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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
27,2 (1986) 

CONVEX SETS AND HARNACK INEQUALITY 
D. G. KESELMAN 

Abstract: Given a locally compact part 9 of a convex set, 
let H(U) be a linear space of continuous locally affine functions 
on an open set U c 3 . It is proved that the map H : U — > H(U ) is 
a harmoni&j sheaf of functions possessing the Brelot convergence 
property. Some properties of parts and faces of compact sets and 
of Choquet simplexes are discussed. 

Key words: Faces and parts of convex sets, harmonic sheaf, 
Harnack inequality, fJhoquet simplex. 

Classification: 31D05, 46A55 

Introduction. For any convex set L with induced topology 

from locally convex Hausdorff space E we shall introduce the fol

lowing notations: A ( L ) - space of all continuous affine real-va

lued functions on L; 

A + (L ) = -fae A ( L ) : a 2 : 0 } ; 

face ( x ) will denote the smallest (not necessarily c l o s e d ) face 

of L containing x (ye face (x)<==-===> 3 r>0:x + r ( x - y ) € L, it means 

that the point x is surrounded in the set face ( x ) ) . 

Let 2) c L be a locally compact Gleason part (we shall note 

that in this locally compact topology every point y 6 2) will ha

ve the basis of compact convex n e i g h b o u r h o o d s ) . The necessary 

and sufficient condition of the local compactness of §J which is 

contained in the convex compact S, is given in the proposition 7. 

The condition is: 3 must have at least one point which has 
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a compact neighbourhood belonging to 2f * 

D e f i n i t i o n . Let 16 be an open subset of a part. The functi

on f: H—•* R is called locally affine, if every point in % has 

such a convex neighbourhood V that the restriction f A K is an 

affine function. 

Let H(U) be a linear space of all continuous and locally af

fine on % functions (only the real-valued functions are conside

red in this paper). 

It will be proved in Theorem 6 that the map H: K.—> H(1£) is a 

harmonic sheaf of functions possessing the Brelot convergence pro

perty. As shown in £1, p. 163 Harnack inequality will be valid 

for such sheaves, i.e. if 'U is connected then for an arbitrary 

compact set K c 11 there exists a positive real number oCK->l 

such that for any positive function fcH('Zl) and for any x,ycK 

we have f (x) ̂  oc^f (y) . 

In the process of preparation for the construction of the 

sheaf we shall prove that if the point xcS has face (x) of the 

second category then for an arbitrary compact set Kcface (x) a 

positive real number: coK>l exists such that for any positive 

function f6A+(face (x)) we have 

sup f(y) * «„f(x). 
^ 4 5 K K 

From this we shall have that if face (x) is a locally compact fa

ce then any lower semi-continuous affine function f:S — > 3 - ° ° ; 

+ oo3 has a continuous restriction on face (x). 

In the last paragraph of the paper it is proved that if S is 

Choquet simplex, for any of its part P the solving of the Dirich-

let problem with an arbitrary continuous boundary function will 

be continuous on P in the part metric. Besides, it is proved that 
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for any point xeS any bounded set of the affine functions of the 

first Baire class contains a sequence which is on face (x) con

verging pointwise to some affine function f . f a c e (x)—»»R. 

1. Properties of the facesof the second category of convex 

compacts 

Proposition 1. Assume that L is bounded and the function 

f:L—.• 3 -oo . • co 3 is a supremun of an increasing net of func

tions from A(L). Assume that its effective set dom f * «fx c L:f(x)< 

< + oo} is non-empty4 Then: 

1) dom f is convex and is F̂  ; 

2) if dom f is a topological space of the second category, the 

restriction f/«jom # is upper bounded. 

Proof. We shall not prove the evident statement. 1). 

2) It is clearly seen that g * */dom # is a lower semiconti-

nuous affine. function and that is why it has an upper bound m in 

R on some non-empty intersection dom f with the open subset 1/c E 

(the set of discontinuity points of g is of first category in 

dom f L by Osgood's Theorem and, by Baire's Theorem g has a conti

nuity point in dom f). Me shall choose a point y from this inter

section. As dom f is bounded in E, it can be absorbed by the 

neighbourhood 1r- y of zero point. That is why the inclusion 

dom fey + n(1f- y) 

is valid for some natural n. As g is an affine function, it must 

be upper bounded on dom f. Indeed, let the point z edom f, then 

there exists a point t e Vr\ dom f such that 

z = y •> n(t - y), 

then 
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* • * * • ¥ > . 
g(t) =1 g(z) + ^ g ( y ) 

and 

g(_t) = n g(t) + (l-n)g(y)^n m + (l-n)g(y). 

Remark. The proof of the statement 2) is a repetition of the 

proof of the first part of the Choquet theorem for a case when 

dom f is compact (see [33,Theorem 1.2.6). 

Corollary. 1.1. If condition 2) of the proposition 1 is 

fulfilled, the effective set of the function f is closed. 

Theorem 2 (Bear H.S. 123). Let S be a convex compact set 

and we shall consider the sequence i&n} belonging to the space A(S) 

of all continuous affine real-valued functions on S which satisfy 

the requirement a i=a ,, neN. 

If -ia (x)J converges for some point xeS then -fa (y)J converges 

for all y e face (x). 

Corollary 2.1. Let the sequence -Chi belong to the space 

A(face(x)) of all continuous affine real-valued functions on 

face (x) and n n~
 n

n+i f°r a-A ncN. Let us consider the function 

h s sup h *. 

If h ( x ) < + o o then the inequality h ( z ) < + c o is valid for any point 

z e. face (x) . 

Proof. For a point z £face (x) we shall choose a point 

ye face (x), so that x e 3 y ; z [ . As the sequence -I h i , J satis-
n I Y i zj 

fies the theorem 2 (-the point x is surrounded in ty;zl and h ( x ) < 

< + oo ) then h(z) < + co . 

Theorem 3. Assume that the point x <s S he«-the face (x) of 
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the second category; then for any compact 

Kcface (x) 

there exists such a number oCw^l that 

sup f(y) == oc,.f(x) 

for all f eA+(face(x)). 

Proof. Assume the contrary, then there exist two sequences 

of points { x J c K and functions •£-*-,] c A+(face(x)) such that 

fn(xR)> n
3fn(x) for all n€N. 

Consider the function 

90 f+(y) 

f(y) = -C. 4 
i=/I t?ft(x) 

It is evident that the sequence of the continuous affine functions 

f(m> = £ J^— , "€N 

* s 1 t2ft(x) 

is increasing to f. As f(x)<+oo then by Corollary 2.1 f(y)<r + oo 

for all ycface (x). However, 

ff,. ^ ft(xn) , W , n\ ( x )
 n f (x) = 2E. —« > --n > —^ = n . 

* = •< t2ft(x) n2fn(x) nzfn(x) 

But it contradicts Proposition 1. 

Corollary 3.1. Assume that the point x e S has face (x) of 

the second category. Consider the sequence {h \ c A (face(x)) with 

the property h .6 h - for all n€ N and the function h = sup h , 

So if h(x)<+oo then the sequence -C h ^ uniformly converges to h 

on every compact Kcface(x). In particular, if a set face(x) is a 

metrizable or locally compact then h6 A(face(x)). 

As h - h e A+(face(x)), the proof follows from the fact that 

for any compact Kcface(x) we have the following inequality: 

°*hn+p "
 h n i o C K ( h n + p

( x ) " hn ( x ) )-
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Corollary 3.2. Let f : S — > 3 - o° ; + col be a lower semicon-

tinuous affine function. Assume that the point x c S has a locally 

compact face f a c e ( x ) . Then if h (x ) •< + oo then 

f / f a c e ( x ) f e A ( f a c e ( x ) ) -

Proof. By the corollary 1.1.4 £ 3D, f is a pointwise limit 

of the increasing net "(a^lc A ( S ) . by the corollary 3.1, for any 

increasing sequence i bn\ c { a ? the following inclusion is valid: 
n oC 

s%> b n / f a c e ( x ) £ A ( f a c e ( x ) ) -

That is why by the topological lemma by A. Cornea (seellj, p.10) 

f/f / N will be a continuous function. 

2. Locally compact Gleason parts and the harmonic Brelot's 

sheaves 

Definition. Let x and y be two points of the convex set It -

It is said that the segment £x;y] extends in 11 beyond the point 

x by a positive number r > 0 if x + r ( x - y ) e QL . 

Theorem 4 (H.S. Bear 12D ) . Let x and y belong to S. The seg

ment Lx;yl extends in S beyond the point x by the positive number 

r > 0 if and only if 

a (y ) -= (1 • ~ ) a (x ) 

for all ae A + ( S ) . 

Definition. Two points x, y are said to be included in one 

part of the convex set % , if f ace (x ) = f a c e ( y ) , or which is 

equivalent to the line segment Cx;yD extends in % beyond x and y. 

Proposition 5. Let % now be a convex subset of E with an 

induced topology from E. Assume that It = ̂ V n ^oc > where 11^ are 

convex open subsets of 1L . Let f: I t — > R. Then from 
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f/.2£ e A ( ^ ) , occj it follows fctk(U) (as in the introducti

on k( "ll ), A(U) denote the spaces of all continuous affine real-

valued functions on ^ ^ and on U ). 

Proof. Let us check that f is an affine function. Let a,b 6 

€ 11 and consider the affine isomorphism g>: «. —>• (l-«Oa + ocb 

where oc e E0;l3. Then the sets of the affine functions on segments 

[a;bl and I0;l3 are i somorphic . As a restriction on Ca;b3 of a lo

cally convex topology from E is the topology, defined by the ima

ge of the topology on 10;U after mapping f , then the function 

i o <p will be locally affine on [0;l3 and hence affine on I 0 ; l 3 . 

Hence we have that f is an affine function on fa;bJ . 

D e f i n i t i o n . Let Y be a topological space. A sheaf of functi

ons on Y is the map 9 defined on the set of open sets of Y such 

that: 

a) for any open set It of Y 7 (U) is the set of functions 

on U 5 

b) for any two open sets 11 ,V of Y such that U c V the 

restriction of any function from 3* (V ) to % belongs to 3 (U)\ 

c) for any family (Uj)i€i of open sets of Y a function on 

•W. i ^ i belongs to 3 ( .LL 11*) if for any ie3 its restriction 

to U. belongs to $( U^. 

Definition. A sheaf of functions H on a locally compact spa

ce Y is called a harmonic sheaf, if for any open set % of Y 

H(11) is a real vector space of real continuous functions on 11 * 

A function defined on the set containing an open set U is call

ed an H-function on 11 if its restriction to U belongs to H(U). 

Definition. We shall say that a harmonic sheaf H on a locally 

compact space Y possesses the Brelot convergence property, if the 
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limit function of any increasing sequence of H-functions on any 

open connected set of Y is an H-function whenever it is finite at 

a po int. 

Let £D be a locally compact part of L. By the proposition 5 

the map H, defined in the introduction on the set of open subsets 

$D satisfies the axioms of the harmonic sheaf. 

Theorem 6. The sheaf H on part 2) satisfies the Brelot con

vergence property. 

Proof. Let 11 be an open and connected subset of 2> . Each 

point x e 1C has a convex compact neighbourhood V- 'ZA(x) c It -

That is why, if the increasing sequence of functions from the spa

ce A ( V ) of all continuous affine functions on V is bounded even 

in one interior, point y 6 1T then by the corollary 3.1, its limit 

will belong to ACV) . 

Now let "tri } be an increasing sequence of H-functions on 11 t 

h = sup h . Assume that in the point x e 01 the function h(x) < 

< + co . Let us prove that It = dom h. If it is not so, then by 

the theorem 2 the set T = •£ y e 11 :h(y) = • oo \ is open. By connec

tion It at the bound of the set dom h there exists a point, the 

convex compact neighbourhood of which has a -non-empty intersecti

on both with T and with dom h, which is impossible by the theorem 

2. So we have proved that h is bounded in every point z fi 11 . 

Besides, we have proved earlier that h is a locally affine and 

continuous function . From this we have that h s H d Z ) . A necessa

ry and sufficient condition that the part .2) c S is locally com

pact, will be obtained in the following p ropos i t ion . 

Proposition 7. Assume that some point x s 3) cS has a compact 

neighbourhood K(x) c 35 , then 9 is locally compact. 
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Proof. Let y e 2) .We can consider the neighbourhood K(x) 

convex without limiting generality. The point x is surrounded in 

K(x) (i.e. for every point ye K(x) and y4-x the segment Cx;y.l may 

be extended in K(x) beyond the point x). By the theorem 3 there' 

exists such a number oc > 1 that the following inequalities are 

fulfilled: 

and 

sup^,
 ч
a(z) é oc a(x) ( Va eA+(K(x))) 

z 6 Kŕx) 

su^ a(z) é 06 a(y) ( VaeA +(S)). 

Let r> 0 be such a number that oc = 1 + i. By the theorem 4 

(VzeK(x)) we obtain the following inclusions: 

x + r(x-z)tK(x), y + r(y-z)eS. 

Let t 6 3 0;rt . It is obvious that (Vz£K(x)) we have the follow

ing inclusions: 

x + t(x-z)€ K(x), y + t(y-z) € 2) -

We shall consider the map 

<f :z—->z = y + t(y-z), zeK(x). 

It is clearly seen that gs> is continuous and hence KCx) =9>(K(x)) 

is a compact neighbourhood of the point x\ We shall consider the 

set 

V(y) = KCx) + y - K. 

If we can prove the inclusion V(y) c 9) then V(y) will be a com

pact neighbourhood of the point y. 

Indeed, let k e KC$0 + y - V, then 

k='z + y-'x = y + t(x-z). 

We remark that for every zeK(x) we have the equalities 

t - H . t(x-z), tf + (x-z)t = 2\ ^ + j ^ z = y. 

Now we have 
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k « y + (x-z)t • j ~ f t x + (x-z)tJ + yi|. [x + t(x-z)J « 

= .jî  .1. j ~ ^ i x + t(x-z)3 * 2) * 

The proof is complete. 

3. On some characteristics of parts and faces of simplexes. 

Let S be now Choquet simplex, E(S) will denote the extreme bounda

ry, ,i.e. the set of the extreme points of S, ^ may denote the 

boundary measure (see 133) which represents x e S . On the linear 

space C(E(5); of all continuous real-valued functions on E(S) we 

define the Oirichlet operator f—*u... where 

u, (x) s <u 4 (f). x c S. 

Let us consider the part P of S and any two points x.veP For 

the part P of S we can define a function oCp-.PxP—> L* 1; + oo I 

as loilows-. 

«--pCx;y) = inf -(1 *A"*: lx;yJ extends by A in S }. 

Let us define as in 13] the part metric on P 

p(x:y) = /€nocp(x;y). 

Proposition 8. The affine function u f| D is continuous in 

the part metric. 

Proof. Let us consider the o^-neighbourhood of the point x-

V(x;cT) * Ay€P:<l>(x;y)-<:cr5 - i V 6 P : oCp( x ; y ) < e* I . 

There exists such a number A > 0 that 1 + A < e and the 

segment Lx;yJ may be extended in S by the number A , that is why 

by the theorem 11.5.25 C 33 the following inequality will be valid: 

/uy * N 1 + A * % (u x. 

tor a positive function f c C(E(S)) we obtain 

u f*y)-u fu; t̂ if .- 4*. (f) =£ A"1 (u.s(t) £ A~lWf\\< B* -1) If R . 
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As 

u f ( x ) - u f ( y ) - c ( e : r - 1; II f H 

then 

|Uf (x) - u f ( y ) | - < ( e o r - 1) Af II . 

Let now be &> 0, we consider the number oT= in( ™ r + 1 ) . It is 

obvious that as soon as £>(x;y)«-t-r the inequality |u* (x ) -u« (y ) |« 

«< & will be f u l f i l l e d . If f + 0 we take such a number c>0 that 

f + 0 0 . In this case 

PyW "(ux(f) = rVf+c) -fVf+c) 

and <T = ^ n(-j-|~—-t+ 1). The proposition is complete. 

Theorem 9. Let -If,,} be a sequence of the affine functions 

of the first Baire class defined on S and Hf ll<c, n£N for some 

number c>0. Let xeS, then the sequence \fA has the subsequence 

\ f i which on face f ace (x ) converges pointwise to some affine 
nk 

function f : f a c e ( x ) —> R. 

Proof. The sequence it A may be considered as the bounded 

sequence of continuous linear functionals on the space L2 = 

- L2((tcx; as 

| Jfnh d/ax|- c V f |h|
2 d^ x c.lh{JL . 

As the unit ball in L2 is weakly compact then from {fni we may 

choose the subsequence {f \ which converges on every function 
nk 

h £ L2, i.e. 

f ir. h d (VL — - * • 
J 'k * 

For every point yeface(x) the measure (U is absolutely continu

ous with respect to the measure (U^ *v <r < M ) and by the theo

rem 11.3.15 13- we have 
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H-T1X-I 4* const. 
x L<* d/a 

Therefore the density function -j~--eL2( r^) • By the Choquet the

orem [3, p. 163 for every function f , neN the barycentric formu

lae are valiu: 

<Vfn> = fn ( y )' 

Hence f ̂(y) - / f ̂d ^ - [ \ 4 f y * .% ~* 

It,is obvious that the limit function is affine. 

Let S be a metrizable simplex, B is a set of all bounded mea

surable Borel functions defined on E(S). As above on B we define 

the Dirichlet operator. Let us denote by A the set of continuity 

points of uf for all f&B. As follows from L 41 if AQ4= 0 then with 

every point x the set A contains face(x). If 4fn} is a sequence 

function from the theorem 9 then the limit function f for its sub

sequence if \ will belong to the first Baire class. 
nk 

I am very much obliged to N.S. Landcof for his attention to 

this paper. 
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