Commentationes Mathematicae Universitatis Caroline

Tomáš Herbs

Estimator of variance of Wiener process based on its integral

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 4, 737--740
Persistent URL: http://dml.cz/dmlcz/106493

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
 27,4 (1986)

ESTIMATOR OF VARIANCE OF WIENER PROCESS BASED ON ITS INTEGRAL Tomáš HERBST

Abstract

A consistent unbiased estimator of the variance of a Wiener process is suggested. The estimator is based on observations of the path of its integral. Some properties of this estimator are studied.

Key words: Wiener process, consistent unbiased estimator, Kalmañilter.

Classification: 60்J65, 60J60

1. Introduction. Let $W(t), t \geq 0$ be the standard $W i e n e r$ process. Introduce the process $I(t)=\sigma \int_{0}^{t} W(s) d s, t \geq 0$, where $\sigma>0$ is a parameter. The problem is to construct an estimator of the unknown parameter σ^{2} based on observations $I\left(t_{1}\right), \ldots, I\left(t_{n}\right)$, $0=t_{0}<t_{1}<\ldots<t_{n}$.
2. Fundamental relations. It is easily seen that $I(t), t \geq 0$ is a Gaussian process with zero expectation. An elementary calculation gives the covariance function

$$
\begin{equation*}
R(t, t+h)=\operatorname{cov}(I(t), I(t+h))=\frac{t^{3}}{3}+\frac{t^{2} h}{2}, t \geq 0, h \geq 0 . \tag{1}
\end{equation*}
$$

Denote $D_{i}=\frac{I\left(t_{i+1}\right)-I\left(t_{i}\right)}{t_{i+1}-t_{i}}, i=0,1, \ldots, n-1$,

$$
\Delta D_{i}=D_{i+1}-D_{i}, \quad i=0,1, \ldots, n-2 .
$$

Next lemma yields a useful decomposition of the random variables D_{i}.

Lemma. The random variables $D_{i}, i=0,1, \ldots, n-1$, can be expressed in the following way, $D_{i}=\sigma\left(W_{i}+Y_{i}\right)$, where $Y_{i}, i=0,1, \ldots$...,n-1, are mutually independent random variables having normal
distribution $N\left(0,\left(t_{i+1}-t_{i}\right) / 3\right)$ and $W_{i}=W\left(t_{i}\right), i=0,1, \ldots, n-1$. Moreover, $\operatorname{cov}\left(W_{i}, Y_{j}\right)=0$ for $j \geq i$ and $\operatorname{cov}\left(W_{i}, Y_{j}\right)=\left(t_{j+1}-t_{j}\right) / 2$ for j<i.

Proof. The following equality is obvious.
$\frac{1}{6} D_{i}=W\left(t_{i}\right)+\left(t_{i+1}-t_{i}\right)^{-1} \int_{i_{i}}^{t_{i+1}}\left(W(s)-W\left(t_{i}\right)\right) d s$.
Set $Y_{i}=\left(t_{i+1}-t_{i}\right)^{-1} \int_{t_{i}}^{i_{i+1}}\left(W(s)-W\left(t_{i}\right)\right) d s$. Now, computing the variances and covariances $\operatorname{cov}\left(W_{i}, Y_{j}\right)$ using (1) and independence of increments of the Wiener process, we accomplish the proof.

Using the lemma we get some properties of differences $A D_{i}$.
Property 1 . The variables $\Delta D_{i}, i=0,1, \ldots, n-2$ are normally distributed with zero expectation and variances $E\left(i D_{i}\right)^{2}=$ $=\epsilon^{2}\left(t_{i+2}-t_{i}\right) / 3$.

Property 2. $\operatorname{Cov}\left(\Delta D_{i}, \Delta D_{i+1}\right)=\sigma^{2}\left(t_{i+2^{-t}}{ }_{i+1}\right) / 6, \quad i=0,1, \ldots$ $\ldots, n-\overline{3} . \Delta D_{i}, \Delta D_{j}$ are for $|i-j| \geq 2$ mutually independent.
3. Construction of the estimator. We shall employ the theory of the Kalman filter. It can be easily verified that the sequence $Y_{i}^{0}, i=0,1, \ldots, n-2$, defined by the following model, has the same distribution as $\Delta D_{i} / \sigma, i=0,1, \ldots, n-2$.
(2) Let $X_{i+1}=a X_{i}+U_{i+1}$

$$
Y_{i}^{0}=c X_{i}+U_{i}^{0}, \quad i=0,1, \ldots, n-2,
$$

where $a=\left(\begin{array}{ll}0, & 1 \\ 0, & 0\end{array}\right), \quad c=(1,1), \quad x_{i}=\binom{x_{i}^{1}}{x_{i}^{2}}$,
assume that

$$
\begin{aligned}
& u_{i}=\binom{0}{u_{i}} \text { such that } u_{i} \sim N\left(0, d_{i}\right), \text { where } d_{i}=\binom{0,0}{0,\left(t_{i+2}-t_{i+1}\right) / 6}, \\
& U_{i}^{0} \sim N\left(0, d_{i}^{0}\right), \text { where } d_{i}^{0}=\left(t_{i+2^{-t}}^{i}\right) / 6, \\
& X_{-1}^{\dot{j}} \sim N\left(0, t_{1} / 6\right), \quad j=1,2,
\end{aligned}
$$

$u_{i}, u_{i}^{o}, i=0,1, \ldots, n-2$ and $x_{-1}^{j}, j=1,2$ are mutually independent. We shall construct the Kalman 'filter for model (2). (See e.g. Åström [11.)
Denote $r_{i}=E\left(X_{i}-\hat{X}_{i}\right)\left(X_{i}-\hat{X}_{i}\right)^{\prime}$ and $r_{i}^{-}=E\left(X_{i}-\hat{X}_{i}^{-}\right)\left(X_{i}-\hat{X}_{i}^{-}\right)^{\prime}$. Kalman equation is

$$
\begin{equation*}
\hat{X}_{i}=\hat{X}_{i}^{-}+k_{i}\left(Y_{i}^{0}-c \hat{X}_{i}^{-}\right) \text {, where } \hat{X}_{i+1}^{-}=a \hat{X}_{i}, \tag{3}
\end{equation*}
$$

$\hat{x}_{-1}=\binom{0}{0}, r_{-1}=\left(\begin{array}{ll}t_{1} / 6, & 0 \\ 0, & t_{1} / 6\end{array}\right), k_{i}=r_{i}^{-} c^{\prime}\left(c r_{i}^{-} c^{\prime}+d_{i}^{0}\right)^{-1}$.
For the matrices r_{i} and r_{i} we have
(4) $\quad r_{i+1}^{-}=a r_{i} s^{\prime}+d_{i+1}$ and $r_{i+1}=r_{i+1}^{-}-k_{i+1}$ c r_{i+1}^{-}.

It follows from the theory of the Kalman filter that $\left(Y_{i}^{0}-c \hat{X}_{i}^{-}\right), i=0,1, \ldots, n-2$, are mutually independent random variables having normal distribution $N\left(0,0 r_{i}^{-} c^{\prime}+d_{i}^{0}\right)$. Therefore the sum $\sum_{i=0}^{n-2}\left(Y_{i}^{0}-c \hat{X}_{i}^{-}\right)^{2} /\left(c r_{i}^{-} c^{\prime}+d_{i}^{0}\right)$ has x^{2}-distribution with $(n-1)$ degrees of freedom and $\frac{1}{n-1} \sum_{i}^{n} \sum_{0}^{2}\left(Y_{i}^{0}-c \hat{X}_{i}^{-}\right)^{2} /\left(c r_{i}^{-} c^{\prime}+d_{i}^{0}\right) \xrightarrow{n \rightarrow \infty} 1$ a.s. Now we can construct the estimator of σ^{2}.

Theorem 1. Let ΔD_{i} be as before. Replace Y_{i}^{0} by ΔD_{i} in Kalman equation (3). Introduce the following variable

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=0}^{m} \sum_{i=0}^{2}\left(\Delta D_{i}-c \hat{X}_{i}^{-}\right)^{2} /\left(c r_{i}^{-} c^{\prime}+d_{i}^{0}\right)
$$

Then S_{n}^{2} is a consistent unbiased estimator of $\boldsymbol{6}^{2}$. Moreover, $\frac{n-1}{\sigma^{2}} S_{n}^{2}$ has x^{2}-distribution with ($n-1$) degrees of freedom.

Proof of the theorem follows from the preceding reasoning.
Remark. Kalman equation yields the orthogonalization of the sequence $D_{i}, i=0,1, \ldots, n-2$.

We shall derive the form of S_{n}^{2} suitable for computation. It follows from (4) that
(5) c $r_{i+1}^{-} c^{\prime}=\left(r_{i}\right)_{22}+\left(t_{i+3}-t_{i+2}\right) / 6$, where $\left(r_{i}\right)_{22}$ denotes the element on the position $(2,2)$ in the matrix r_{i}. Using (4) to compute ($\left.r_{i}\right)_{22}$ we obtain the recurrent formula for - 739 -
variances $v_{i}=c r_{i}^{-} c^{\prime}+d_{i}^{0}$. Namely,
(6) $\quad v_{i+1}=\left(t_{i+3}-t_{i+1}\right) / 3-\left(36 v_{i}\right)^{-1}\left(t_{i+2}-t_{i+1}\right)^{2}$ with the initial condition $v_{0}=t_{2} / 3$.
Because $\hat{X}_{i+1}^{-}=a \hat{X}_{i}^{-}+a k_{i}\left(Y_{i}^{0}-c \hat{X}_{i}^{-}\right)$and $a^{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, we have a $\hat{X}_{i}^{-}=\binom{0}{0}$ for each $i=0,1, \ldots, n-2$. Consequently, c $\hat{X}_{i+1}^{-}=$ $=c$ a $k_{i}\left(Y_{i}^{0}-c \hat{X}_{i}^{-}\right)$. After a short computation we get

$$
\begin{equation*}
\text { c } \hat{x}_{i+1}^{-}=\left(t_{i+2}^{-t_{i+1}}\right)\left(y_{i}^{0}-c \hat{X}_{i}^{-}\right) /\left(6 v_{i}\right) . \tag{7}
\end{equation*}
$$

Theorem 2. Let $v_{i}, i=0,1, \ldots, n-2$, be as in (6). Let $Z_{i+1}=$ $=\Delta D_{i+1}-\left(t_{i+2} t_{i+1}\right) Z_{i} /\left(6 v_{i}\right), z_{o}=\Delta D_{0}$. Then the estimator S_{n}^{2} has the form

$$
s_{n}^{2}=\frac{1}{n-1} m_{i=0}^{n} \sum_{i}^{2} z_{i}^{2}
$$

Proof. The theorem is an immediate consequence of (6), (7) and of Theorem 1.

Remark. (Special case.) Let $t_{i+1}{ }^{-t_{i}}=K, i=0,1, \ldots, n-1$, where K is a positive constant. Then the estimator S_{n}^{2} can be computed as follows.
$s_{n}^{2}=\frac{1}{K(n-1)} \sum_{i=0}^{n=2} z_{i}^{-2} / v_{i}^{\prime}$, where $v_{i+1}^{\prime}=2 / 3-1 /\left(36 v_{i}^{\prime}\right)$,
$v_{0}^{\prime}=2 / 3, Z_{i+1}^{\prime}=\Delta D_{i+1}-Z_{i}^{\prime} /\left(6 v_{i}^{\prime}\right)$ and $Z_{0}^{\prime}=\Delta D_{0}$.
Note that $v_{1}^{\prime}=0.625, v_{i}^{\prime}=0.622, i=2,3, \ldots$.

The author wishes to express his thanks to Dr.P. Mandl and Doc.Dr.J. Štěpán for useful suggestions and comments on this paper.

References

[1] K.J. ÅSTROM: Introduction to Stochastic Control Theory, New York-London,1970, Academic Press.
[2] T.HERBST: Integral of Wiener process and its functionals, Diploma thesis, Charles University Prague, 1986,in Czech.

Vysoká škola ekonomická,katedra statistiky, nám. A.Zápotockého 4 13067 Praha 3, Czechoslovakia
(Oblatum 9.7. 1986)

