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COMMENTATIONES MATHEMATICAE UNIVERSITAT.S- CAROLINAE 

27,4 (1986) 

ON A FIXED POINT THEOREM AND APPLICATIONS TO A TWO 
POINT BOUNDARY VALUE PROBLEM 

Mario ZULUAGA 

Abstract: In this paper we present a fixed point theorem 
which is an extension of a well known theorem due to Krasnosel' 
skii. As a consequence, we give an application to a two point 
boundary value problem. 

Key words: Fixed point, ^boundary value problem. 

Classification: 34B15 

1. Introduction and Notations. We are going to study the two 

point B.V.P. 

u"(t)-fg(u(t)) = 0 
(I) 

u(a)=u(b)=0 

We will prove the following 

Theorem 1. Let g: IR ~-> IR be such that: 

a) g is increasing, 

b) |g(u)-g(v)| £ Pi,|u-v| where Pu is the first eigenvalue for 

the problem 

u"(t)+ *u(t) = 0 
(ID 

u(a)=u(b)=0. 

c) There exists c',c">-c (where c is going to be defined be

low) such that 
g(C-)= lim 9(-c"t) 

X ~~?0& \-

d ) At least one of the fo l lowing equal i t ies ho lds: 

g ( - c " ) = lim 8 < - c ' t ) 

, ( - c " ) - . l imSi f - í l 
t -*<x> t rO> 

Hence, problem (I) has at least a so lu t ion . 

The theorem 1 will be a consequence of the* following fixed point 
theorem. 
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Theorem 2. Let f:H—*-» H be a compact mapping def ined on a 

H i l b e r t space H. Let oC(£> ) be ' the r e a l valued f u n c t i o n oc: lR+—> 

—•*- }R+ such tha t a C ( < o ) > l and l i m oc(f& ) = 1 and suppose t ha t 

a) f o r each u e H, l u 1 -- p > 0, <f (u) ,u > ^ o t ( p ) flu IV 

b) f ( u ) - ttuli f ( ] r
u

r f ) y o ( l i u i i ) i f l iul l ~->oo . 

Then f has a fixed point in H. 

" Remarks. Theorem 2 is an extension of the well known theo

rem due to Krasnosel skii, for example see t2J p. 271. Ifoc(rt>) = 

= 1 for some <p > 0, condition b) in Theorem 2 is superfluous. 

In Theorem 1 we consider the case g'(0)-= ^,. This case has at

tracted much attention recently; for example see L33 for referen

ces and for the interesting case A. £g'(0)-< 'X. , . Our results 

are based on simpler arguments and thus our publication seems to 

be wo r thwh i le . 

Preliminary r e s u l t s . Let H=H'ra,bJ be the Sobolev space of 

square integrable functions on la,bl vanishing on ^a,bj with gene-

raralized first de 

in H are given by 

raralized first derivative in L Ca,b3. The inner product and norm 

<u,v>,= f* u'(t).v'(t) dt, 
1 **íX 

|.u»J- <u,u>r 

We indicate with < j > and ii ii the inner product and norm in 

L [a,b.l. According to the Sobolev's lemma (see lU p.95) H can 

be imbedded in the space of continuous functions defined on La,b]J« 

Thus there exists a real number c >0 such that 

( 1 .1 ) Max | u ( t ) U c J l u L , 
•b 6 tcLjXrJ ° J-

for a l l u £ H. 

By Poincar^'s inequality we have 

(1.2) V u H o " f t u i l l 

for a l l u i H . 

2. Proof of the theorems 

Proof of Theorem 2 . Suppose that for all p > 0, f has no 
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f i x e d po in t s i n *B(0,f> )= A x e H/llx W fejo^ . Then fo r a l l (& > 0 the 

Leray-Schauder degree 

d L I - f , B ( 0 , j> ) , 0 3 = 0 . 

We consider the homotopy, H(x, t ) = x - t f ( x ) , fl x It e ;o and O r t r l . 

There e x i s t s t € . ( 0 , l j and x e H , il x 11 =p such tha t x = t f ( x ) . Let 

At Ac (0,1.1 a n d A x n 1 c H , U x 11= ^ such t ha t p U c » and 

(2.1) V V(xn>" 
By (2.1) and condition a) in Theorem 2 we have 

(2.2) l**,,- l 

From (2,1) and condition b) in Theorem 2 we have 

x„ (2>3) J^J\ wj-n^-°-
x xn 

Now, s ince { i n •} i s bounded, then there e x i s t s ( i< v" •••• f c l i x h J i \xn i) 
X K 

r xn 1 nk 
C { » r and x£H such that -=--—• -*-x (here, —>- denotes the \ixn« RX fl 

weak convergence) . From (2 ,2 ) and cons ider ing tha t oc ( p ) —>1 

i \ 
if p —>oo we have that -r--~ » —=-- x. Since f is compact, 

/ nk s 
f ( ux x\ ) —»f(x). By (2,3) we have f(x) = x. This fact, however, 

nk 

contradicts the assumption that f has no fixed points, and so 

the proof is comp l e t ed . 

Proof of Theorem 1 . The function u(t)& H*La,b) is a gene-
1
 v "

l" 1 o 
ralized solution of (I) if for all v(t)e H^Ca.bl 

(2,4) /^u'(t)v'(t)dt = / * g ( u ( t ) ) . v ( t ) d t . , 

First we will find generalized solutions, u(t), of ( I ) . By the 

standard regularity theory it follows that u(t) is a solution 

o f - ( I ) . 

By condition b) of Theorem 1, by the fact that i:HQta,bJ c_-» 

c—-> L La,b3 is a compact inclusion, by (1.2) and the Riesz's 

theorem we can consider the function f:H Ca,bJ —-> HQta,b3 
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defined by 

( 2 > 5 > < f ( u ) , v > 1 = < g ( u ) , v > 0 

for a l l v ( t )e H*la,b3. 

This function f i s compact and from (2,4), u£H0L"a,bJ is a gene

ralized solution of ( I ) i f and only i f f(u)=u. By condition b) of 

Theorem 1 i f Hull2 « ( \ - ) 2 , "then Hg(u)-g(0)i2 1, hence, by (1,2), 

we have (see [4U p. 26)1 

<f(u),u>16llg(u)l l0 \\u)\Q ± 

( 2 > 6 ) XI 1 x 1 / 9 foCO)l 1 9 ' 

/ i \ i / 9 ttyco') |i 
We denote oc (rt> )= M + — L _ ) i / z + _ _ — S L . . i t is clear that 

> l \?2' vX^p 
ot($o)>l and Lim oc(p) = l . Thus <f(u) . u ^ 4<st(p ), Hull2 , iiull = f -

Finally, to prove that condition b) of Theorem 2 is f u l f i l l e d , i t 

is sufficient to see that Hg(u)-g {-^j-) -»u ̂  ttQ = o( llu 1̂ ) i f 

J\u ft, -—> 00 . In fact: From (1,1) and the condition that c ' , c " > 

> c we have 

(2.7) - c - ^ ^ j - ^ c ' . 

Since g is increasing 

(2.8) g ( -c"Ru» 1 )^g(u)^g(c ' \\u\). 

Also, from (2.7) we have 

(2.9) g ( - c " ) ttull-^g (yzj-) Hu 11-̂  g(c') liui^ . 

From (2,8) and (2,9) we have 

g(-c"Hutt1)-g(c')«uj»14g(u)-g ( 1 r^ r ) - Uul^ *. 

( 2 . 1 0 ) X 

* g ( c ' ftull-J-gí-c"). i l u ^ . 

g ( - c " ) ftu\lrg(-c' l u l L ) 6 g (^H— \ HulL-g(u) é 

( 2 , U ) 4g (c ' ) Hul^-gC-c" Hulip. 
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From (2,10),(2,11) and condition d) of.Theorem 1 we have 

1-dSir) ""•i--<->l 

Lim i = 0 . 

Thus the proof of Theorem 1 is complete. 
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