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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,2 (1966) 

O N LOCALLY SMALL BASED ALGEBRAIC THEORIES 
J. REITERMAN 

A b s t r a c t . Locally small based algebraic theories are well-
known to include varietal theories (in particular, classical al­
gebraic t h e o r i e s ) as well as most non-varietal theories of natu -
r e . Some examples are presented to show that some theorems for va^ 
rietal theories are no more valid for locally small based t h e o r i e s . 
E . g . , a locally small theory cannot be in general reconstructed 
from its category of algebras, and the category of algebras for a 
locally small based theory need not be canonically a l g e b r a i c . 

Key words: Algebraic theory, varietal theory, locally small 
based theory, equational completeness, canonically algebraic ca­
tegories, category of algebras. 

Classification: 08A65, 08C05 

1. Introduction and preliminaries. The classical universal 

algebra deals with algebraic theories ( i l , E ) where Jl is a set of 

finitary operation symbols and E is a set of equations for JX -

terms. We shall consider a more general case:, both XI and E are 

possibly proper classes and the operation symbols in JX are pos­

sibly infinitary, i.e., the arities are arbitrary index sets. 

The most familiar examples of such theories are the theory of 

complete semilattices, of complete lattices and of complete Boo­

lean algebras. 

For instance, the theory of complete semilattices consists 

of an n-ary operation symbol ,\y for every non-void set n and 
A. c iv 

of equations of the form 
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i>*x-<-> W w u V *V-.(.?il4
 xi ) %Vi V iX« x i = xo 

where x. are variables, f:k—> n is a map and k = .L^ k. . 
i ' v icu 1 

1.1. Terms and equations . If (il,E) is an algebraic theory, 

-0--terms are defined recursively: For every set 4x.;ien? of vari­

ables, 

(i) each x. is a term over -tx. ;ie nj, 

(ii) if t, (ick) are terms over { x , ; i € n } and & € Si has 

arity k then ^(tj)*^ is a term over -f x. ;ie n{. 

Further, the class tof equations which can be deduced from E 

is defined recursively, too: 

(iii) Ecf, 

(iv) t = t is in E for every term t, 

(v) if t = t' and t' = t " are in E then t « t " is in t, 

(vi) if t s t' is in E for some terms t, t' over fx.jic nl 

and t^ * t^ is in E for every ic n then *t(ti)i€n = t '(t i ) i € N 

is in t. 

Here t(tj), is the term obtained from t by substitution 

x — > t, (ic n); the substitution is defined recursively in the 

obvious way. 

If the equation t = t' is in E, we also write t = t' mod E. 

1.2. Linton presentation of a theory. Given an algebraic 

theory (XL,E), the Linton presentation of (-ft,E) C7J is the cate­

gory T , ~ c\ the objects of which are sets, and morphisms from a 

set n to a set k are k-tuples of terms over -txjjienj, each term 

being taken mod E. The composition in the category is the substi­

tution. Two theories (JI,E), (il',E') are said to be equivalent 

if their Linton presentations are isomorphic. 
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1 .3 . Varietal theories. A theory (Jl,E) is varietal if 

""* (0 E) ls l o c a l ly small, i.e., each T ^ E)(n,k) is a set (not 

a proper class). Of course, classical algebraic theories, such 

as the theory of groups, of rings, etc., are v a r i e t a l . Complete 

semilattices provide an example of a non-classical theory which 

is varietal. Indeed, each term over fx.;i€ n} is equal, mod E, to 

some .V x. for some men . 
A* ft 1» 1 

It is well known that some essential properties of classical 

theories remain true for varietal ones, e .g . the existence of 

free algebras, the Birkhoff variety theorem, operational stabili­

ty, equational completeness and canonical algebraicity; the last 

three properties are (1),(2),(3) below; to explain them, we start 

with some definitions. 

If K is a concrete category with an underlying functor 

| | :»C—*Set, then an implicit n-ary operation in K is a natural 

transformation €-. |_| — > |_J , equivalently, a family ( ffA:U|n—-• 

— > | A | ) A where A runs over all K-objects such that ^ B|h|
n»h^ 

for every K-morphism h:A—> B. 

Given an algebraic theory (J1,E), denote by (il,E)-alg the 

category of (Jl,E)-algebras (i.e., Si -algebras satisfying all E-

equations) and their homomorphisms. Further, let H be the list 

of all implicit operations in (JI, E)-alg and E the list of all 

equations for Jl-terms which are satisfied by all (Jl,E)-algeb-

ras. Each il-term induces an implicit operation. If an implicit 

operation is induced by an il-term then it is called e x p l i c i t . 

Otherwise, it is called wild. 

Following Linton L71, a varietal theory can be reconstruct­

ed from the category of its algebras, viz 

(1) each implicit operation in (il ,E)-alg is explicit 
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(operational stability) 

(2) an equation fo r . i l -terms holds in all (Jl,E)-algebras 

iff it can be deduced from E 

(equational completeness) 

and the category of algebras of a varietal theory is canonically 

algebraic, i . e ., 

(3) the natural comparison functor (il,E)-alg—*• (j(I,E)-alg 

is an isomorphism 

so that one can recognize whether a concrete category is equiva­

lent to a category of algebras of a varietal theory. 

Finally, notice that in general, the category of algebras 

for a theory can be illegitimate in the sense that the collection 

of all its algebras is bigger than (more precisely, is not equi-

potent with) any proper class. E.g., if Jtl = -Cc.jiclj is a proper 

class of nullary symbols and E = 0 then algebras with a two-ele­

ment underlying set are obviously in one-to-one correspondence 

with subclasses of I. However, it is well-known and not diffi­

cult to see that if (il,E) is a varietal theory then 

(4) the category (Jl,E)-alg is legitimate. 

Remark. If a theory is non-varietal then (1),(2),(3) need 

not hold (see L123,t4l,C123 respectively). On the other hand, 

there are theories which are non-varietal and satisfy (1),(2),(3) 

[133. 

1.4. Locally small based theories. The best known examples 

of non-varietal theories are those of complete lattices t33 and 

complete Boolean algebras 133,113. Notice also closure algebras 

[53, distributive complete lattices 123, frames 121 with countab­

le meets and functor algebras t61. All these are special cases 
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of locally small based algebraic theories: 

A theory (il,E) is locally small based if there exists a 

subcategory B of T ,*> c\ which is locally small (i.e., each 

class B(n,k) is a set), such that the only subtheory of ?/|s P\ 

containing B is all of IT, A C\- In terms of (Jl,E) we have: 

(jQ. ,E) is locally small based if (and, up to equivalence, 

only if) for every set n, the class of all terms of the form 

6(xf/-.N)itk (k is a set, f:k—•* n a map and 6* € SI is k-ary), 

taken mod E, is a set. 

Remark [91. If (H ,E) is locally small based then the cate­

gory (il,E)-alg is legitimate, in fact, small fibred/(i.e., alge­

bras with a given underlying set constitute a set). 

The fact that non-varietal theories of nature are locally 

small based and the preceding remark suggest the idea that the 

consideration of general algebraic theories should be restricted 

to locally small based ones. Simultaneously, this raises the fol­

lowing question: do locally small based theories satisfy (1),(2), 

(3) ? The aim of the current paper is to show that it is not the 

case. Notice that none of the counterexamples mentioned in 1.3, 

Remark, is locally small based. 

The preliminary version of the paper (without proofs) appe­

ared as [101. 

2. The ordinal theory Ll4l is obtained from the theory of 

complete semilattices (see above) by adding a unary operation oC 

with oox£x. It is obviously locally small based. 

2-1- Claim. The ordinal theory does not satisfy (1), i.e., 

the category of its aloebras admits a wild operation. 
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Proof. Let A be an (ordinal theory) algebra. For any non-

void index set m, put 

W i * . " VB (.j* A) 

where B is the subalgebra generated by, ia.jicml. It is easy to 

see that ^oh"1 = h cL for every homomorphism h:A—> B. Hence cT = 

= ( or'*)A is an implicit opera t ion . To prove that cT is wild, defi 

ne an ordinal valued function & on the class of terms as follows 

(a) If x . is a variable then i H x . ) = 0 . 

(b) If t is any \erm then iM<*t) = ̂ (t) + 1 . 

(c) <#CV t,) = V ^ t J . 

Further, define algebras A (ncOrd) as follows. The underlying 

set of A is n+1, i .e . , the set of all ordinals 0,1,...,n. The 

complete semilattice structure of A is the usual one and <*>* (a) = 
n «n 

= a+1 for a-kn and oc(n) = n. 

Now, it is not difficult to prove by induction that if 6" 

is* an explicit operation of arity m induced by a term t then 

(d) *An
(ai)iem " min (n^Ym

ai + ̂ (t))-

In particular, 6*A (0 0 , . . . ) ^ ( I ) . On the other hand, for 
Mn 

n > ^ ( t ) we have #. (0, . . . ,0, . . .) = n>i£(t). It follows cT-* tf 
An 

and so cf is wild. The proof is concluded. 

We are going to prove that the category of algebras for the 

ordinal theory is not canonically algebraic. To end this, consi­

der the collection Jl of all implicit operations in the category 

of ordinal theory algebras and the collection E of all equations 

for JI-terms which are satisfied by all ordinal theory a lgebras . 

Then ¥ is obviously generated by equations of the form 

(e) f<"j)j.k " *<«i<*jWi-. "i 
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where & is an m-ary implicit operation, &, is an m.-ary implicit 

operation for every i£ m, k =. ^J m. and a> is the implicit opera-

tion defined by 

iV'j>3£k X *A( *lA<"j>.1".>i. ( a j 6 A ) 

for every algebra A. We shall make use of the following 

2.2. Lemma 113]. Each implicit operation 6 is locally ex­

plicit, i.e., for every algebra A there exists an explicit opera­

tion j> such that 6\ r p 

2.3. Claim. The category of algebras for the ordinal theory 

does not satisfy (3), i.e., it is not canonically algebraic. 

Proof. Every ordinal theory algebra may be viewed as an 

(.0. ,E)-a lgebra and our task is to construct an (Jl,E)-algebra 

which does not arise in this way. Consider the ordinal theory algeb­

ras A from the proof of 2.1. Notice that for every explicit ope­

ration 6 of arity m we have 

(f) 6. ( a , ) , c m 2: A/ a, . 
A l iem {em i 

By the virtue of 2.2, the same is valid for all implicit operati­

ons tf e SL . Let X be the collection of all 6 e SL with 
0 A (0,..-. ,0, .. .) = n for all n. Then X is non-void for it con-

An 
tains the wild operations d from the proof of 2.1. 

Let A be the ordinal theory algebra* with the underlying set 

^0,1} and with 0 £ 1. oC A (0 ) = 0, << A(D = 1. Then 

(g) e * A ( 0 , . . . , 0 , . . . ) = 0 

for every explicit and, consequently (cf. 1 . 2 ) , for every implicit 

operation" <o €. SL • 

We are going to define an (Jl ,l)-algebra B. Its underlying 

331 



set is the same as that of A, and 

(h) tfA = flr0 i f if € 31 - .21, 

( i ) 5 B is constant with value 1 i f & e 21 . 

Then ( f ) , ( h ) , ( i ) y ie ld 

(3) * B <
8 i > i * Y a i 

for all 6* « Jl .Of course, we have to prove that B is indeed an 

(S,T)-algebra, i.e., that it satisfies all equations (e). 

Case I. e\e 21 for some i. Using (j) we see that 

^B( tfiB(a1^1e» >itm = lm As An satis*ies (f),(e), we conclude 

that m e 21 , too. Then pB(a.). . = 1 and (e) holds. 

Case II. er6 21 . By (f), 6 ^ ^ ( - j ) ^ . ^ - , - n. It 

follows by (e) that p e 2! and then (e) is satisfied by B. 

Case III. er, ̂ i € S - 21 for all i. We have 

6f. (0,... ,0,...) = k for some n and k<n. 
*n 

For any s>n, consider the homomorphism h:Ag—> An defined by 

h(x) = min(x,n). Then 

€h (0,... ,0,...) = k for all s?-n. 
Ms 

Indeed, k « *k (0,...,0,...) = 6 (h(0),...,n(0),...) = 
n n 

* h €k (0,...,0,...). Then *k (0,...,0,...) = H for h(x) = k 
*s As 

implies x = k. Using (d) we see that any explicit operation T 

with T g A = «?A is induced by a term t with iHt) = k which, 

in turn, implies 

^A (*i^icm ̂  *Y» ai * k 'or 8** sufficiently large s and 

a i e v 
Analogously, there are k. (1cm) with 

* i A 9
( 8 j > j € m ^ ^ Y m 8 i + k i ' 

This all together yields C. (0,...,0,...) 
*s 
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- % ( e r i As
(0 "•••))Um-f

iym<
S'i Ag

(0 °.--> + k * 

£. .V k. + k for all sufficiently large s. Then <p e IL - _S , too. 

and (e) holds in B. We have proved that B is an (il,E)-algebra. 

Now the fact that B is not an (II,E)-interpretation of an or­

dinal theory algebra A' follows by the observation that, because 

of (h), the only candidate is A' = A which is impossible by (i), 

see also (g). The proof of 2.3 is finished. 

2**- Claim. The ordinal theory is equationally stable, i.e., 

it satisfies (2). 

Proof. Let m be* an arbitrary index set. Let A be an m-comp-

plete semilattice (one in which every m-indexed family admits a 

join) equipped with an unary operation oc with oCx>x. Then A can 

be embedded into an ordinal theory algebra A such that m-index-

ed joins and oc are preserved. Indeed, let A be the complete se­

milattice of ideals in A that are closed under m-indexed joins. 

For Je. "A, let cc3 be the least ideal from A which contains all 

dC x (xe3). Now we use the following 

2-^* Lemma. Let (J1,E) be a theory such that for every n, 

the class H of n-ary symbols in H is a set. For every n, let 

E„ be the class (in fact: the set) of all equations for 11 -terms n ^ n 

with variables from 4x. ;i e n } which can be deduced from E. If e-

very ( .k n ,E )-algebra can be embedded into an (il,E)-algebra such 

that all il -operations are preserved then the theory (il,E) is 

equationally stable. 

Proof. We have to prove that if an equation t = t' for il-

terms t, t' holds in all (il,E)-algebras then it can be deduced 

from E. Suppose the contrary Then t = t' is an equation for il -
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terms for a suitable n which cannot be deduced from E . As the 
n 

theory (Jln»En) is varietal, there exists an (Jl ,E )-algebra 

which does not satisfy the equation t = t ' . Then the assumptions 

of the lemma yield an (il,E)-algebra not satisfying this equation, 

a con trad ict ion . 

3 . The power set theory corresponds to the power set functor 

P:Set—> Set in such a way that its algebras can be described by 

maps PX -—>X. It is generated by operation symbols 0 where n 

runs over all sets and by all equations of the form 

6rk(xf(i))iek = *tlk3{*p$€Ukl 

where f:k—> n is a map. 

Using this theory, we shall show another illegitimacy pheno­

menon which may occur . 

'•*• Claim . Ine power set theory is locally small based and 

its cateaory of algebras admits more than a proper class of wild 

operat ions . 

Proof. To be more precise, we shall construct, for every 
C ' 

proper class CcOrd, a wild operation d* such that C-*=C impli­

es c*C+<*'C' 

Let jr (ieOrd) be unary explicit operations defined by 
*<0)(a) - a, Jfj^Ca) = 6*A( -irp^a)) .^ (i>0) 

for every algebra A and acA. Here and in what follows we omit 
i r the subscripts indicating the arity of €T . Let 4' be explicit 

operations, 

4' C ( a> • ^ " A ^ o ^ i . j e C 

for every algebra A and a 6 A. For every algebra A there exists 
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an ordinal n. such that, for every aeA, the sets {rt^ (a); 

j-. i, ie ci are the same for all i>n. and so are the values 

< f A ' C ( a ) ( i ^ n A ) . Put 

cfA = d\* where i :> n. is arbitrary. 

rC c Then 6 = ^W is an implicit operation. Indeed, given a homo-

morphism h : A — > B , we may take a sufficiently large i with cf» * 

= < ^ , C , ^ B s ^ B , C and then h c rA , C = ^ B ^ 0 for ^ 1 , C is an ex" 
plicit operation. 

r 
To prove that <$ is wild, define algebras A for all ordi­

nals m. The underlying set of A_ is the set of all ordinals ^ m + 1 . 
0 m 

The values €fA (*\)\ of operations are defined as follows: 
m 

a) if a.i=T m for all i then €f* (a. ) . is the least k such 
m 

that k>a. for all i; 

b) i f m+1 £•{aj . and m e { a . V then 6*A ( a . ) , = m+1; 
m 

c) i f m + U { a . } . and m ^-Ca.l . then 6 \ ( a j , = 0. 
m 

We see that jf^ ( 0 ) = i for i^ m and tfj^CO) = m+1 for i> m. 
m m 

Hence 

c/A (0) = m+1 if m € C and cfjj (0) = 0 if m $ C . 
m m 

Using the same argument as in the proof of 2.1, we see that for 

every explicit operation tf there exists k such that 

r A (0)=r k for all m 
Mm 

where k depends on the complexity of the term inducing f . Hen-
p * c c~ 

ce cf is wild. To prove that C4=C implies d 6 , pick an m 
with, say, m ^ C and meC'. Then cfjj (0) = 0 while $\ (0) = m+1. 

m m 

•*-2- Remark. The power set theory is equationally stable 

by 2.5. One can show, usina methods similar to those used for 
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the ordinal theory, that the category of its algebras is not ca-

nonically algebraic. 

4. A degenerating theory. He are going to construct a theo­

ry which is locally snail based but not equationally stable. In 

fact, the only algebras for this theory will be the trivial ones, 

in other words, they all will satisfy the equation x = y, but 

this.equation will not be derivable froa the axioas of the theory. 

Notice that our construction is a Modification of that froa L O 

which was not locally saall based. 

Let H consist of n-ary symbols €>n, p n for every ordinal 

n where the *»n*s are to satisfy the equations of the power set 

theory (see above) and the $>n s are subject to equations 

(1) fn(...fxt...,«,...) = f>Q 

(weaning that if we substitute one variable for two distinct ones 

then the result is equal to the miliary syabol f*0)» and 

(2) f./Pi (•«»!«„ = x 

where P{(x) are terws defined by 

P0Cx) = x, Pjl(x) « eTtC P j C - O ) ^ . 

Let A be an algebra for this theory. If n is sufficiently large 

and a t A is arbitrary then necessarily p^.( a) = P|<A^a^ for SOBMB 

j ,k 41, j-fck, and hence P ^ P y ^ a ) ) . - ^ is equal to p Q by (1) 

and, simultaneously, to a by (2). Thus,, a = « , i.e. A is a 

one-eleaent algebra. 

To prove that the equation x = y cannot be deduced froa E, 

we shall construct "a large (Jl,E)-algebra" which is nontrivial. 

Let A be the class of all ordinals. Put 

^nA^i^Jkn * mln ^kik^«i *°* "I1 i<nh 
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j> .(a 1) i < « min •Cai;i< n} if n>0 and if the ai 's are 

pairwise distinct, 

fnA(ai>i<n " Po " ° °ther«i3e. 

Then the operations #n», $&«* satisfy the equations of the theo­

ry :.but not the equation x = jo . 

5. A well-behaved theory. Our intention is to show that 

(l)+(2)+(3) do not characterize varietal theories among the lo­

cally small based ones. 

Consider the theory generated by n-ary operation symbols 6" 

where n runs over all ordinals with the system of equations 

tfn(...,x,...,x,...) • €T0. 

5*1i Claim. The theory is iocally small based but not 

varietal. 

Proof. The former is clear. As for the latter, consider al­

gebras An (neOrd) with underlying sets-f 0,1,... ,nl and with ope­

rations 0 * * 0 and 6Tn (n>0) defined by 

6* (aA). = min -Tk;k<n, k>a* for all ij , if a,< n for 

all i< n, and 8,4- a, if i=#j, 

= n if 8, = n for some n and a,**- a. if i-£j, 

= 0 otherwise. 

Then each A is clearly generated by 0. If a theory is varietal, 

then it admits a free algebra on one generator the cardinality 

of which is an upper bound for cardinalities of algebras on one 

generator. This proves that our theory is non-varietal. 

5-2- Claim. The category of algebras of the theory does not 
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admit any wild opera t ion . 

P r o o f . Call a term normal if each of its subterms is either 

a variable or 6f or of the form C r % ( t 4 ) . „ where the t .'s are o n i i<n i 

pairwise distinct. It is easy to see that every term is equal, 

mod E, to some normal term. Let A be the set of normal terms 

with variables in-fx,; i<-n] involving only 6\ withi^n. Define 

operations on A by 

^i A ^i^i-fi = ^i^i^1<i if *~ n and if *ne terms * i are 

pairwise distinct, 

= 6 otherwise. 

One can prove easily by induction that if f is an n-ary expli­

cit operation induced by a normal term t which involves the <f. 's 

with i=? n only then 

It follows that 

b) if <f is an implicit operation then either C? is con-
An 

stant with value 6V or orl is induced by a unique normal term 
n 

*«v 
Now suppose oT is an implicit operation such that for some 

algebra A, d\ is not the constant map with value 0. We are go­

ing to prove that then d is explicit. Put n = card A and choose 

a bisection h : f x . ; i < n $ — > A . Then h can be clearly extended to 

a map h:A — > A which is compatible with all operations €>. 

(i^n). As both 6\. and 6.. are constant maps to 6 for eve­

ry i>n, h:A «—* A is a homomorphism. It follows that also cT. 
n 

is not the constant map «*th value € . Then, by b) above, of. 
n 
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is induced by a unique normal term t c A . Now consider an arbit­

rary algebra B. There exists an explicit operation tr induced 

by a term t' such that (y A = ̂  BKA . By a projection argument, 
/ , n n 

B = ^ B ' ^A = ^A * Thus °̂ A *s induced by t', too, hence 
n n n 

t = t'. We conclude that OQ is induced by t for all algebras B, 

hence cf is e x p l i c i t . 

*>-^ • Corollary- The category of algebras for the theory is 
canonically equational. 

5*** Cljrim. The theory is equationally complete. 

Proof. Lemma 2.5. 

6. Open problems-. Operational . stability ( 1 ) implies cano­

nical algebraicity ( 3 ) ; we conjecture that the converse is not 

true. It would be interesting to know whether complete lattices 

and complete Boolean algebras are operationally stable and cano­

nically algebraic (both are equationally complete by 2 . 5 ) . 
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