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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,3 (1986)

EQUATIONAL THEORIES OF SOME ALMOST UNARY
GROUPOIDS
1. JEZEK

Abstract: A finite basis is found for the identities of a
finite unary groupoid whose multiplication is changed so that one
of its elements becomes a zero.

Key words: Term, equation, groupoid.

Classification: 08BO0S N

1. Introduction. For every n23 let us denote by An the
groupoid with the underlying set 10,1,...,n-1% and the binary
operation ab defined as follows: if b=0 then ab=0; if b4 0 then
ab= ¢(a) where @ (0)=0, ¢(1)=2, @(2)=3,..., @(n-2)=n-1, ¢(n-1)=0.

The aim of this paper is to find a finite basis for the iden-
tities of the groupoid An. More interesting perhaps than the re-
sult itself is the method used in its proof. A list of known uni-
versal algebras with finite bases for their identities is contain-
ed e.g. in W. Taylor’'s Appendix 4 in [1), which also contains an
explanation of the fundamental notions and can be recommended to

the reader as a summary of equational logic.

2. Terms and equations. Notation. The absolutely free grou-

poid over the countably infinite set of variables is denoted by
W and its elements are called terms.

The set of variables occurring in a term t is denoted by
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var(%).

It tl,...,tk is a finite sequence of terms then the term
(((tltz)til..)tk is denoted by [tl,...,thand the term
G (508510000 by [t ... 0%

Let t, u be twe terms. We write t£u if there exists an en-
domorphism h of W such that h(t) is a subterm of u.

In order to be able to speak consistently about occurrences
of subterms in a given term, we introduce the following definiti-
ons.

The free monoid over the set {1,2} is denoted by E. Its ope-
ration is denoted multiplicatively and its unit element is denot-
ed by §. If e,fe€ E and the word e is a beginning of the word f,
we write e<f. Two elements e, £ of E are incomparable if neither
e<f nor f4e.

Let t be a term. For every e € E define an element t<e> of
Wu i@t by induction on the length of e as follows: t<{#>=t; if
t{eY=pq for some terms p, q, put t{el>=p and t{e2)=q; if either
t{e? is a variable or t{e>=@, put tl{el?=t<e2)=8.

The set {t{ed;ec E} is just the union of {@} with the set of
subterms of t. If t<eY=u, we say that e is an occurrence of u in t.

Obviously, any two occurrences of variables in t are imcompa-
rable. ’

Let t be a term, kZ1 and €11.-028) be pairwise incomparable

occurrences of subterms Ups-eenly in t. Let, moreover, Visee ¥y

be arbitrary terms. It is easy to see that there exists a unique
term t° such that t'<e1> =vy,...,tCeQ =v, and t{er=t<e) for any
eckE incomparabie with any of the occurrences CPERRREL This

term t° is called the term obtained from t by replacing the occur-
rences e;,...,e, of Upseeosly by Visee s Vie

For any ee E denote by R(e) the largest number i2>0 such that
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e ends with 11,

If t is a term and x e var(t), denote by R(x,t) the maximum
of the numbers R(e) where e ranges over all occurrences of x in
t. In other words, R(x,t) is the largest number i such that
[x,al,...,ai]is a subterm of t for some terms 81,..0,84.

If t is a term then t can be written uniquely in the form
t=[x,al,...,aiJ for some variable x, some i~z 0 and some terms
81,--,84. The variable x (the first, the most left variable in t)
will be denoted by L(t) and the number i by R(t). 0f course,
E(t)=ﬁ(1i) where 11 is an occurrence of L(t) in t and so R(t) £
£R(L(t),t).

By an equation we mean an ordered pair of terms. An equation
(u,v) will be often denoted by u=v in spite of the danger involved
in it. If we write u 3, Vv, we mean that the equation (u,v) is a
consequence of some other equation denoted by (oc).

An equation (u,v) is satisfied in A, if h(u)=h(v) for any
homomorphism h:w-—a-An. An equation which is satisfied in An is

also called an identity of An. The set of all identities of An

is the equational theory of An.

3. The equational theory of An. A description of the equati-

onal theory of An is given in the following simple proposition.

3.1. Proposition. Let u, v be two terms. The equation (u,v)
is satisfied in An iff either u,v z[xl,...,xn] or the following
five conditions are satisfied:

(1) u#lx;,...,x) and v % Ixgyeeeaxgds

(i1) var(u)=var(v);

(iti) R(u)=R(v);

(1v) R(x,u)=R(x,v) for every variable x ¢ var(u);
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(v) 1if L(u)=x and L(v)=y then either x=y or R( x,u)=R(y,u)=n-2.
Proof. Let (u,v) be satisfied in An and let either

u [xl,...,an or v [xl,...,xnl. For every variable x and eve-

ry pair a, b of elements of An denote by hx a.b the homomorphism

’ ’

of W into A  such that hx,a,b(")=° and hx,a,b(y)=b for all varia-

bles y different from x. Both (i) and (iii) follow from

hxl,l,l(")=hx1.1,1(")' It xevar(u)\ var(v) then hx,n,l(")=°' and

he 0 l(v)#-ﬂ. This proves (ii). We have R(x,u)4 n-2 and R(x,v) <

’ ’
4 n-2 for all x evar(u). If R(x,u)<R(x,v) for some x then

h 1(u)=b--0 and h 1(v)=0. This proves (iv). Let

x,n-R(x,v), x,n-R(x,v),
L(u)=x, L(v)=y and x#*y. If R(x,u)<n-2 then hx,z,l(“)*hx,z,l(")'
This proves (v).

If t is a term such that tzlx;,...,x ) then evidently h(t)=0
for any homomorphism h:H-—->-An. It remains to prove that if the
conditions (i),...,(v) are satisfied then (u,v) is an identity
of An. Let h:W—>» An be a homomorphism. We are going to prove that
h(u)=h(v). Consider first the case h(u)=0 and let p be a minimal
subterm of u with h(p)=0. We can write p= Ix,p;,...,p, ] for some
variable x and some terms Pps-e-sPy- If p=x, we get h(v)=0 from
h(x)=0 by (ii). If p=*x then k=1, h(x)=n-k and R(x,u) zk; by (iv),
R(x,v) >k and so h(x)=n-k implies h(v)=0. This finishes the proof
in the case h(u)=0. In the case h(v)=0 the proof is similar. Now
let h(u)#0 and h(v)*d. Put L(u)=x and L(v)=y. If x-ky then it
follows from (v) that h(x)=h(y)=1. So, we have h(x)=h(y) in any
case. Evidently h(u)=h(x)+R(u) and h(v)=h(y)+R(v). By (iii) we
get h(u)=h(v).

4. A tinite basis for the identities of An.

4.1. Theorem. Let nZ3. The equational theory of the grou-
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poid An is generated by the following nine equations:

(1) y[xl,...,xn) = [xl,...,xn]y = [xl,...,an,

(2) [x,[y,zl,...,zn_zl,uz,...,un_zl = [y,[x,zl,...,zn_ZJ,uz,...
TIPS

(3) xy.z = xz.y,

(8) x(y.zu) = x(z.yu),

(5) xexy = xy,

(6) xy,zu = xue.zy,

(7) xxey = xy.y,

(8) xeyy = xeyx.

Proof. Denote by T the equational theory generated by the-
se nine equations. It follows easily from 3.1 that any of the ni-
ne equations is satisfied in An and so T is contained in the equ-
ational theory of An. Conversely, it remains to prove that every
equation which is satisfied in An belongs to T. The proof of this
fact will be divided into lemmas.

4.2. Lemma. .Let m21. Then the equation

[Ym.---,yl,xl“ z = [ym,...,yl,zj*x
belongs to T.

Proof. By 1induction on m. For m=1 it is just the equation
(3). For m=2 we have

(YZ‘YIX)Z YoZey X ; YoX+y¥;2 ; (yz'ylzh“

[V AV N ]

For m >2 we hav

[ym,...,yl,xl“ z ; Kym,...,yz,z]*- y X [ym,...,y3,y1,xJ*o

1
Yoz =

. 2 I

[¥pseor¥3:¥7:¥9,23% x : Typs e os¥30¥p,¥p2 ¥ x

where = means a use of the induction assumption.
I

4.3. Lemma. Let t be a term and e, f be two occurrences of

two variables x, y in t hnth of them ending with 2. Let t° be the
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term obtained from t by replacing the occurrence e of x by y and
the occurrence £ of y by x. Then (t,t)eT.

Proof. By induction on t. Let t=t1t2. If both e and f start
with 1 (or both with 2, resp.), we can apply the induction assump-
tion to the term t, (or tz,resp.). Since the last remaining situ-
ation is aymmetric, it remains to consider the case when e starts
with 1 and £ with 2, so that e is an occurrence of x inside t1
and f is an occurrence of y inside t,. We have t,= [uk,-.. ,ul,z]"'
for some variable z and some terms Uyyeeenly where kZ1. If e-\w12k
then e is an occurrence inside one of the subterms uj; we have
(t, \uk,...,ul,tzl*z)sT by 4.2 and so we can apply the induction
assumption on the term Iuk,...,ul,tzl* which is shorter than t.

So, let e=12k; we then have x=z. We can express t2 in the form

t2= [Vl"""’l’q 1* for some variable q and some terms VgseeesVye
Several applications of 4.2 give
(TRNRAN I Pl SO B luk,...,ul,vl,...,vl,ql*x =

[uk,...,ul,vl,...,vl,x]*q = [uk,....,ul.q]“‘Ivl,...,vl,xJ".
So, if f=21+1, we are through. If f+21+1 then t=2119 for some
iefl,...,11 and some occurrence g of y in vi- Denote by '\7‘1 the
term obtained from vy by replaeing the occurrence g of y by x.
By what has been proved above, t= Luy,...,u;,q3* [vy,...vg,x3*.
By induction, [vl,...,-vl,xl" = [vl""'V1+1'v1'vi—1""'v1’y]*
and so several applications of 4.2 give

LRI B o N T T I O 2
[“k*'“’“l"’l""*"1+1'71"’1-1'~'"“1'“'“ =
‘“k----’“1"’1'---v"uvvv"i-v---"’p“"'y =

Kuk,...,,ul,yl* [vl,...,vhl,vi,vi_l,...,vl,q]*= t°.

In the proofs of the following lemmas u = v expresses the
fact that (u,v)e& T follows from 4.3.
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4.4, Lemma. Let t be a term and e, f be two occurrences of
two variables z, x in t such that e ends with 1 and f ends with 2.
Let t° be the term obtained from t by replacing the occurrence f
of x by zx. Then (t,t")eT.

Proof. By induction on t. It follows easily from 4.3 that
it is enough to prove our assertion under the assumption that t=2k
for some k1, so that t= [tk,...,tl,xJ' for some terms t,,...,t;.
By induction it is enough to consider the case when e is an occur-
rence of z inside tk, i.e. e=1lg for some occurrence g of z in tk.
It t, =z then

t = iz,tk_l,...,tl,x]* ; [z,z,tk_l,...,tl,x]* : '

€35 SURTE IS VIPYRURIS I8 B 1y :...:[z,tk_l,...,tl,z,xj* = t°.
So, let tk be a composed term. Denote by i the positive integer
such that 2i is an occurrence of a variable in tk; this variable,
the last variasble in tk, denote by y. Let a be the term obtained
from tk by replacing the occurrence 2i of y by x and let b be the
term obtained from tk by replacing the occurrence 21 of y by zx.
By inductjon, (a,b)&T. By 8.3, (t,fa,t,_,,...,t;,y]* ) eT and
(t7,0b,t _;,...,t;,y)% ) €T, From this we get (t,t)eT.

4.5. EE!!EL The following equations belong to T:

(9) (z(zxsu))x = zx.u, .
(10) (z(zz.u))x = zu.x,
(11) uv.(uu.z) = uv.z,
(12) uv.((u.z2)x) = uv.zx.

" Proof.
(9) (z(zx.u))x = zx.(zx-.u) = zx,u;
(10)  (z(zz.u))x = (z(zu.u))x = zx.(zu.u) 2 zu. (zu.x) 3 Zu.xXg
(11) wuv.(uu.z) = uv.(uz.-z) = uz-(qz.v) 3 UZ-V'; uv.zZ3

(12) uv.(Cus22)x) ; uv.((u-zu)x) = uv. (ux.zu) ; uv.(uu.zx) = uv.zx.
3
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4.6. Lemma. Let m,kZ0. Then the equation
[ym,.“,yl,x]'[zk,.“,zl,le*= [ym,.“,yl,xJ*fzk,.”,zl,zzJ*
belongs to T.

Proof. For m=0,

xz, ... ,2y,200% : [x,x,2y5. .0 ,2y,2x3% el
[x,zk,...,zl,x-le* = Ix,2,...,2y,%.22]% =, .=
[x,x,zk,...,zl,zz]* ; x(zk,...,zl,zz)*-
For m21,
[ym,...,yl,x]* [zk,...,zl,zx)* e [ym,...,yl,x]' fz,2,,...
.,zl,xJ'
{alym,...,yl,x]” [ym-zz,zk,...,zl,x]' :[ym,...,yl,x]“[ymx,zk,

A

zl,zzJ’ : [ym,...,yl,zk,...,zl,zzl* (ypx-x) ; Typsc--

YT
zy,22)% (y y, %) E Cygs - s¥ X Dypypazy, .- n2y,221% ;1
[ym....,yl,xl' [zk,...,zl,zzl“~
4.7. Lemma. Let t be a term of the form t= Itk,...,tl,zx]’
where x, z are variables and x has at least two occurrences in t.
Then (t,[tk,...,tl,zzl’ YeT.
Proof. By induction on t. If x evar(tl)u... uvar(tk_l),
we can use the induction assumption. Hence, let xe.var(tk). It
x is the last variable in tk, the assertion follows from 4.6; if

not, we can use 4.3 and the induction.

4.8. Lemma. Let t be a term of the form t= [t,,...,t;,2)"
where z is 8 vPriable having an occurrence in t ending with 1.
Then (t,ltk,...,tl,zz]*)s T.

Proof. If z4 var(t,) then ze var(tl)u ...uvar(t, ) and we

can use the induction assumption. Now, let 26 v:r(tk). It tk=z.
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the assertion follows from (4) and (5). If t, is not a variable,

we can use 4.3 and the induction.

4.9. Lemma. Let t be a term and e, f be two occurrences of
two variables z, x in t such that e ends with 1 and f ends with 2;
let x have at least two occurrences in t. Let t° be the term ob-
tained from t by replacing the occurrence f of x by z. Then (t,t")e
eT.

Proof. It follows from 4.3, 4.4, 4.7 and 4.8.

4.10. Lemma. Let t be a term and x € var(t). Then (tt,tx)c T.
Proof. Let us fix a variable z¢ var(t). By 4.9 we have
(z.tx,z.tz) e T, so that (t-tx,t-tt)e T; by (5) we get (tx,tt)eT.

4.11. Lemma. Let t be a term and x,zs var(t); let f be an
occurrence of x in t, ending with 2, and let x have at least two -
occurrences in t. Let t° be the term obtained from t by replacing
the occurrence f of x by z. Then (t,t")eT.

Proof. By induction on t. By 4.3 we can assume that g=2K
for some kZ1, so that t= [tk,...,tl,xl" for some terms tl""
...,tk. By 4.9 we can suppose that all occurrences of z in t end
with 2. Let x cvar(t;) and zsvar(tj).

First, let i=j and j#% k. By the induction assumption it is
enough to consider the case i=k; by (4) we can assume that j=1,
so that zevar(tl). It follows from 4.7 that (t,Ltk,...,tl,tll"')e
eT. By 4.10, (t;t,,t;2)eT and so (t,t)eT.

Next, let i=j. Then we can assume that i=j=k, since otherwi-
se we could make use of the induction. This means x,z e var(t,).
By 4.3 we can suppose that t= [ul,...,ul,z 1¥ for some terms
Up,...,u;. We have (t,[ul,...,ul,tk_l,...,tl,x]‘ z)eT by 4.3

and so (t,[ul,...,ul,tk_l,...,tl,z]’_‘ x) e T. From this we see

- 429 -



thst it is enough to prove the assertion under the assumption k=1.
It x cvar(ul) then

t = lul,...,ul,zl’x 10-

ooy, x¥z = (Luy,...,uy,x3*(u uy0 2)
1 11 1 1 171
fup,...,uy,23%(uyxez) = (by 4.11) =

=1

i 1*( L)
= luy,...0,u,,X Uy2.2) =
7 1 1 1 L

1
It xé& vat(ul) then by (4) we can assume x € ""("1-1)' Then

u
Lup,enn,uy,23% (ugugez) . Luy,...,up,2)%2.
t = tuy,...up,20%x : upxeuy jluy oy een,uy,20" :
ulx-(ul_loul_llul_z,...,ul,z]’) Z[ul,...,ul,zJ*-ul_lx =
[ul,...,ul,x]’-ul_lz : [ul,ul_z,...,ul,ul_li’ﬁul_lz = (by 4.10) =
[ul'u1-2‘"”ul’ul-lul-lJ"ul-lz E ful,ul_z,...,ul,ul_l,ul_l,zl’.
Uy . [ul,gl_z,...,ul,ul_l,z]"-ul_1 E Lup,up_g,-0sby,
“1-1"1313’2 = (by 4.9) = [uj,uy_5,...,up,uy 202 : Luy,...
coauy,2)%z.
It remains to consider the case when x & var(t;) and zevar(t,).
It t1d~x then by interchanging the last (occurrence of) variable
in t1 with z we get either the case considered earlier (the case
x 6var(tk), z evar(tl)) or the case settled down by induction. So
let t1=x. We can, moreover, assume that z is the last variable in
t, and so t=[u;,...,u1,z]*[tk_l,...,tz,xxl* for some terms
Upyeensly. Then
to=Tuy,.oo,uy,xx1® [tk_l,...,tz,z]* E [ul,...,ul,xz]* It -
.,tz,x]’-
From the already investigafed case when both the variables belon-
ged to var(t,) we conclude that
t =¥u1,.”,u1,xz]'ltk_l,”.,t2,11'=
Tuy,eonaug,z2% Tty g, tg,x,20% = 87,

By a slender term we mean a term t such that whenever a, b
are two terms and ab is a subterm of t then either a or b is a

variable.
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4.12. Lemma. For every term t there exists a slender term
a such that (t,a)e T and L(t)=L(a).

Proof. By .induction on t. Let t=t;t,. We have t;= [uk,...
.,ul,xJ* for some variable x and terms Upsen el It tlex, we
can use the induction. Let tlikx. By 4.2, (1:,[uk,...,ul,t2]’r x)eT.
By induction, ([uk,...,ul,tzl* ,b) €T tor some slender term b such

that L(b)=L(t). Hence (t,bx) e T where bx is slender.

Let Xyseooa Xy be a finite sequence of variables and let
My,...,m be positive integers. We denote by H(xl'ml;""xkﬂk)
the set of terms defined in this way: . .

H(xl,ml) is the set of terms [xl,yl,yz,....yml] where Yyre-o

¥, 8re arbitrary variables;

it kz 2 then H(xl,ml;...;xk,mk) is the set of terms
[xl,u,yz,...,ymll where ue H(xz,mz;...;xk,mk) and y2""’ym1 are

arbitrary variables.

4.13. Lemma. Let 1€ k<m. The equation
[X,¥pseeos¥pd = Ix Dxyyysein,y diygs o ayyd
belongs to T.
Proof. For m=1 this is the equation (5). Let m>1. We have
Ixbx,yg oo diygne e onyyd :

[Ix:yk:yz»- .. ’yk-ll'["’yl' RS [ I R TR :Ym] E
S PIRERE PR R LIS TS PO S 203 DY ERRREE /9 :

"XIYkiyzi ... ’Yk-l’yliyk+1) .. "ym] c [X’YI! .. 'Iym)‘

4.14. Lemma. Let te H(xl,ml;...;xk,mk), ieqfl,...,k} and
1£j£€m . Then there is a term t'e HOX oMy 5o 3Xg g aMy Xy ,my 5
xi'j‘xi4l'mi+1;"';xk'mk) with (t,t )eT.
Proof. It follows easily from 4.13.
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4.15. Lemma. Let i,jZ1. The equation

Z[X[y,ul, ces ,Uil ,Vz, . ..,VjJ= Z[y[x)ulﬂv2»~- "ij guz, ---,UiJ

belongs to T.

Proof. z[x[y,ul,...,uil.vz,...,vj] ; z([x,vz,...,vJ]
Ly,up,..nsuyd) = Z(ty»“1v---'“1-1)[x’V2"-~»VJr“13) H
2lylx,vp,..oovy,ud,ug, . NI : Z[y[x.ul.vz.--.,ij,uz,...,uiJ.

4.16. Lemma. Let teH(x 1’”1;"‘;xM”k) and let ie{2,...,k-1}.

ihen there is a term t’€ HOXgamy5 oo 3Xg oMy 13%5,79M5475%50M55
X{pgoMi i iX,m) with (t,t)eT.
Proof.‘ It follows essily from 4.15.

4.17. Lemma. Let t,u be two terms such that L(t)=L(u) and

(t,u) is satisfied in A . Then (t,u)eT.

Proof. By 4.12 it is enough to suppose that t, u are both
slender. Then te H(xl'”l;"';xk’mk) and ue H(yl,cl;...;yl.cl) for
some X ,M;,y;,Cy. If one of the terms t, u is Z[xl,...,xn] then by
3.1 both of them are and (t,u) is a conseguence of (1). So, let this
be not the case. The numbers MyyenerM,Cy,y...,Cq are then all £ n-2.
We have X1=Yy- Since Xp,...,X, are just the variables x eé var(t) with
R(x,t)=%0, by (ii) and (iv) we get ixl,...,xk}={y1,...,y1§. More-
over, for every x efxl,...,xk§ the maximal i such that (x,i) e
< {(xl,ml),...,(xk,mk)} coincides with the maximal i such that
(x,i)e {(yl,cl),...,(yl,ci)}.

Suppose first that m1=...=mk=1, so that c1=...=cl=1. Then t =
= Ixy,..0,%,y)% and u=ly,,...,y_,21* for some variables y, z such
that either y,ze (xl,....xki or y=z. Since x1=y;, we get (t,werT
by (4),(5) and 4.11.

Now let miZ.Z for some i and ch 2 for some j. Put
{wl,...,wd} = var(t)‘\{xl,...,xk} = var(u)\{y,,...,y;}. It fol-

lows from 4.14 and 4.16 that there exists a seguence zl,...,zp,
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T)s... T, and two terms t'e H(z;,ry;...52,,1), u'e H(zy,ry5. ..

.;zp,r:) such that (t,t)eT, (u,u’)eT and r1+...+rp-(p-1)z d.
Denote by €y,-..8g all the (pairwise different) occurrences of
variables in the term t’, or in any term from H(zl,rl;...;zp,rp)
(since these are the same) that are ending with 2. We have
s=r1+...+rp-p+lz d. Denote by t" (by u", resp.) the term obtained
from t (from u’,resp.) by replacing the occurrences e, of variab-
les by w for i<£d, and by Xy for i>d. It follows from 4.11 and
4.3 that (t',t")eT and (u’,u")s T. However, evidently t" = u"

and so (t,u)eT.

4.18. Lemma. Let t, u be two terms such that L(t)#L(u) and
(t,u) is satisfied in A,. Then (t,u)eT.

Proof. Put x=L(t) and y=L(u). We shall consider only the
case when neither t nor u is 2 [xl,...,an. By 3.1 we have R(x,t)=
=R(x,u)=R(y,t)=R(y,u)=n-2 and it is easy to see that there is a

term v such that the equations

(t,[x,[y,v,xz,...,xn_2],x2,...,xn_2]),
(u,[y,fx,v,xz,...,xn_zj,xz,...,xn_zl)
where x,=...=x,_,=x both belong to T. By (2) we get (t,u)aT.

Now, Lemmas 4.17 and 4.18 finish the proof of Theorem 4.1.
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