř~ + т r / / r " ) . 

But t h e d e f i n i t i o n of C and C , g ives 
k k+1 

k(ir//s" + TT//S~) « T = (k+l)( i r//r " + w / / r " ) . 

Thus we deduce P > k and P < k+1. 

To prove the claim we consider only the inequality m(I ) - n//r for some va-

+ + 

lue of i, since the remaining inequalities can be proved in the same way. Sup

pose I - _
a
'

b
[ »

 s o
 that m(I ) = b-a * p. Assume p > Tr//r~, i.e. 

* 2
 + + 

r > (TT/P) . Define the sphere 

I - (we wj'
2
(a,b;») | J^|W|

2
 = ->, 

and let w* be a non-negative eigenfunction for the Picard problem 

2 
w" + (rr/p) w = 0, w(a) - w(b) = 0. 

We can assume that for all t in a set J with m(J) > 0 the inequalities 

r
+
 + e _ g

+
(t) _ s

+
 - E (7) 

hold with some e > 0. To simplify the notations, let A = ]a,b[ fi J, 

B =]a,b[ \ J. The minimum principle for eigenvalues implies that 

1 * sup I g |w| _ / g |w*| = / g | w * | + / g l w * | 
_ a + a + A + B + 

weE 

S J (r • e ) | w M 2 • J r | w * | 2 - I " r | v . | 2 • e j > * | 2 

A + B + a + A 

> / (tr/P) |w*| + e/ |w*| - 1 + e/Jw*| 2 , 
a A A 

2 
a contradiction, even if ra(A) = 0. Ifr = (TT/P) , we get a contradiction as 

soon as m(A) > 0. 

In a similar manner one can prove the following 
2 

Lemma 2. Let R « (-»,s ] x (-»,s ], with (s ,s ) e C . If g: I + B is 

integrable and g(t) - R'V'SR on I, then the conclusion of Lemma A holds. 

One easily realizes that the nonresonance condition considered in Lemma 1 

(resp. in Lemma 2) corresponds to a situation 'between two consecutive eigenva

lues' (res?, "on the left of the spectrum
1
) for the case N=l. Here, being N > 1, 

2 
a slightly different situation can occur. Let (u,v) be the generic point in JR . 

2 2 
Each C (k i 1) intersect the asymptotes u *a , v =a (a * (k+i)ir/T for 

J* ^ _ _
 A

 J> ** x K. •* A |C>" x 
2 2 2 2 2 2 

short) of C, „ at points (k a .a ), (a, , k a, ). Let us consider the ca-
k+1 k+1 k+1 k+1 k+1 

se u > v only (for u < v we have symmetric results). Let (r ,r ) be any point 
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fit 2 2 
in c with 1 coordinate so large that r > k a . Then the unbounded strip 

k + k+1 

S = Tr , +00) x Tr ,a 1 intersects the singular set A only at (r ,r ). Mo-

reover, let 9 S be the set of all boundary points of S having at least one co

ordinate in common with (r ,r ), i.e. let 
8 S * ({r } x [r ,a J ) U ([r ,+«) * {r }). 
1 + w - k+1 + 

We have the following 

Lemma 3. Let (r ,r ), S, 3 S be given as above. If g: I "+ K is integra-

ble and g(t) e s ̂  3 S on I, then the conclusion of Lemma 1 holds. 

Proof. Let u be a possible nontrivial solution to (l)-(4). Following the 

proof of Lemma 1 we get the inequalities 

T/(k+l) = TT/a 4 <. ro(I
(i>) S TT/VT (i=l,...,P), 

k+1 

m(I(i)) £ TT/ZT (i=l,...,P), 

where a strict inequality sign holds at the right hand side in at least one case. 

Therefore we get P > k £ 1, i.e. P >. 2. But evaluating the measure of the 

subset of I where u is negative we obtain 

m{ u < 0 }= I m(I(i)) >= I T/(k+l) 

i=l,P " i=l,P 

> I T/(k+l) = T, 
i=l,k+l 

i.e. u is negative a.e., and so P=l, a contradiction. 

2. To illustrate the results of Sect. 1., we consider the periodic BVP 

u" + f(t,u) - h(t) a.e. on I, (8) 

u(0) = u(T), u' (0) = u»(T). (9) 

The right-hand side h in (8) is arbitrary in L (I; II). The map f: I x 1R •+• -R sa

tisfies the usual Carath^odory conditions, and has linear growth, i.e. we have 

|f(t,u)| < A(t) + B|U| a.e. on I with Ae L (!;») and B £ 0. We assume that 

there are measurable mappings a , a , 0 , 0 : I •+ H such that, a.e. on I, 

a (t) S liminf f(t,u)/u $ limsup f(t,u)/u $ 0 (t). 
- u-»-±00 u^-t00 -

Theorem 1. Suppose that there are real numbers r < s , r < s such that 

r $ a (t) and 3 (t) S s a.e. on I with strict inequality signs for t in a sub

set of positive measure . Assume either (i) (r ,r ) € c and (s ,s ) 6 c m for 
+ - k + - k+1 

a fixed k £ 1, or (ii) r 2 0 and (s ,s ) e c , or (iii) s. £ 0. 
± + - 1 ± 

Then the BVP (8)-(9) has a solution. 
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Theorem 2. Suppose that there are real numbers r > k (k+1) TT /T , and r 

such that r £ a (t) a.e. on I with strict inequality signs for t in a subset 

k £ 1, that (r ,r ) e c . Then, provided a and & are integrable, the BVP 
+ - k ± ± 

(8)-(9) has a solution. 

We will only outline the proof of Theorem 1. The proof of Theorem 2 is si

milar. To prove Theorem 1. we follow the argument in [3J. Let R be the rectan

gle [r ,s ] x [r ,s ], and let (c ,c ) be the centre of R. Consider the homotopy 

u" + Xf(t,u) + (l~X)(c u+ - c u~) = Xh(t) (10) 
+ 

(0 % X S 1). If (10)-(9) possesses an unbounded set of solutions, then there 
exists a nontrivial solution v of the BVP 

+ 
v" + g (t)v - g (t)v = 0 a.e. on I, 

v(0) = v(T) = 0, v'(0) = v'(T) = 1, 

where g = (g ,g ) is a suitable map which verifies g(t) e R *v* 3R on I. This can 

be proved by a mainly technical modification of the argument used in [3] , and 

it is a contradiction with the results of Lemma 1. and Lemma 2. 

Since (10)-(9) can be rewritten as a homotopy of compact perturbations of the 

identity on a ball with centre 0 in L (I;K), the Leray-Schauder degree is defi

ned for our problem. We can see directly that this degree is odd when X = 0. 

The reader can easily obtain versions of the preceding theorems for BVP 

(2)-(9) following, for example, the method used in [jJJ to 'eliminate' the first 

derivative u' from the linear part of the equation. 
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