Commentationes Mathematicae Universitatis Caroline

Jaroslav Ježek
 Equational theories of some almost unary groupoids

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 3, 421--433

Persistent URL: http://dml.cz/dmlcz/106464

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 27,3 (1986)

EQUATIONAL THEORIES OF SOME ALMOST UNARY GROUPOIDS J. JEZEK

```
Abstract: A finite basis is found for the identities of a finite unary groupoid whose multiplication is changed so that one of its elements becomes a zero.
Key words: Term, equation, groupoid.
Classification: 08BO5
```

1. Introduction. For every $n \geq 3$ let us denote by A_{n} the groupoid with the underlying set $\{0,1, \ldots, n-1\}$ and the binary operation $a b$ defined as follows: if $b=0$ then $a b=0$; if $b \neq 0$ then $a b=\varphi(a)$ where $\varphi(0)=0, \varphi(1)=2, \varphi(2)=3, \ldots, \varphi(n-2)=n-1, \varphi(n-1)=0$.

The aim of this paper is to find a finite basis for the identities of the groupoid A_{n}. More interesting perhaps than the result itself is the method used in its proof. A list of known universal algebras with finite bases for their identities is contained e.g. in W. Taylor's Appendix 4 in [1], which also contains an explanation of the fundamental notions and can be recommended to the reader as a summary of equational logic.
2. Terms and equations. Notation. The absolutely free groupoid over the countably infinite set of variables is denoted by W and its elements are called terms.

The set of variables occurring in a term t is denoted by
var(t).
If t_{1}, \ldots, t_{k} is a finite sequence of terms then the term $\left(\left(\left(t_{1} t_{2}\right) t_{3}\right) ..\right) t_{k}$ is denoted by $\left[t_{1}, \ldots, t_{k}\right]$ and the term $t_{k}\left(\ldots\left(t_{3}\left(t_{2} t_{1}\right)\right)\right)$ by $\left[t_{k}, \ldots, t_{1}\right]^{*}$.

Let t, u be two terms. We write $t \leq u$ if there exists an endomorphism h of W such that $h(t)$ is a subterm of u.

In order to be able to speak consistently about occurrences of subterms in a given term, we introduce the following definitions.

The free monoid over the set $\{1,2\}$ is denoted by E. Its operation is denoted multiplicatively and its unit element is denoted by \emptyset. If $e, f \in E$ and the word e is a beginning of the word f, we write $e \leq f$. Two elements e, f of E are incomparable if neither $e \leq f$ nor $f \leqslant e$.

Let t be a term. For every $e \in E$ define an element $t\langle e\rangle$ of $W \cup\{\emptyset\}$ by induction on the length of e as follows: $t\langle\emptyset\rangle=t$; if $t\langle e\rangle=p q$ for some terms p, q, put $t\langle e 1\rangle=p$ and $t\langle e 2\rangle=q$; if either $t\langle e\rangle$ is a variable or $t\langle e\rangle=\emptyset$, put $t\langle e 1\rangle=t\langle e 2\rangle=\emptyset$.

The set $\{t\langle e\rangle ; e \in E\}$ is just the union of $\{\emptyset\}$ with the set of subterms of t. If $t\langle\rangle=u$, we say that e is an occurrence of u in t.

Obviously, any two occurrences of variables in t are imcomparable.

Let t be a term, $k \geq 1$ and e_{1}, \ldots, e_{k} be pairwise incomparable occurrences of subterms u_{1}, \ldots, u_{k} in t. Let, moreover, v_{1}, \ldots, v_{k} be arbitrary terms. It is easy to see that there exists a unique term t^{\prime} such that $t^{\prime}\left\langle e_{1}\right\rangle=v_{1}, \ldots, t^{\prime}\left\langle e_{k}\right\rangle=v_{k}$ and $t^{\prime}\langle e\rangle=t\langle e\rangle$ for any $e \in E$ incomparable with any of the occurrences e_{1}, \ldots, e_{k}. This term t^{*} is called the term obtained from t by replacing the occurrences e_{1}, \ldots, e_{k} of u_{1}, \ldots, u_{k} by v_{1}, \ldots, v_{k}.

For any $e \in E$ denote by $R(e)$ the largest number $i \geq 0$ such that
e ends with 1^{1}.
If t is a term and $x \in \operatorname{var}(t)$, denote by $R(x, t)$ the maximum of the numbers $R(e)$ where e ranges over all occurrences of x in t. In other words, $R(x, t)$ is the largest number i such that $\left[x, a_{1}, \ldots, a_{i}\right]$ is a subterm of t for some terms a_{1}, \ldots, a_{i}.

If t is a term then t can be written uniquely in the form $t=\left[x, a_{1}, \ldots, a_{i}\right]$ for some variable x, some $i \geq 0$ and some terms a_{1}, \ldots, a_{i}. The variable x (the first, the most left variable in t) will be denoted by $L(t)$ and the number i by $R(t)$. Of course, $R(t)=\dot{R}\left(1^{i}\right)$ where 1^{i} is an occurrence of $L(t)$ in t and so $R(t) \leq$. $\leqslant R(L(t), t)$.

By an equation we mean an ordered pair of terms. An equation (u, v) will be often denoted by $u=v$ in spite of the danger involved in it. If we write $u \neq v$, we mean that the equation (u, v) is a consequence of some other equation denoted by (α).

An equation (u, v) is satisfied in A_{n} if $h(u)=h(v)$ for any homomorphism $h: W \rightarrow A_{n}$. An equation which is satisfied in A_{n} is also called an identity of A_{n}. The set of all identities of A_{n} is the equational theory of A_{n}.
3. The equational theory of A_{n}. A description of the equational theory of A_{n} is given in the following simple proposition.
3.1. Proposition. Let u, v be two terms. The equation (u,v) is satisfied in A_{n} iff either $u, v \geq\left[x_{1}, \ldots, x_{n}\right]$ or the following five conditions are satisfied:
(i) $u \notin\left[x_{1}, \ldots, x_{n}\right]$ and $v \neq\left[x_{1}, \ldots, x_{n}\right]$;
(ii) $\operatorname{var}(u)=\operatorname{var}(v)$;
(iii) $R(u)=R(v)$;
(iv) $R(x, u)=R(x ; v)$ for every variable $x \in \operatorname{var}(u)$;
(v) if $L(u)=x$ and $L(v)=y$ then either $x=y$ or $R(x, u)=R(y, u)=n-2$.

Proof. Let (u, v) be satisfied in A_{n} and let either $u \neq\left[x_{1}, \ldots, x_{n}\right]$ or $v \not \subset\left[x_{1}, \ldots, x_{n}\right]$. For every variable x and every pair a, b of elements of A_{n} denote by $h_{x, a, b}$ the homomorphism of W into A_{n} such that $h_{x, a, b}(x)=a$ and $h_{x, a, b}(y)=b$ for all variables y different from x. Both (i) and (iii) follow from $h_{x_{1}, 1,1}(u)=h_{x_{1}, 1,1}(v)$. If $x \in \operatorname{var}(u) \backslash \operatorname{var}(v)$ then $h_{x, 0,1}(u)=0$, and $h_{x, 0,1}(v) \neq 0$. This proves (ii). We have $R(x, u) \leq n-2$ and $R(x, v) \leq$ $\leq n-2$ for all $x \in \operatorname{var}(u)$. If $R(x, u)<R(x, v)$ for some x then $h_{x, n-R(x, v), 1}(u) \neq 0$ and $h_{x, n-R(x, v), 1}(v)=0$. This proves (iv). Let $L(u)=x, L(v)=y$ and $x \neq y$. If $R(x, u)<n-2$ then $h_{x, 2,1}(u) \neq h_{x, 2,1}(v)$. This proves (v).

If t is a term such that $t z\left[x_{1}, \ldots, x_{n}\right]$ then evidently $h(t)=0$ for any homomorphism $h: W \rightarrow A_{n}$. It remains to prove that if the conditions (i),..., (v) are satisfied then (u, v) is an identity of A_{n}. Let $h: W \rightarrow A_{n}$ be a homomorphism. We are going to prove that $h(u)=h(v)$. Consider first the case $h(u)=0$ and let p be a minimal subterm of u with $h(p)=0$. We can write $p=\left[x, p_{1}, \ldots, p_{k}\right]$ for some variable x and some terms p_{1}, \ldots, p_{k}. If $p=x$, we get $h(v)=0$ from $h(x)=0$ by (ii). If $p \neq x$ then $k \geq 1, h(x)=n-k$ and $R(x, u) \geq k$; by (iv), $R(x, v) \geq k$ and so $h(x)=n-k$ implies $h(v)=0$. This finishes the proof in the case $h(u)=0$. In the case $h(v)=0$ the proof is similar. Now let $h(u) \neq 0$ and $h(v) \neq 0$. Put $L(u)=x$ and $L(v)=y$. If $x \neq y$ then it follows from (v) that $h(x)=h(y)=1$. So, we have $h(x)=h(y)$ in any case. Evidently $h(u)=h(x)+R(u)$ and $h(v)=h(y)+R(v)$. By (iii) we get $h(u)=h(v)$.

4. A finite basis for the identities of A_{n}.

4.1. Theorem. Let $n \geq 3$. The equational theory of the grou-
poid A_{n} is generated by the following nine equations:
(1) $y\left[x_{1}, \ldots, x_{n}\right]=\left[x_{1}, \ldots, x_{n}\right] y=\left[x_{1}, \ldots, x_{n}\right]$,
(2) $\left[x,\left[y, z_{1}, \ldots, z_{n-2}\right], u_{2}, \ldots, u_{n-2}\right]=\left[y,\left[x, z_{1}, \ldots, z_{n-2^{-}}\right], u_{2}, \ldots\right.$ $\left.\ldots, u_{n-2}\right]$,
(3) $x y \cdot z=x z \cdot y$,
(4) $x(y \cdot z u)=x(z \cdot y u)$,
(5) $x \cdot x y=x y$,
(6) $x y, z u=x u \cdot z y$,
(7) $x x \cdot y=x y \cdot y$,
(8) $x \cdot y y=x \cdot y x$.

Proof. Denote by T the equational theory generated by these nine equations. It follows easily from 3.1 that any of the nine equations is satisfied in A_{n} and so T is contained in the equational theory of A_{n}. Conversely, it remains to prove that every equation which is satisfied in A_{n} belongs to T. The proof of this fact will be divided into lemmas.
4.2. Lemma. . Let $m \geq 1$. Then the equation
$\left[y_{m}, \ldots, y_{1}, x\right]^{*} z=\left[y_{m}, \ldots, y_{1}, z\right]^{*} x$
belongs to T.
Proof. By induction on m. For $m=1$ it is just the equation
(3). For $m=2$ we have
$\left(y_{2} \cdot y_{1} x\right) z=y_{3} z \cdot y_{1} x=y_{6} x \cdot y_{1} z=\left(y_{2} \cdot y_{1} z\right) x$.
For $m>2$ we have

$$
\begin{gathered}
{\left[y_{m}, \ldots, y_{1}, x\right]^{*} z=\left[y_{m}, \ldots, y_{2}, z\right]^{*} \cdot y_{1} x=\left[y_{m}, \ldots, y_{3}, y_{1}, x\right]^{*} .} \\
\cdot y_{2} z= \\
{\left[y_{m}, \ldots, y_{3}, y_{1}, y_{2}, z\right]^{*} \underset{4}{=}\left[y_{m}, \ldots, y_{3}, y_{2}, y_{1}, z\right]^{*}}
\end{gathered}
$$

where $=$ means a use of the induction assumption.
4.3. Lemma. Let t be a term and e, f be two occurrences of two variables x, y in t hnth of them ending with 2 . Let t be the
term obtained from t by replacing the occurrence e of x by y and the occurrence f of y by x. Then $\left(t, t^{\prime}\right) \in T$.

Proof. By induction on t. Let $t=t_{1} t_{2}$. If both e and f start with 1 (or both with 2 , resp.), we can apply the induction assumption to the term t_{1} (or t_{2}, resp.). Since the last remaining situation is symmetric, it remains to consider the case when e starts with 1 and f with 2 , so that e is an occurrence of x inside t_{1} and f is an occurrence of y inside t_{2}. We have $t_{1}=\left[u_{k}, \ldots, u_{1}, z\right]^{*}$ for some variable z and some terms u_{1}, \ldots, u_{k} where $k \geq 1$. If $e \neq 12^{k}$ then e is an occurrence inside one of the subterms u_{i}; we have $\left(t,\left[u_{k}, \ldots, u_{1}, t_{2}\right]^{*}\right) \in T$ by 4.2 and so we can apply the induction assumption on the term $\left[u_{k}, \ldots, u_{1}, t_{2}\right]^{*}$ which is shorter than t. So, let $e=12^{k}$; we then have $x=z$. We can express t_{2} in the form $t_{2}=\left[v_{1}, \ldots, v_{1}, q\right]^{*}$ for some variable q and some terms v_{1}, \ldots, v_{1}. Several applications of 4.2 give

$$
\begin{aligned}
& {\left[u_{k}, \ldots, u_{1}, x\right]^{*}\left[v_{1}, \ldots, v_{1}, q\right]^{*}=\left[u_{k}, \ldots, u_{1}, v_{1}, \ldots, v_{1}, q\right]^{*} x=} \\
& {\left[u_{k}, \ldots, u_{1}, v_{z}, \ldots, v_{1}, x\right]^{*} q=\left[u_{k}, \ldots, u_{1}, q\right]^{*}\left[v_{1}, \ldots, v_{1}, x\right]^{*} .}
\end{aligned}
$$

So, if $f=2^{l+1}$, we are through. If $f \neq 2^{1+1}$ then $f=2^{i}$ ig for some $i \in\{1, \ldots, 1\}$ and some occurrence g of y in v_{i}. Denote by \bar{v}_{i} the term obtained from v_{i} by replacing the occurrence g of y by x. By what has been proved above, $t=\left[u_{k}, \ldots, u_{1}, q\right]^{*}\left[v_{1}, \ldots, v_{1}, x\right]^{*}$. By induction, $\left[v_{1}, \ldots, v_{1}, x\right]^{*}=\left[v_{1}, \ldots, v_{i+1}, \bar{v}_{i}, v_{i-1}, \ldots, v_{1}, y\right]^{*}$ and so several applications of 4.2 give

$$
\begin{aligned}
& t=\left[u_{k}, \ldots, u_{1}, q\right]^{*}\left[v_{1}, \ldots, v_{i+1}, \bar{v}_{i}, v_{i-1}, \ldots, v_{1}, y\right]^{*}= \\
& {\left[u_{k}, \ldots, u_{1}, v_{1}, \ldots, v_{i+1}, \bar{v}_{1}, v_{i-1}, \ldots, v_{1}, y\right]^{*} q=} \\
& {\left[u_{k}, \ldots, u_{1}, v_{1}, \ldots, v_{i+1}, \bar{v}_{i}, v_{i-1}, \ldots, v_{1}, q\right]^{*} y=} \\
& {\left[u_{k}, \ldots, u_{1}, y\right]^{*}\left[v_{1}, \ldots, v_{i+1}, \bar{v}_{i}, v_{i-1}, \ldots, v_{1}, q\right]^{*}=t .}
\end{aligned}
$$

In the proofs of the following lemmas $u=v$ expresses the fact that $(u, v) \in T$ follows from 4.3.
4.4. Lemma. Let t be a term and e, f be two occurrences of two variables z, x in t such that e ends with 1 and f ends with 2. Let t^{\bullet} be the term obtained from t by replacing the occurrence f of x by $z x$. Then $\left(t, t^{*}\right) \in T$.

Proof. By induction on t. It follows easily from 4.3 that it is enough to prove our assertion under the assumption that $f=2^{k}$ for some $k \geq 1$, so that $t=\left[t_{k}, \ldots, t_{1}, x\right]^{*}$ for some terms t_{k}, \ldots, t_{1}. By induction it is enough to consider the case when e is an occurrence of z inside t_{k}, i.e. e=1g for some occurrence g of z in t_{k}. If $t_{k}=z$ then

```
\(t=\left[z, t_{k-1}, \ldots, t_{1}, x\right]^{*}=\left[z, z, t_{k-1}, \ldots, t_{1}, x\right]^{*}=\)
\(\left[z, t_{k-1}, z, t_{k-2}, \ldots, t_{1}, x\right]^{*}=\ldots=\left[z, t_{k-1}, \ldots, t_{1}, z, x\right]^{*}=t^{\prime}\).
```

So, let t_{k} be a composed term. Denote by i the positive integer such that 2^{i} is an occurrence of a variable in t_{k}; this variable, the last variable in t_{k}, denote by y. Let a be the term obtained from t_{k} by replacing the occurrence 2^{i} of y by x and let b be the term obtained from t_{k} by replacing the occurrence 2^{i} of y by $z x$. By induction, $(a, b) \in T$. By 4.3 , $\left(t,\left[a, t_{k-1}, \ldots, t_{1}, y\right]^{*}\right) \in T$ and $\left(t^{*},\left[b, t_{k-1}, \ldots, t_{1}, y\right]^{*}\right) \in T$. From this we get $\left(t, t^{*}\right) \in T$.
4.5. Lemma. The following equations belong to T :
(9) $(z(z x \cdot u)) x=z x \cdot u$,
(10) $(z(z z \cdot u)) x=z u \cdot x$,
(11) $u v \cdot(u u, z)=u v, z$,
(12) uv. $((u, z z) x)=u v \cdot z x$.

Proof.
(9) $(z(2 x \cdot u)) x=2 x \cdot(2 x \cdot u)=2 x \cdot u$;
(10) $(z(z z \cdot u)) x_{7}^{=}(z(z u \cdot u)) x_{3}^{=} z x \cdot(z u \cdot u)=z u \cdot(z u \cdot x)=z u \cdot x$;
(11) uv. (uu.z) ${\underset{7}{7}}^{\text {(}} u v \cdot(u z \cdot z)=u z \cdot(u z \cdot v)=u z \cdot v \cdot \overline{5} u v \cdot z ;$
(12) uv. $((u \cdot 2 z) x)=u v \cdot((u \cdot z u) x)=u v \cdot(u x \cdot z u)={ }_{8}^{=} u v \cdot(u u \cdot z x)={ }_{6}^{2} u v \cdot 2 x$.
4.6. Lemma. Let $m, k \geq 0$. Then the equation
$\left[y_{m}, \ldots, y_{1}, x\right]^{*}\left[z_{k}, \ldots, z_{1}, z x\right]^{*}=\left[y_{m}, \ldots, y_{1}, x\right]^{*}\left[z_{k}, \ldots, z_{1}, z z_{1}\right]^{*}$ belongs to T.

Proof. For $m=0$,
$x\left[z_{k}, \ldots, z_{1}, z x\right]^{*}=\left[x, x, z_{k}, \ldots, z_{1}, z x\right]^{*}=\ldots=$
$\left[x, z_{k}, \ldots, z_{1}, x \cdot z x\right]^{*}=\left[x, z_{k}, \ldots, z_{1}, x \cdot z z\right]^{*}=\ldots=$
$\left[x, x, z_{k}, \ldots, z_{1}, z z\right]^{*}=\underset{5}{=} x\left[z_{k}, \ldots, z_{1}, z z\right]^{*}$.
For $m \geq 1$,

$$
\begin{aligned}
& {\left[y_{m}, \ldots, y_{1}, x\right]^{*}\left[z_{k}, \ldots, z_{1}, z x\right]^{*}=\ldots=\left[y_{m}, \ldots, y_{1}, x\right]^{*}\left[z, z_{k}, \ldots\right.} \\
& \left.\ldots, z_{1}, x\right]^{*} \\
& =\left[y_{m}, \ldots, y_{1}, x\right]^{*}\left[y_{m} \cdot z z, z_{k}, \ldots, z_{1}, x\right]^{*}=\left[y_{m}, \ldots, y_{1}, x\right]^{*}\left[y_{m} x, z_{k}\right. \text {, } \\
& \left.z_{1}, z z\right]^{*}=\left[y_{m}, \ldots, y_{1}, z_{k}, \ldots, z_{1}, z z\right]^{*}\left(y_{m} x \cdot x\right)=\left[y_{m}, \ldots\right. \\
& \ldots, y_{1}, z_{k}, \ldots, \\
& \left.z_{1}, z z\right]^{*}\left(y_{m} y_{m} \cdot x\right)=\left[y_{m}, \ldots, y_{1}, x\right]^{*}\left[y_{m} y_{m}, z_{k}, \ldots, z_{1}, z z\right]^{*}= \\
& {\left[y_{m}, \ldots, y_{1}, x\right]^{*}\left[z_{k}, \ldots, z_{1}, z z\right]^{*} \text {. }}
\end{aligned}
$$

4.7. Lemma. Let t be a term of the form $t=\left[t_{k}, \ldots, t_{1}, 2 x\right]^{*}$ where x, z are variables and x has at least two occurrences in t. Then $\left(t,\left[t_{k}, \ldots, t_{1}, z z\right]^{*}\right) \in T$.

Proof. By induction on t. If $x \in \operatorname{var}\left(t_{1}\right) \cup \ldots$ var $\left(t_{k-1}\right)$, we can use the induction assumption. Hence, let $x \in \operatorname{var}\left(t_{k}\right)$. If x is the last variable in t_{k}, the assertion follows from 4.6 ; if not, we can use 4.3 and the induction.
4.8. Lemma. Let t be a term of the form $t=\left[t_{k}, \ldots, t_{1}, z\right]^{*}$ where z is a variable having an occurrence in t ending with 1. Then $\left(t,\left[t_{k}, \ldots, t_{1}, z z\right]^{*}\right) \in T$.

Proof. If $z \notin \operatorname{var}\left(t_{k}\right)$ then $z \in \operatorname{var}\left(t_{1}\right) \cup \ldots u \operatorname{var}\left(t_{k}\right)$ and we can use the induction assumption. Now, lat $2 \in \operatorname{var}\left(t_{k}\right)$. If $t_{k}=z$,
the assertion follows from (4) and (5). If t_{k} is not a variable, we can use 4.3 and the induction.
4.9. Lemma. Let t be a term and e, f be two occurrences of two variables z, x in t such that e ends with 1 and f ends with $2 ;$ let x have at least two occurrences in t. Let t^{\prime} be the term obtained from t by replacing the occurrence f of x by z. Then ($\left.t, t^{\prime}\right) \in$ ET.

Proof. It follows from 4.3, 4.4, 4.7 and 4.8.
4.10. Lemma. Let t be a term and $x \in \operatorname{var}(t)$. Then $(t t, t x) \in T$.

Proof. Let us fix a variable $z \notin \operatorname{var}(t)$. By 4.9 we have $(z \cdot t x, z \cdot t z) \in T$, so that $(t \cdot t x, t \cdot t t) \in T$; by (5) we get ($t x, t t$) $\in T$.
4.11. Lemma. Let t be a term and $x, z \in \operatorname{var}(t)$; let f be an occurrence of x in t, ending with 2 , and let x have at least two occurrences in t. Let t^{\prime} be the term obtained from t by replacing the occurrence f of x by z. Then $\left(t, t^{\prime}\right) \in T$.

Proof. By induction on t. By 4.3 we can assume that $f=2^{k}$ for some $k \geq 1$, so that $t=\left[t_{k}, \ldots, t_{1}, x\right]^{*}$ for some terms t_{1}, \ldots \ldots, t_{k}. By 4.9 we can suppose that all occurrences of z in t end with 2. Let $x \in \operatorname{var}\left(t_{i}\right)$ and $z \in \operatorname{var}\left(t_{j}\right)$.

First, let $i \neq j$ and $j \neq k$. By the induction assumption it is enough to consider the case $i=k$; by (4) we can assume that $j=1$, so that $z \in \operatorname{var}\left(t_{1}\right)$. It follows from 4.7 that ($\left.t,\left[t_{k}, \ldots, t_{1}, t_{1}\right]^{*}\right) \in$ $\in T$. By 4.10, $\left(t_{1} t_{1}, t_{1} z\right) \in T$ and so $\left(t, t^{*}\right) \in T$.

Next, let $i=j$. Then we can assume that $i=j=k$, since otherwise we could make use of the induction. This means $x, z \in \operatorname{var}\left(t_{k}\right)$. By 4.3 we can suppose that $t_{k}=\left[u_{1}, \ldots, u_{1}, z\right]^{*}$ for some terms u_{1}, \ldots, u_{1}. We have $\left(t,\left[u_{1}, \ldots, u_{1}, t_{k-1}, \ldots, t_{1}, x\right]^{*} z\right) \in T$ by 4.3 and so $\left(t,\left[u_{1}, \ldots, u_{1}, t_{k-1}, \ldots, t_{1}, z\right]^{*} x\right) \in T$. From this we see
that it is enough to prove the assertion under the assumption $k=1$. If x evar $\left(u_{1}\right)$ then

$$
\begin{aligned}
& t=\left[u_{1}, \ldots, u_{1}, z\right]^{*} x=\left[u_{1}, \ldots, u_{1}, x\right]_{z}^{*}=\left(\left[u_{1}, \ldots, u_{1}, x\right]^{*}\left(u_{1} u_{1} \cdot z\right)\right. \\
& =\left[u_{1}, \ldots, u_{1}, x\right]^{*}\left(u_{1} z \cdot z\right)=\left[u_{1}, \ldots, u_{1}, z\right]^{*}\left(u_{1} x \cdot z\right)=(\text { by } 4.11)= \\
& 7 \\
& {\left[u_{1}, \ldots, u_{1}, z\right]^{*}\left(u_{1} u_{1} \cdot z\right)=\left[u_{1}, \ldots, u_{1}, z\right]^{*} z .} \\
& \quad \text { If } x \notin \operatorname{var}\left(u_{1}\right) \text { then by }(4) \text { we can assume } x \in \operatorname{var}\left(u_{1-1}\right) \text {. Then }
\end{aligned}
$$

$t=\left[u_{1}, \ldots, u_{1}, z\right]^{*} x=u_{1} x \cdot u_{1-1}\left[u_{1-2}, \ldots, u_{1}, z\right]^{*}=$ $u_{1} x \cdot\left(u_{1-1} \cdot u_{1-1}\left[u_{1-2}, \ldots, u_{1}, z\right]^{*}\right)=\left[u_{1}, \ldots, u_{1}, z\right]^{*} \cdot u_{1-1} x=$ $\left[u_{1}, \ldots, u_{1}, x\right]^{*} \cdot u_{1-1} z=\left[u_{1}, u_{1-2}, \ldots, u_{1}, u_{1-1} x\right]^{*} \cdot u_{1-1} z=($ by 4.10$)=$ $\left[u_{1}, u_{1-2}, \ldots, u_{1}, u_{1-1} u_{1-1}\right]^{*} \cdot u_{1-1} z=\left[u_{1}, u_{1-2}, \ldots, u_{1}, u_{1-1}, u_{1-1}, z\right]^{*}$.
$\cdot u_{1-1}=\left[u_{1}, u_{1-2}, \ldots, u_{1}, u_{1-1}, 2\right]^{*} \cdot u_{1-1}=\left[u_{1}, u_{1-2}, \ldots, u_{1}\right.$,
$\left.u_{1-1} u_{1-1}^{5}\right]^{*} z=($ by 4.9$)=\left[u_{1}, u_{1-2}, \ldots, u_{1}, u_{1-1} z\right]^{*}=\left[u_{1}, \ldots\right.$ $\left.\ldots, u_{1}, z\right]^{*} z$.

It remains to consider the case when $x \in \operatorname{var}\left(t_{1}\right)$ and $z \in \operatorname{var}\left(t_{k}\right)$.
If $t_{1}+x$ then by interchanging the last (occurrence of) variable in t_{1} with z we get either the case considered earlier (the case $x \in \operatorname{var}\left(t_{k}\right), z \in \operatorname{var}\left(t_{1}\right)$) or the case settled down by induction. So let $t_{1}=x$. We can, moreover, assume that z is the last variable in t_{k} and so $t=\left[u_{1}, \ldots, u_{1}, z\right]^{*}\left[t_{k-1}, \ldots, t_{2}, x x\right]^{*}$ for some terms u_{1}, \ldots, u_{1}. Then

$$
\begin{aligned}
& t=\left[u_{1}, \ldots, u_{1}, x \times\right]^{*}\left[t_{k-1}, \ldots, t_{2}, z\right]^{*}=\left[u_{1}, \ldots, u_{1}, \times z\right]^{*}\left[t_{k-1}, \ldots\right. \\
& \left.\ldots, t_{2}, x\right]^{*} .
\end{aligned}
$$

From the already investigafed case when both the variables belonged to var(t_{k}) we conclude that

$$
\begin{aligned}
& t=\left[u_{1}, \ldots, u_{1}, x z\right]^{*}\left[t_{k-1}, \ldots, t_{2}, z\right]^{*}= \\
& {\left[u_{1}, \ldots, u_{1}, z\right]^{*}\left[t_{k-1}, \ldots, t_{2}, x, z\right]^{*}=t^{L} .}
\end{aligned}
$$

By a slender term we mean a term t such that whenever a, b are two terms and $a b$ is a subterm of t then either a or b is a variable.
4.12. Lemma. For every term there exists a slender term a such that $(t, a) \in T$ and $L(t)=L(a)$.

Proof. By induction on t. Let $t=t_{1} t_{2}$. We have $t_{1}=\left[u_{k}, \ldots\right.$ $\left.\ldots, u_{1}, x\right]^{*}$ for some variable x and terms u_{1}, \ldots, u_{k}. If $t_{1}=x$, we can use the induction. Let $t_{1} \neq x$. By 4.2, $\left(t,\left[u_{k}, \ldots, u_{1}, t_{2}\right]^{*} x\right) \in T$. By induction, ($\left.\left[u_{k}, \ldots, u_{1}, t_{2}\right]^{*}, b\right) \in T$ for some slender term b such that $L(b)=L(t)$. Hence $(t, b x) \in T$ where $b x$ is slender.

Let x_{1}, \ldots, x_{k} be a finite sequence of variables and let m_{1}, \ldots, m_{k} be positive integers. We denote by $H\left(x_{1}, m_{1} ; \ldots ; x_{k} m_{k}\right)$ the set of terms defined in this way:
$H\left(x_{1}, m_{1}\right)$ is the set of terms $\left[x_{1}, y_{1}, y_{2}, \ldots, y_{m_{1}}\right]$ where y_{1}, \ldots $\ldots, y_{m_{1}}$ are arbitrary variables;
if $k \geq 2$ then $H\left(x_{1}, m_{1} ; \ldots ; x_{k}, m_{k}\right)$ is the set of terms $\left[x_{1}, u, y_{2}, \ldots, y_{m_{1}}\right]$ where $u \in H\left(x_{2}, m_{2} ; \ldots ; x_{k}, m_{k}\right)$ and $y_{2}, \ldots, y_{m_{1}}$ are arbitrary variables.
4.13. Lemma. Let $1 \leq k \leq m$. The equation
$\left[x, y_{1}, \ldots, y_{m}\right]=\left[x\left[x, y_{1}, \ldots, y_{k}\right], y_{2}, \ldots, y_{m}\right]$ belongs to T.

Proof. For $m=1$ this is the equation (5). Let $m>1$. We have
$\left[x\left[x, y_{1}, \ldots, y_{k}\right], y_{2}, \ldots, y_{m}\right]_{L}^{=}$
$\left[\left[x, y_{k}, y_{2}, \ldots, y_{k-1}\right],\left[x, y_{1}, \ldots, y_{k}\right], y_{k+1}, \ldots, y_{m}\right]_{L}=$
$\left[\left[x, y_{k}, y_{2}, \ldots, y_{k-1}\right] \cdot\left[x, y_{k}, y_{2}, \ldots, y_{k-1}\right] y_{1}, y_{k+1}, \ldots, y_{m}\right]=$
$\left[x, y_{k}, y_{2}, \ldots, y_{k-1}, y_{1}, y_{k+1}, \ldots, y_{m}\right]_{L}=\left[x, y_{1}, \ldots, y_{m}\right]$.
4.14. Lemma. Let $t \in H\left(x_{1}, m_{1} ; \ldots ; x_{k}, m_{k}\right), i \in\{1, \ldots, k\}$ and $1 \leqslant j \leqslant m_{i}$. Then there is a term $t \in H\left(x_{1}, m_{1} ; \ldots ; x_{i-1}, m_{i-1} ; x_{i}, m_{i} ;\right.$ $\left.x_{i}, j ; x_{i+1}, m_{i+1} ; \ldots ; x_{k}, m_{k}\right)$ with $\left(t, t^{\prime}\right) \in T$.

Proof. It follows easily from 4.13.
4.15. Lemma. Let $i, j \geqslant 1$. The equation
$z\left[x\left[y, u_{1}, \ldots, u_{i}\right], v_{2}, \ldots, v_{j}\right]=z\left[y\left[x, u_{1}, v_{2}, \ldots, v_{j}\right], u_{2}, \ldots, u_{i}\right]$ belongs to T.

Proof. $z\left[x\left[y, u_{1}, \ldots, u_{i}\right], v_{2}, \ldots, v_{j}\right]=z\left(\left[x, v_{2}, \ldots, v_{j}\right]\right.$
$\left.\left[y, u_{1}, \ldots, u_{i}\right\}\right)=z\left(\left[y, u_{1}, \ldots, u_{i-1}\right]\left[x, v_{2}, \ldots, v_{j}, u_{i}\right]\right)=$ $z\left[y\left[x, v_{2}, \ldots, v_{j}, u_{i}\right], u_{2}, \ldots, u_{i-1}, u_{1}\right]=z\left[y\left[x, u_{1}, v_{2}, \ldots, v_{j}\right], u_{2}, \ldots, u_{i}\right]$.
4.16. Lemma. Let $t \in H\left(x_{1}, m_{1} ; \ldots ; x_{k} m_{k}\right)$ and let $i \in\{2, \ldots, k-1\}$. Then there is a term $t \in H\left(x_{1}, m_{1} ; \ldots ; x_{i-1}, m_{i-1} ; x_{i+1}, m_{i+1} ; x_{i}, m_{i} ;\right.$ $x_{i+2}, m_{i+2} ; \ldots ; x_{k}, m_{k}$) with $\left(t, t^{\prime}\right) \in T$.

Proof., It follows easily from 4.15.
4.17. Lemma. Let t, u be two terms such that $L(t)=L(u)$ and (t, u) is satisfied in A_{n}. Then $(t, u) \in T$.

Proof. By 4.12 it is enough to suppose that t, u are both slender. Then $t \in H\left(x_{1}, m_{1} ; \ldots ; x_{k}, m_{k}\right)$ and $u \in H\left(y_{1}, c_{1} ; \ldots ; y_{1}, c_{1}\right)$ for some $x_{i}, m_{i}, y_{i}, c_{i}$. If one of the terms t, u is $\geq\left[x_{1}, \ldots, x_{n}\right]$ then by 3.1 both of them are and (t, u) is a consequence of (1). So, let this be not the case. The numbers $m_{1}, \ldots, m_{k}, c_{1}, \ldots, c_{1}$ are then all $\leq n-2$. We have $x_{1}=y_{1}$. Since x_{1}, \ldots, x_{k} are just the variables $x \in \operatorname{var}(t)$ with $R(x, t) \neq 0$, by (ii) and (iv) we get $\left\{x_{1}, \ldots, x_{k}\right\}=\left\{y_{1}, \ldots, y_{1}\right\}$. Moreover, for every $x \in\left\{x_{1}, \ldots, x_{k}\right\}$ the maximal i such that $(x, i) \in$ $\in\left\{\left(x_{1}, m_{1}\right), \ldots,\left(x_{k}, m_{k}\right)\right\}$ coincides with the maximal i such that $(x, i) \in\left\{\left(y_{1}, c_{1}\right), \ldots,\left(y_{1}, c_{1}\right)\right\}$.

Suppose first that $m_{1}=\ldots=m_{k}=1$, so that $c_{1}=\ldots=c_{1}=1$. Then $t=$ $=\left[x_{1}, \ldots, x_{k}, y\right]^{*}$ and $u=\left[y_{1}, \ldots, y_{c}, z\right]^{*}$ for some variables y, z such that either $y, z \in\left\{x_{1}, \ldots, x_{k}\right\}$ or $y=z$. Since $x_{1}=y_{1}$, we get $(t, u) \in T$ by (4), (5) and 4.11.

Now let $m_{i} \geq 2$ for some i and $c_{j} \geq 2$ for some j. Put $\left\{w_{1}, \ldots, w_{d}\right\}=\operatorname{var}(t) \backslash\left\{x_{1}, \ldots, x_{k}\right\}=\operatorname{var}(u) \backslash\left\{y_{1}, \ldots, y_{1}\right\}$. It follows from 4.14 and 4.16 that there exists a sequence z_{1}, \ldots, z_{p},
r_{1}, \ldots, r_{p} and two terms $t^{\circ} \in H\left(z_{1}, r_{1} ; \ldots ; z_{p}, r_{p}\right), u^{\prime} \in H\left(z_{1}, r_{1} ; \ldots\right.$ $\left.\ldots ; z_{p}, r_{p}\right)$ such that $\left(t, t^{\prime}\right) \in T,\left(u, u^{\prime}\right) \in T$ and $r_{1}+\ldots+r_{p}-(p-1) \geq d$. Denote by e_{1}, \ldots, e_{s} all the (pairwise different) occurrences of variables in the term t^{\prime}, or in any term from $H\left(z_{1}, r_{1} ; \ldots ; z_{p}, r_{p}\right)$ (since these are the same) that are ending with 2 . We have $s=r_{1}+\ldots+r_{p}-p+1 \geq d$. Denote by $t^{\prime \prime}$ (by $u "$, resp.) the term obtained from t^{\prime} (from u^{\prime},resp.) by replacing the occurrences e_{i} of variables by w_{i} for $i \leq d$, and by x_{1} for $i>d$. It follows from 4.11 and 4.3 that $\left(t^{\prime}, t^{\prime \prime}\right) \in T$ and $\left(u^{\prime}, u^{\prime \prime}\right) \in T$. However, evidently $t^{\prime \prime}=u^{\prime \prime}$ and so $(t, u) \in T$.
4.18. Lemma. Let t, u be two terms such that $L(t) \neq L(u)$ and (t, u) is satisfied in A_{n}. Then $(t, u) \in T$.

Proof. Put $x=L(t)$ and $y=L(u)$. We shall consider only the case when neither t nor u is $z\left[x_{1}, \ldots, x_{n}\right]$. By 3.1 we have $R(x, t)=$ $=R(x, u)=R(y, t)=R(y, u)=n-2$ and it is easy to see that there is a term v such that the equations

$$
\begin{aligned}
& \left(t,\left[x,\left[y, v, x_{2}, \ldots, x_{n-2}\right], x_{2}, \ldots, x_{n-2}\right]\right) \\
& \left(u,\left[y,\left[x, v, x_{2}, \ldots, x_{n-2}\right], x_{2}, \ldots, x_{n-2}\right]\right)
\end{aligned}
$$

where $x_{2}=\ldots=x_{n-2}=x$ both belong to T. By (2) we get $(t, u) \in T$.
Now, Lemmas 4.17 and 4.18 finish the proof of Theorem 4.1.

Reference

[1] G. GRÄTZER: Universal algebra,second edition. Springer-Verlag, New York 1979.

Matematicko-fyzikalni fakulta, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia
(Oblatum 10.2. 1986)

