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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,2 (1986)

"ON LOCALLY SMALL BASED ALGEBRAIC THEORIES
J. REITERMAN

Abstract. Locally small based algebraic theories are well-
known™ to 1nclude varietal theories (in particular, classical al-
gebraic theories) as well as most non-varietal theories of natu -
re. Some examples are presented to show that some theorems for va-
rietal theories are no more valid for locally small based theories.
E.g., a locally small theory cannot be in general reconstructed
from its category of algebras, and the category of algebras for a
locally small based theory need not be canonically algebraic.

Keﬁ words: Algebraic theory, varietal theory, locally small
based eory, equational completeness, canonically algebraic ca-
tegories, category of algebras. ’

Classification: 08A65, 0BCO5

1. Introduction and preliminaries. The classical universal

algebra deals with algebraic theories (2,E) where ML is a set.of
finitary operation symbols and E is a set of ;quations for AL -
terms. We shall consider a more general case: both . and E are
possibly proper classes and the operation symbols in f) are pos-
sibly infinitary, i.e., the arities are arbitrary index sets.
The most familiar examples of such theories are the theory of
complete semilattices, of complete lattices and of complete Boo-
lean algebras.

For instance, the theory of complete semilattices consists
of an n-ary operation symb014>:;» for every non-void set n and

of equations of the form
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where x; are variables, f:k — n is a map and k =‘a%£¢ki‘

1.1. Terms and equations. If (N ,E) is an algebraic theory,

f-terms are defined recursively: For every set {xi;ie n? of vari-
ables,

(1) each x; is a term over {xi;ie ni,

(11) it ty (i€ k) are terms over {xi;ie n} and 6 €l has
arity k then g(ti)lek is a term over {xi;ie nt.

Further, the classFot equations which can be deduced from E
is defined recursively, too:

(111) Ecf,

(iv) t =t is in £ for every term t,

(v) it t=1t andt =t  are in E then t = t*° is in E,

(vi) it t =t  is in E for some terms t, t° over {xi;ie nt

and t, = t; is in T for every ic n then LICTPFPIELIE 2 C 2D e
is in E.
Here t(ti)“n is the term obtained from t by substitution

Xy —> ti (ic n); the substitution is defined recursively in the
obvious way.

If the equation t = t° is in E, we also write t = t" mod E.

1.2. Linton presentation of a theory. Given an algebraic

theory (S ,E), the Linton presentation of (N ,E) [7] is the cate-
gory T (9,E) the objects of which are sets, and morphisms from a
set n to a set k are k-tuples of terms over {xi;ie n}, each term
being taken mod E. The composition in the category.is the substi-
tution. Two theories (Q ,E), (N',E°) are said to be equivalent

if their Linton presentations are isomorphic.
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1.3. Varietal theories. A theory (Jf1,E) is varietal if

I‘QQ,E) is locally small, i.e., each 1~(n,£)("’k) is a gset (not
a proper class). 0f course, classical algebraic theories, such

as the theory of groups, of rings, etc., are varietal. Complete
semilattices provide an example of a non-classical theory which
is varietal. Indeed, each term over fxi;ie n} is equal, mod E, to
some i\e/m x; for some mcn.

It is well known that some essential properties of classical
theories remain true for varietal ones, e.g. the existence of
free algebras, the Birkhoff variety theorem, operational stabili-
ty, equational completeness and canonical algebraicity; the last
three properties are (1),(2),(3) below; to explain them, we start
with some definitions.

If K is a concrete category with an underlying functor
|_l:K —> Set, then an implicit n-ary operation in K is a natural
transformation €:|_|n——>|_|, equivalently, a family ( GAzlAln—o
—> |A]), where A runs over all K-objects such that GBIhln-}wGA
for every K-morphism h:A—> B.

Given an algebraic theory (0 ,E), denote by (f1,E)-alg the
category of (f ,E)-algebras (i.e., Q -algebras satisfying all E-
equations) and their homomorphisms. Further, let L be the list
of all implicit operations in (£, E)-alg and T the list of all
equations for f)-terms which are satisfied by all (fl,E)-algeb-
fas. Each Sfl-term induces an implicit operation. If an implicit
operation is induced by an fl-term then it is called explicit.
Otherwise, it is called wild.

Following Linton L7), a varietal theory can be reconstruct-
ed from the category of its algebras, viz

(1) each implicit operation in (S ,E)-alg is explicit
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(operational stability)

(2) an equation for N} -terms holds in all (01 ,E)-algebras
ift it can be deduced from E

(equational completeness)

and the category of algebras of a varietal theory is canonically
algebraic, i.e.,

(3) the natural comparison functor (0 ,E)-alg — (1 ,E)-alg
is an isomorphism
so that one can recognize whether a concrete category is equiva-
lent to.a category of algebras of a varietal theory.

Finally, notice that in general, the category of algebras
for a theory can be illehitimate in the sense that the collection
of all its algebras is bigger than (more precisely, is not equi-
potent with) any proper class. E.g., if Q= {ci;i eI} is a proper
class of nullary symbols and E = @ then algebras with a two-ele-
ment underlying set are obviously in one-to-one correspondence
with subclasses of I. However, it is well-known and not diffi-
cult to see that if (,E) is a varietal theory then

(4) the category (f1,E)-alg is legitimate.

Remark. If a theory is non-varietal than:(l),(z),(3) need
not hold (see [12),[41,[12) respectively). On }he other hand,
there are theories which are non-varietal and satisfy (1),(2),(3)
[13].

1.4. Locally small based theories. The best known examples

of non-varietal theories are those of complete lattices [3] and
complete Boolean algebras [31,11). Notice also closure algebras
[5), distributive cbmplete lattices 12), frames [2) with countab-

le meets and functor algebras [6]. All these are special cases
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of locally small based algebraic theories:
A theory (f£),E) is locally small based if there exists a

subcategory B of “'cn,s) which is locally small (i.e., each
class B(n,k) is a set), such that the only subtheory of qr(fLE)
containing B is all of ’W(Q,E)' In terms of ({1 ,E) we have:

(Q ,E) is locally small based if (and, up to equivalence,

only if) for every set n, the class of all terms of the form
S(Xf(i))iak (k is a set, f:k—> n a map and 6 € fL is k-ary),

taken mod E, is a set.

Remark [91. 1If (£l ,E) is locally small based then the cate-
gory (f1,E)-alg is legitimate, in fact, small fibred, (i.e., alge-

bras with a given underlying set constitute a set).

The fact that non-varietal thedqpi#s of nature are locally
small based and the preceding remark sdggest the idea that the
consideration of general algebraic theories should be restricted
to locally small based ones. Simultaneously, this raises the fol-
lowing question: do locally small based theories satisfy (1),(2),
(3) ? The aim of the current paper is to show that it is not the
case. Notice that none of the counterexamples mentioned in 1.3,
Remafk, is locally small based.

The preliminary version of the paper (without proofs) appe-
ared as [10].

2. The ordinal theory [14] is obtained from the theory of

complete semilattices (see above) by adding a unary operation oC

with ox2Zx. It is obviously locally small based.

2.1. Claim. The ordinal theory does not satisfy (1), i.e.,

the category of its aloebras_admits a wild operation.



Proof. Let A be an (ordinal theory) algebra. For any non-

void index set m, put

S8 )i¢pm = VB (€0
where B is the subalgebra generated by, {ai;ic mf. It is easy to
see that O’ma = h dJA for every homomorphism h:A—> B. Hence O =
= (JA)A is an implicit operation. To prove that o is wild, defi:
ne an ordinal valued function & on the class of terms as follows

(a) It x; is a variable then P(xg) = 0.

(b) If t is any verm then ¥(ect) = AH(t) + 1.

() Py, t5) = Xty
Further, define algebras An (ne0rd) as follows. The underlying
set of An is n+1, i.e., the set of all ordinals 0,1,...,n. The
complete semilattice structure of An is the usual one and ocAn(a)=

= a+l for a%*n and «(n) = n.

Now, it is not difficult to prove by  induction that if 6

is*an explicit operation of arity m induced by a term t then
(d) 5An(°i)iem = min ("'4\{;181 + BN,

In particular, 6, (0,...,0,...) £ 2%(T). On the other hand, for
n
n>#(t) we have 6, (0,...,0,...) = n>4%(t). It follows &'+ €
n
and so o is wild. The proof is concluded.

We are going to prove fhat the category of algebras for the
ordinal theory is not canonically algebraic. To end this, consi-
der the collection Il of all implicit operations in the category
of ordinal theory algebras and the collection E of all equations
tor f1-terms which are satisfied by all ordinal theory algebras.
Then E is obviously generated by equations of the form

(e) 9("j)jek = e di(xj)jemi)ism
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where 6 is an m-ary implicit operation, 61 is an m; -ary implicit

operation for every iem, k =L§£n,mi and @ is the implicit opera-

tion defined by
Caley)ser = Cal€ial8 ) 5em diem (236 M)

for every algebra A. We shall make use of the following

2.2. Lemma [13]. Each implicit operation 6 is locally ex-
plicit, i.e., for every algebra A there exists an explicit opera-

tion ® such that SA = Py

2.3. Claim. The category of algebras for the ordinal theory

does not satisfy (3), i.e., it is not canonically algebraic.

Proof. Every ordinal theory algebra may be viewed as an
(0, E)-algebra and our task is to construct an (XL E)-algebra
which does not arise in this way. Consider the ordinal theory algeb-
ras An from the proof of 2.1. Notice that for every explicit ope-

ration 6 of arity m we have

z .\

©) 6 (3)) ALY

iem

By the virtue of 2.2, the same is valid for all implicit operati-

ons 6 €5l . Let = be the collection of all 6 € 5L with
Sy (0,.:.,0,...) = n for all n. Then = is non-void for it con-
n

tains the wildoperations J° from the proof of 2.1.

Let A be the ordinal theory algebrd with the underlying set
10,1} and with 0£1, o ,(0) = 0, &€,(1) = 1. Then

(g) &,00,...,0,...) =0
for every explicit and, consequently (cf. 2.2), for every implicit
operation 6 € QL .

We are going to define an (Zi,t)~algebra B. Its underlying
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set is the same as that of A, and

(h) 6,=6,ir 6 - =,

(1) 6, is constant with value 1 if & ¢ = .
Then (£),(h),(i) yield

(3) 6h@a)); = Y *
for all 6§ « 1 . Of course, we have to prove that B is indeed an
(8,E)-algebra, i.e., that it satisfies all equations (e).

Case I. di e Z for some i. Using (j) we see that
GB( GIB(GJ)Jemi)iem = 1. As A_ satisfies (f),(e), we conclude
that @ € £ , too. Then Pb(aj)jck = 1 and (e) holds.

Case II. &e = . By (1), 6An( GiAn(aj)jemi)iem =n. It
follows by (e) that ® € = and then (e) is satisfied by B.

Case ITI. 6,6, ¢ [ - tor all i. We have

"6, (0,...,0,...) = k for some n and k<n.
n

For any s> n, consider the homomorphism h:As—> An defined by
h(x) = min(x,n). Then
SAS(D,...,O,...) = k for all s>n.

Indeed, k = &, (0,...,0,...) = 6, (h(0),...,n(0),...) =
n n

=he, (0,...,0,...). Then &, (0,...,0,...) = k for h(x) = k
s s
implies x = k. Using (d) we see that any explicit operation Tg

with © = 6, is induced‘by a term t with A%(t) = k which,
s

sA’
in turn, implies

cAs(‘i)hn -.\‘{n a; + k for all sufficiently large s and
ae As.
Analogously, there are ki (Lem) with
& \ k.
18,890 3em € Nm® * Ky

This all together yields 6, (0,...,0,...) =
s



= sAs( 6, As(o,...,o,...))i‘m AN As(n,...,o,...) + k &

é_{}ﬁn k; + k for all sufficiently large s. Then @ € - =, too,
and (e) holds in B. We have proved that B is an (Q ,E)-algebra.

Now the fact that B is not an (JL,E)-interpretation of an or-
dinal theory algebra A" follows by the observation that, because
of (h), the only candidate is AT = A which is impossible by (i),

see also (g). The proof of 2.3 is finished.

2.4. Claim. The ordinal theory is equationally stable, i.e.,

it satisfies (2).

Proof. Let m be an arbitrary index set. Let A be an m-comp-
plete semilattice (one in which every m-indexed family admits a
join) equipped with an unary operation o with of x2Zx. Then A can
be embedded into an ordinal theory algebra A such that m-index-
ed joins and o are preserved. Indeed, let 7 be the complete se-
milattice of ideals in A that are closed under m-indexed joins.
For Je R, let «J be the least ideal from A which contains all

«x (x €J). Now we use the following

2.5. Lemma. Let (S,E) be a theory such that for every n,
the class Jln of n-ary symbols in fL is a set. For every n, let
En be the class (in fact: the set) df all equations for Jln-terms
with variables from {xi;i € n} which can be deduced from E. If e-
very (Q,E )-algebra can be embedded into an (0 ,E)-algebra such
that all Sln-operations are preserved then the theory (f,E) is
equationally stable.

Proof. We have to prove that if an equation t = t’ for 0 -
terms t, t  holds in all (£ ,E)-algebras then it can be deduced

from E. Suppose the contrary” Then t = t° is an equation for Sln-
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terms for s suitable n which cannot be deduced from E,. As the
theory (jln,En) is varietal, there exists an (Jln,En)~algebra
which does not satisfy the equation t = t . Then the assumptions
of the lemma yield an (f1,E)-algebra not satisfying this equation,

a contradiction.

3. The power set theory corresponds to the power set functor

P:Set —> Set in such a way that its algebras can be described by
maps PX—> X. It is generated by operation symbols Gn where n

runs over all sets and by all equations of the form

C(xe(i)iek = CtrkaXy)setrid
where f:k —» n is a map.
Using this theory, we shall show another illegitimacy pheno-

menon which may occur.

3.1. Claim. The power set theory is locally small based and
its cateaory of algebras admits more than a proper class of wild

operations.

Proof. To be more precise, we shall construct, for every
proper class Cc Ord, a wild operation d’c such that C+C’ impli-
es d‘c+d'c.

Let ﬂ(i) (i € Ord) be unary explicit operations defined by

(0) - (1) - (3

w,(a) = a, wp'(a) = 6,(ar, (a))jd (i>0)
for every algebra A and ae A. Here and in what follows we omit
the subscripts indicating the arity of 6 . Let Ji’c be explicit
operations,

i,C _ (»
JA (8) = GA( ,rA (a))j<i,3e.c

for every algebra A and a¢ A. For every algebra A there exists
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an ordinal n, such that, for every aeA, the sets {:n'gj)(a);
j<i, ie€ C% are the same for all i> n, and so are the values
g1 (i7ny. Put

Jﬁ = a’i’c where i>nA is arbitrary.

Then Jc

(JE)A is an implicit operation. lndeed, given a homo-
morphism h:A —> B, we may take a sufficiently large i with JE =
= Ji’c, cfg = cfé’c and then hd',i"C = d'[i,’ch tor 510 is an ex-
plicit operation.

To prove that d'c is wild, define algebras Am for all ordi-
nals m. The underlying set of Am is the set of all ordinals £ m+l.
The values GAm(ai)i gf operations are defined as follows:

i
that k>ai for all i;

a) if a,€m for all i then G’A (ai)i is the least k such
m

b) if melefad; and m efa;}, then 6’A|“(ai)1 = m+l;

0.

c) it melefa}l; and mgda;l, then G’Am(ai)i
We see that Jr'gi) (0) = i for i< m and :n"gn(ﬂ) = m+l for i>m.
m

m
Hence

d5(0) = ml if mec and I5 (0) = 0 if méC.
m

Using the same argument as in the proof of 2.1, we see that for
every explicit operation o' there exists k such that
T (0)£k for all m
m
where k depends on the complexity of the term inducing < . Hen-

ce d‘c is wild. To prove that C+C’ implies d‘c d'c , pick an m
with, say, m¢C and meC'. Then &' (0) = 0 while 4§ (0) = mel.
m m

3.2. Remark. The power set theory is equationally stable

by 2.5. One can show. usinag methods similar to those used for

- 335 -



the ordinal theory, that the category of its algebras is not ca-

nonically algebraic.

4. A degenerating theory. We are going to construct a theo-

ry which is locally small based but not equationally stable. In
fact, the only algebras for this theory will be the trivial ones,
in other words, they all will satisfy the equation x = y, but
this .equation will not be derivable from the axioms of the theory.
Notice that our construction is a modification of that from [41
which was not 1locally small based.

Let £l consist of n-ary symbols G'n, @, for every ordinal
n where the 6_’s are to satisfy the equations of the power set

n
theory (see above) and the @ ‘s are subject to equations

1) @, ...x,...x,...) = @,

(meaning that if we substitute one variable for two distinct ones
then the result is equal te the nullary symbol po), and

(2) Pn(pi("))kn = x
where pi(x) are terms defined by

pn(x) = x, pi(x) = G'i( "j("”jd'
Let A be an algebra for this theory. If n is sufficiently large
-nd‘ a€A is arbitrary then necessarily ij( a) = p,,(a) for some
j ,k n, j*k, and hence PnA("iA(‘))kn is equal to @ by (1)
“and, : $imultaneously, to a by (2). Thus,, 8 = ) i.e. Ais p
one-element algebra.

To prove that the equation x = y cannot be deduced from E,
we shall construct "a large (f) ,E)-algebra” which is nontrivial.
Let A be the class oi’ all ordinals. Put

Coa(a)i = min {k;k>a; for all i<nl,
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Pna(8;)1cn = MR {a;;1<n} if n>0 and if the a, 's are
pairwise distinct,
9nA(31)1<n = Py 0 otherwise. !

Then the operatjons GnA' $°nA satisfy the equations of the theo-

ry tbut not the equation x = @ .

5. A well-behaved theory. Our intention is to show that

(1)+(2)+(3) do not characterize varietal theories among the lo-

cally small based ones.
Consider the theory generated by n-ary operation symbols o‘n

where n runs over all ordinals with the system of equations

6 XX, ) = 6‘0.

5.1, _Claim. The theory is Jlocally small based but not
varietal.

Proof. The former is clear. As for the latter, consider al-
gebras An (ne Ord) with underlying sets €0,1,...,n} and with ope-

rations 6, , =0 and 6 (n>0) defined by
n

o‘n(ai')un = min {k;k<n, k>a; for all i¢ , it a;<n for
all i< n, and ai=i=aJ if 1),
=n 1if 8, = n for some n and ai*aj it 1),

0 otherwise.

Then each An is clearly generated by 0. If a theory is varietal,
then it admits a free algebra on one generator the cardinality
of which is an upper bound for cardinalities of algebras on one

generator. This proves that our theory is non-varietal.

5.2. Claim. The category of algebras of the theory does not
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admit any wild operation.

Proof. Call a term normal if each of its subterms is either
a variable or 60 or of the form En(ti)i(n where the ti's are
pairwise distinct. It is easy to see that every term is equal,
mod E, to some normal term. Let An be the set of normal terms
with variables in {xi; i<n3 involving only Gi with .i£ n. Define

operations on An by

61 An(tj)jzi = Gi(tj)j<i if i£n and if the terms tj are

pairwise distinct,

60 otherwise.

One can prove easily by induction that if @ is an n-ary expli-
cit operation induced by a normal term t which involves the 6}'5

with i< n only then

a) a, (x). =
An i’i<n

It follows that

b) if o is an implicit operation then either d& is con-
n

stant with value 63 or d} is induced by a unique normal term
n
teA .

Now suppose J° is an implicit operation such that for some
algebra A, dk is not the constant map with value 6,- We are go-
ing @o prove that then J is explicit. Put n = card A and choose
a bijection h: {xi;1< n{—>A. Then h can be clearly extended to
a map h:An——; A which is compatible with all operations 61
(i&n). As 'both GlA and GiAn>are constant maps to 60 for eve-

ry i>n, h:An——* A is‘a homomorphiém. It follows that also crA
n

is not the constant map with value 60. Then, by b) above, é;
n
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is induced by a unique normal term te An. Now consider an arbit-
rary algebra B. There exists an explicit operation @« induced

by a term t° such that d;”A =’B%xA . By a projection argument,
n n

JB = 'l:'B, d’An = ’U;n. Thus o is induced by t°, too, hence

n
t = t°. We conclude that cfe is induced by t for all algebras B,

hence d is explicit.

5.3. Corollary. The category of algebras for the theory is
canonically equational.

5.4. Claim. The theory is equationally complete.

Proof. Lemma 2.5.

6. Dpen problems: Operational : stability (1) implies cano-
nical algebraicity (3); we conjecture that the converse is not
true. It would be interesting to know whether complete lattices
and complete Boolean algebras are operatidnally stable and cano-

nically algebraic (both are equationally complete by 2.5).
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