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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
27.3 (1966) 

EQUATIONAL THEORIES OF SOME ALMOST UNARY 
GROUPOiDS 

J. JE2EK 

Abstract: A finite basis is found for the identities of a 
finite unary groupoid whose multiplication is changed so that one 
of its elements becomes a zero. 

Key words: Term, equation, groupoid. 

Classification: 08B05 

-•• Introduction. For every n£3 let us denote by A the 

groupoid with the underlying set 40,1,...,n-l} and the binary 

operation ab defined as follows: if b=0 then ab=0; if b-fcO then 

ab= <p(a) where <qp(0)=0, <gp(l) = 2, g>(2)=3,..., g>(n-2)=n-l, g>(n-l) = 0. 

The aim of this paper is to find a finite basis for the iden­

tities of the groupoid A . More interesting perhaps than the re­

sult itself is the method used in its proof. A list of known uni­

versal algebras with finite bases for their identities is contain­

ed e.g. in W. Taylor's Appendix 4 in 1.13, which also contains an 

explanation of the fundamental notions and can be recommended to 

the reader as a summary of equational logic. 

2- Terms and equations. Notation. The absolutely free grou­

poid over the countably infinite set of variables is denoted by 

W and its elements are called terms. 

The set of variables occurring in a term t is denoted by 
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var(t). 

If t1,...,tk is a finite sequence of terms then the term 

(((tjt2)t,).. .)tk is denoted by 11-,... ,tk]and the term 

tk(...(t3(t2t1))) by [t ^ . . . , ^ ] * 

Let t, u be two terms. We write t-£u if there exists an en-

domorphism h of W such that h(t) is a subterm of u. 

In order to be able to speak consistently about occurrences 

of subterms in a given term, we introduce the following definiti­

ons. 

The free monoid over the set 41,2$ is denoted by E. Its ope­

ration is denoted multiplicatively and its unit element is denot­

ed by 0. If e,feE and the word e is a beginning of the word f, 

we write e&t. Two elements e, f of E are incomparable if neither 

e £f nor f * e. 

Let t be a term. For every ecE define an element t<e> of 

Ww*0$ by induction on the length of e as follows: t<0>=t; if 

t<e>=pq for some terms p, q, put t<el>=p and t<e2>=q; if either 

t<e> is a variable or t<e>=0, put t<el>*t<e2>=0. 

The set 4t<e>;ecE'i is just the union of 4.0} with the set of 

subterms of t. If t<e>*u, we say that e is an occurrence of u in t. 

Obviously, any two occurrences of variables in t are imcompa-

rable. 

Let t be a term, k-£l and elt...,ek be pairwise incomparable 

occurrences of subterms u1,...,uk in t. Let, moreover, v1,...,vk 

be arbitrary terms. It is easy to see that there exists a unique 

term t' such that t '<e-> *vlf... ,t'<ê > =vk and t'<e>=t<e> for any 

eeE incomparable with any of the occurrences e,,...^.. This 

term t' is called the term obtained from t by replacing the occur­

rences elt...,ek of u1,...,uk by vjL,...,V|<. 

For any eeE denote by R(e) the largest number i>0 such that 
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e ends with 1 . 

If t is a term and xevar(t), denote by R(x,t) the maximum 

of the numbers R(e) where e ranges over all occurrences of x in 

t. In other words, R(x,t) is the largest number i such that 

tx,a,,...-a/lis a subterm of t for some terms a,,...,a,. 

If t is a term then t can be written uniquely in the form 

t=tx,a,,...,a.U for some variable x, some iZ 0 and some terms 

a,,...,a.. The variable x (the first, the most left variable in t) 

will be denoted by L(t) and the number i by R(t). Of course, 

t*!(t)=R(l ) where 1 is an occurrence of L(t) in t and so R(t) £ 

-4R(L(t),t). 

By an equation we mean an ordered pair of terms. An equation 

(u,v) will be often denoted by u=v in spite of the danger involved 

in it. If we write u * v, we mean that the equation (u,v) is a 

consequence of some other equation denoted by (oc). 

An equation (u,v) is satisfied in A if h(u)=h(v) for any 

homomorphism h:W—> A . An equation which is satisfied in A is 

also called an identity of A . The set of all identities of A 

is the equational theory of A . 

3. The equational theory of A . A description of the equati­

onal theory of A is given in the following simple proposition. 

3.1. Proposition. Let u, v be two terms. The equation (u,v) 

is satisfied in An iff either u,v six,,...,xnl or the following 

five conditions are satisfied: 

(i) u % txp ... ,xn3 and v £ txp ... »xn3; 

(ii) var(u)=var(v); 

(iii) R(u)=R(v); 

(iv) R(x,u)=R(x,v) for every variable xcvar(u); 
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(v) if L(u)=x and L(v)=y then either x=y or R( x,u)=R(y,u)=n-2. 

Proof. Let (u,v) be satisfied in A and let either 

u -fc tx,,...,x 3 or v £ t x,,...,x 3. For every variable x and eve­

ry pair a, b of elements of A denote by h . the homomorphism 

of W into A_ such that hv h(x)=a and hv h(y)
s D *or a i i varia-

n X,8,D X,8,D 
bles y different from x. Both (i) and (iii) follow from 

hv , ,(u)=hv , ,(v). If xevar(u)\ var(v) then hv n ,(u)=0, and 
X « , . l , l x i j-i- X , U , A 

hx 0 i(v)*°- T n i s Proves (ii). We have R(x,u)-in-2 and R(x,v) & 

-B n-2 for all xcvar(u). If R(x,u)< R(x,v) for some x then 

hx,n-R(x,v),l(u)a|s0 a n d hx,n-R(x,v),l(v)s0' T h i s D r o v e s (iv)- L e t 

L(u)=x, L(v)=y and x4-y. If R(x,u)-«n-2 then hx 2 1(u)4=hx 2 -^(v). 

This proves (v). 

If t is a term such that t*lx, x 3 then evidently h(t)=0 

for any homomorphism h:W—>• A . It remains to prove that if the 

conditions (i),...,(v) are satisfied then (u,v) is an identity 

of A . Let h:W—*• A be a homomorphism. We are going to prove that 

h(u)=h(v). Consider first the case h(u)=0 and let p be a minimal 

subterm of u with h(p)=0. We can write p= tx,p,,...,p. 3 for some 

variable x and some terms p , , . . . , p . . If p=x, we get h(v)=0 from 

h(x)=0 by (ii). If p4-x then k21, h(x)=n-k and R(x,u)2k; by (iv), 

R(x,v)>k and so h(x)=n-k implies h(v)=0. This finishes the proof 

in the case h(u)=0. In the case h(v)=0 the proof is similar. Now 

let h(u)*0 and h(v)4=0. Put L(u)=x and L(v)=y. If x*y then it 

follows from (v) that h(x)=h(y)=l. So, we have h(x)=h(y) in any 

case. Evidently h(u)=h(x)+R(u) and h(v)=h(y)+R(v). By (iii) we 

get h(u)=h(v). 

4. A finite basis for the identities of A . 
• ' - ' ' '"' n 

4.1. Theorem. Let n^3. The equational theory of the grou-
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poid An is generated by the following nine equations: 

(1) y l x 1 > . . . l x n 3 = t x 1 , . . . , x n ] y = I X j , . . . , x n 3 , 

( 2 ) [ x , C y , z 1 , . . . , z n - _ 2 3 , u 2 , . . . , u n _ 2 ] = [ y , f x . Z p . . . , z n _ 2 J , u 2 , . . . 

( 3 ) xy .z = xz#y, 

(4) x ( y . z u ) = x ( z . y u ) , 

(5) x.xy = xy, 

(6) xy.zu * xu*zy, 

(7) xx.y = xy-y , 

( 8 ) x»yy = x - y x • 

Proof. Denote by T the equational theory generated by the­

se nine equations. It follows easily from 3.1 that any of the ni­

ne equations is satisfied in A and so T is contained in the equ­

ational theory of A . Conversely, it 'remains to prove that every 

equation which is satisfied in A belongs to T. The proof of this 

fact will be divided into lemmas. 

*-2- Lemma. .Let m > l . Then the equation 

ty. yi.*J*- • ly. y,..--*-

belongs to T. 

Proof. By induction on m. For m=l it is just the equation 

(3). For .m=2 we have 

(y2.y1x)z = y2
z*y!x s y2 x , yl z = ( y2* yl z ) x* 

For m >2 we have 

ty.,...,y1,x3
|lz = ly||,...,y2,z3*.y1x = íym,... .yj-y^xj" 

i - * • 

. y2z = 
1 l 

-ym,...,y3,y1,y2»
z3,,f x * tym»...»y3»y2»yi>

z J 

where = means a use of the induction assumption. 
I 

**3. Lemma. Let t be a term and e, f be two occurrences of 

two variables x, y in t hnth nf them ending with 2. Let t' be the 
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term obtained from t by replacing the occurrence e of x by y and 

the occurrence f of y by x. Then (t,t')cT. 

Proof. By induction on t. Let ts-t-.tj. If both e and f start 

with 1 (or both with 2, resp.), we can apply the induction assump­

tion to the term t+ (or t2,resp.). Since the last remaining situ­

ation is symmetric, it remains to consider the case when e starts 

with 1 and f with 2, so that, e is an occurrence of x inside t, 

and f is an occurrence of y inside t2. We have t-= tuk,...,u-,z3* 
Is 

for some variable z and some terms ult...,uk where kSTl. If e«V12 

then e is an occurrence inside one of the subterms u.; we have 

(t, luk,.,. ,ulft23*z) * T by 4.2 and so we can apply the induction 

assumption on the term tuk,... i
uii"t2^ wnicn is shorter than t. 

So, let e*12 ; we then have x=z. We can express t 2 in the form 

t2« t v-,,... ,vltq3* for some variable q and some terms v^,...^-.. 

Several applications of 4.2 give 

tuk,...,u1,x3*
t tv1,...,v1,q3* = t uk,... ,u1,v1>... ,v1,q3* x • 

tuk,...,u1,v1,...,v1,x3* q x tuk,...,u1,q3*Iv1,...,v1,x3** 

So, if f-21*1, we are through. If f * 2 U 1 then f=2ilg for some 

iefl,...,!} and some occurrence g of y in Vj. Denote by v". the 

term obtained from v, by replacing the occurrence g of y by x. 

By what has been proved above, t* tuk,... ,u-,q 3* tv-.,... ,v-,x3*» 

By induction, tv1>...,v1>x3* * tvlt...,v1+1,V1,v1_1,...,vlty 3* 

and so several applications of 4.2 give 

t • tuk,...,u1,q3«tv1,...,v1<|.1,v1,vi-1,...,v1,y3*« 

tuk,...,u1,v1>.,.>vi+1,v
,
i>vi-1,...,v1,y3*q * 

tuk,...,u1,v1,...,vi4l,vi,vi-1,...,v1,q3*y * 

tu^,....,u1,y3* tv1,...,vi4>ltvi,vi-1>...,v1,q3
4r» t \ 

In the proofs of the following lemmas u = v expresses the 
L 

fact that (u,v)cT follows from 4.3. 
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**** Lemma• Let t be a term and e, f be two occurrences of 

two variables z, x in t such that e ends with 1 and f ends with 2. 

Let t' be the term obtained from t by replacing the occurrence f 

of x by zx. Then (t,t*) ST. 

Proof. By induction on t. It follows easily from 4.3 that 

it is enough to prove our assertion under the assumption that f=2 

for some k2rl, so that t« C tk,... ,t-,,xJ* for some terms tk,...,t-. 

By induction it is enough to consider the case when e is an occur­

rence of z inside tk, i.e. e=lg for some occurrence g of z in t.. 

If tk*z then 

t = tz.tk_1,...,t1,xJ* * tz,z,tk_1,...,t1,x3*
f = 

5 4 
U,tk-1,z,tk_2,...,t1,x3* =...*[z,tk<_1,...,t1,z,x:3*-: t'. 

4 4 
So, let t. be a composed term. Denote by i the positive integer 

such that 2 is an occurrence of a variable in tk; this variable, 

the last variable in t., denote by y. Let a be the term obtained 

from t. by replacing the occurrence 2 of y by x and let b be the 

term obtained from t. by replacing the occurrence 2 of y by zx. 

By induction, (a,b)*T. By 4.3, (t,ta,tk_lt... ,tpy3* ) «T and 

(t',tb,tk-1,...,t1,y3* ) €T. From this we get (t,t')eT. 

*-5- Lemma. The following equations belong to T: 

(9) (z(zx*u))x * zx.u, 

(10) (z(zz*u))x • zu-x, 

(11) uv»(uu*z) » uv»z, 

(12) uv.((u»zz)x) « uv*zx. 

Proof. 

(9) (z(zx*u))x * zx.(zx.u) « ZX*U; 
3 5 

(10) (z(zz.u))x * (z(zu.u))x s zx.(zu.u) * zu.(zu.x) s ZU«X| 
7 3 6 * . 

(11) uv.(uu.z) * uv.(uz»z) « uz.(uz-v) * UZ*V - U V - 2 | 
7 6 5 3 

(12) uv.((u.zz)x) « uv*((u.zu)x) * uv. (ux.zu) » uv.(uu.zx) a uv.zx. 
8 3 6 11 
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4.6. Lemma. Let m,k.>0. Then the equation 

tym,...»y1,*3*tzk,...,z1,zx3* * tyro,...,y1,x3*r2k,...,21,22j* 

belongs to T. 

Proof. For ro*0, 

Xt2k,...,21,2x3* m tx,X,Zk,...,21,2x3* «...= 

tx,Z. , . . .,Z, ,X.ZX3* = tx,2w,...f2lfX.223* *...« 

* l 8 k * 4 4 
tx,H,zk,...,z1,zz3* • xtzk,...,z1,zz3

#-
For ro >1, 

-ym,...,y1»x]* tzk,...,z1,zx3*
1 *...= tym,...,y1,x3*' [z,2k,... 
4 4 

...,zpx3 

1«2tym,...,yrx3
¥tym-zz,zk,...,z1,x3

,t =tym y^xS'Iy.x^, 

. . . i 

2lf223» • tym,...,y1,zk,...,z1,z23
,c (ymx.x) - rym,... 

..-.y^-V-.-. 

zv**)* <ymym-*) • t y m - - - y p x : i # t y m y m ^ k , . . . , z 1 , 2 z 3 ^ = i 

tym»...,y1,x3* tzk,...,z1,zz3
,<-

*•?* Lemma. Let t be a term of the forro t= ttk,... ,t-,zx3* 

where x, z are variables and x has at least two occurrences in t. 

Then (t, ttk,... ,tltzz3* )eT. 

Proof. By induction on t. If x evar(t-)u... uvar(tk , ) , 

we can use the induction assumption. Hence, let xcvar(t. ). If 

x is the last variable in t., the assertion follows from 4.6; if 

not, we can use 4.3 and the induction. 

*•&. Lemma. Let t be a term of the forro t« ttk,...,t-,z 3* 

where z is a variable having an occurrence in t ending with 1. 

Then (t,ttk,...,t1,zz3*)€ T. 

Proof. If z4var(tk) then zfe var(t-) u ... u var(tk) and we 

can use the induction assumption. Now, 1st 2svtr(tk). If * k
sz, 
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the assertion follows from (4) and (5). If t. is not a variable, 

we can use 4.3 and the Induction. 

**9* leroroa> Let t be a terro and e, f be two occurrences of 

two variables z, x in t such that e ends with 1 and f ends with 2; 

let x have at least two occurrences in t. Let t' be the term ob­

tained from t by replacing the occurrence f of x by z. Then (t,t')e 

eT. 

Proof. It follows from 4.3, 4.4, 4.7 and 4.8. 

*-10* Lemma• Let t be a term and xevar(t). Then (tt,tx)eT. 

Proof. Let us fix a variable z^var(t). By 4.9 we have 

(z-tx,z.tz)&T, so that (t-tx,t »tt) 6 T; by (5) we get (tx,tt)€T. 

*•-»-•• leroroa• Let t be a term and x,zevar(t); let f be an 

occurrence of x in t, ending with 2, and let x have at least two 

occurrences in t. Let t' be the term obtained from t by replacing 

the occurrence f of x by z. Then (t,t')«T. 

Proof. By induction on t. By 4.3 we can assume that f=2 

for some k Z l , so that t= ttk,... ,t-,x3* for some terms t-,... 

. ..,t.. By 4.9 we can suppose that all occurrences of z in t end 

with 2. Let xtvarCtJ and z*var(t.). 

First, let i-4-j and j4-k. By the induction assumption it is 

enough to consider the case i=k; by (4) we can assume that j=l, 

so that zcvar(t 1). It follows from 4.7 that (t,ttk,... .t^t-^*) 6 

eT. By 4.10, (t-^, t-^) e T and so (t,t')*T. 

Next, let i = j. Then we can assume that i=js=k, since otherwi­

se we could make use of the induction. This means x,26var(t, ). 

By 4.3 we can suppose that tk= tu1,...,u1,z 1* for some terms 

u1,...,u1. Me have (t.lu-p ... »"i»tk„1, • • • .t^xl* z) e. T by 4.3 

and so (t, tu,,... ,Uj, ,tk ,, ...,tltz3*x)eT. From this we see 
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that it is enough to prove the assertion under the assumption k=l. 

If x « v a r ( u . 1 ) then 

t * tup ... ,ultz3*x = tu1,...,u1,x3
s|fz * (tu-_,... ,u1,xJ*(u1u1*z) 

= luj,... ,u1,x3*(u1z-z) a tuj,... ,u1,z5
#(u-.x-z) « (by 4.11) = 

lu1,...,u1,z}*(u1u1«z) * tu1,...,u1,zj*z. 

If x^var(u1) then by (4) we can assume x£var(u, , ) . Then 

t * tu1,...,u1,zl*x * u1x-u1-1tu1-2,...,u1,z]
5,r * 

ulx*(ul-l,ul-l,[ul-2'*,-»ul'z:3*) *tu1,...,u1,z3*-u1_1x -
o L 

tu1,...,u1,x3*«u1-1z -- tulfu1-2,... ,u1,u1-1x3*-u1-1z = (by 4.10) * 

^ul,ul-2» * * * ,ul»ul-lul-l-**#ul-lz * Iul»ul-2»'' * »ul»ul-l»ul-l»2-3*' 

•ul-l . lul.4l-2»--"ul'lll.l«^*-u.i.i • Eui.ui.2.---»
ul» 

Ul-lul-i:3*fz * (by **9) * fui»ui.2'---'
ul»ul-lz:!*lz * tui»---

4 

...,u1,z3*z. 

It remains to consider the case when xevar(t,) and zevar(t k). 

If t,4-x then by interchanging the last (occurrence of) variable 

in t1 with z we get either the case considered earlier (the case 

x *var(tk), z evar(t1)) or the case settled down by induction. So 

let t,=x. lie can, moreover, assume that z is the last variable in 

tk and so t-^tup... ,u-,,z 3* tt k l,... ,t2,xx3* for some terms 

u,,...,u,. Then 

t « tu1,...,u1,xx3* ttk-1,...,t2,z3* = lu1,...,u1,xz3
,,t rtk-1,.. 

...,t2,x3*. 

From the already investigated case when both the variables belon­

ged to var(t.) we conclude that 
t » Iu1,...,u1,xz3*ttk-1,...,t2,z3

,f » 
lu1,...,u1,z3* ttk-1,...,t2,x,z3* = t . 

By a slender term we mean a term t such that whenever a, b 

are two terms and ab is a subterm of t then either a or b is a 

variable. 
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* 1 2 - Lemma. For every term t there exists 8 slender term 

a such that (t.a)eT and L(t)=L(a). 

Proof. By induction on t. Let t«t-t2. We have t-* tuk,... 

...,u-,xj* for some variable x and terms u,,...,uk. If t,*x, we 

can use the induction. Let t ^ x . By 4.2, (t,tuk,...,u-,t23* x)cT. 

By induction, (Cuk,... , u - , t 2 . 3 * ,b)eT for some slender term b such 

that L(b)=L(t). Hence (t,bx)&T where bx is slender. 

Let x-,...,xk be a finite sequence of variables and let 

m1,...,mk be positive integers. We denote by H(x1,m1;...;X|^nk) 

the set of terms defined in this way: . 

H(x1,m1) is the set of terms t
xi»ypy2» * • • *vm -1 *

nere yi»-*-

...,ym are arbitrary variables; 
ml 
if k ? 2 then H(x1,m1;... ;xk,mk) is the set of terms 

*xl»u,y2,'*,,ym 3 where u*H(x2f»2;...;xk-iik) and y2> •••»*„,
 a r» 

arbitrary variables. 

*•!-*• Lemma. Let l^k^m. The equation 

tx,ylt...,yro3
 s tx t x,y1,...,yk3,y2,...,y|n3 

belongs to T. 

Proof. For m«l this is the equation (5). Let m > l . We have 

txtx,y1,...,yk3,y2,...,ym3 * 

ttx,yk,y2,...,yk-13•h.y-,...,yk3,yk+1,...,yro3 -

ttx,yk,y2,...,yk.134x,yk,y2,...,yk-13y1,yk+1,...,yro3 -

tx,yk,y2,...,yk.1,y1,yk+1,...,yro3 • tx,Vl,...,ym3. 

*-1*- Lemtna• Let t € H(x1,m1;... jxk,mk), i € ilt... ,k J and 

l^-j^m,. Then there is a term t 'e H(x1,m1;... ;x1__1,mi _i*X|»'»4» 

x i , . j ; x i 4 1 , m i + 1 ; . . . ; x k , m k ) with (tft')eT. 

Proof. It follows easily from 4.13. 
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4.15. Lemma. Let i J - S 1 - The equation 

z C x [ y t u l t . . . t u i 3 , v 2 , . . . , V j 3 « z [ y £ x f u l t v 2 , . . . .v^J , u 2 > . . . .UjJ 

belongs to T. 

Proof. zCxty f u l t . . . t u 1 3 , v 2 , . . . ,V j3 « z ( f x , v 2 , . . . ,v.j3 

[ y , u l f . . . t u . p ) * z ( t y , u 1 , . . . » u 1 . 1 3 - x , v 2 , . . . , v j , u i 3 ) « 

z [ y t x , v 2 , . . . , v j , u i 3 , u 2 , . . . , u i ^ 1 , u 1 l * zCy t x . u ^ v , , , . . . .v^D.Uj, . . . ^ 3 . 

4 - 1 6 - L e m m a • L e t t c H ( x i » m i * » - - * » x « i m k ) a n d l e t i c * 2 » — »K--J. 

Then there i s a term t ' e H(x1 ,m1; . . . ;x i^i»mi„i»xi+i»mi . t .i»
xi»mi» 

x i + 2 , m i + 2 ; . . . , x k , m k ) with ( t , t ' ) c T . 

Proof. It follows easily from 4.15. 
A 

**17- L e m m a• 1-et *>u D e t w 0 t e r m s s u c n t n a t L(t)«L(u) and 

(t,u) is satisfied in An- Then 0*,u)eT. 

Proof. By 4.12 it is enough to suppose that t, u are both 

slender.^Then tc H(x1,m1j...;xk,mfe) and u6 H(y1,c1;...;y1,c1) for 

some xi»mi»yi»ci- If o n e o f t n e t e r m s t» u is *2tx1,...,xn3 then by 

3.1 both of them are and (t,u) is a consequence of (1). So, let this 

be not the case. The numbers n.̂ ,... ,mk,c1,... .c-. are then all -£ n-2. 

We have xi=yi- Since x-.,...,xk are just the variables x«var(t) with 

R(x,t)=fcO, by (ii) and (iv) we get 4 Xp ... ̂ J ^ y - p •.. ,y1l. More­

over, for every x efxp ... ,xk$ the maximal i such that (xti) c 

c 4(X1,IR1), ... ,(xk,(ak)i coincides with the maximal i such that 

(x,i)€ 4(yltc1)t...f(yltc1)j. 

Suppose first that m1»...*mk*l, so that c-«.. ,=c-,-*l. Then t = 

* £xp... ,xk,y3* and u*tylf...,y ,z3* for some variables y, z such 

that either ytze 4xp ... ,xk$ or y»z. Since Xi=yp we get (t,u)£T 

by (4),(5) and 4.11. 

Now let n̂ -t. 2 for some i and cx> 2 for some j. Put 

{*lt...twdi * var(t)x4xlt...,xk} » var(u)\4 y%i... tyx} . It fol­

lows from 4.14 and 4.16 that there exists a sequence 2-.,...,z, 
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tl$... ,r and two terns t*6 H(z1,r1;...;z ,r ), u'e H(z1,r1$... 

...;z ,r ) such that (t,t')cT, (u,u')eT and r-^.. .+r -(p-l)> d. 

Denote by e,,...,e all the (pairwise different) occurrences of 

variables in the term t', or in any term from H(z-,,r-,;... ;z ,r ) 

(since these are the same) that are ending with 2. We have 

s=r-+...+r -p+l*> d. Denote by t" (by u", resp.) the term obtained 

from t'(from u',resp.) by replacing the occurrences e. of variab­

les by w, for i^d, and by Xj for i>d. It follows from 4.11 and 

4.3 that (t'-t")€T and (u',u")sT. However, evidently trt = u" 

and so (t,u)cT. 

*'!&' Lemma. Let t, u be two terms such that L(t)#»L(u) and 

(t,u) is satisfied in An. Then (t,u)eT. 

Proof. Put x=L(t) and y=L(u). We shall consider only the 

case when neither t nor u is Z Ix,,...,x 3. By 3.1 we have R(xft) = 

=R(x,u)=R(y,t)=R(y,u)=n-2 and it is easy to see that there is a 

term v such that the equations 

(t,-x,ty,v,x2,...,xn_2J,x2,...,xn-2l), 

(u,Cy,Cx,v,x2,...,xn-2],x2,...,xn_2}) 

where x2=...=xn 2=x both belong to T. By (2) we get (t,u)*T. 

Now, Lemmas 4.17 and 4.18 finish the proof of Theorem 4.1. 
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