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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
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ESTIMATOR OF VARIANCE OF WIENER PROCESS BASED 
ON ITS INTEGRAL 
Tomas HERBST 

Abstract: A consistent unbiased estimator of the variance 
of a Wiener process is suggested . The estimator is based on ob
servations of.the path of its i n t e g r a l . Some properties of this 
estimator are s t u d i e d . 

Key words: Wiener process, consistent unbiased estimator,' 
Kalman f i l t e r . 

Classification: 60365, 60J60 

1 . I n t r o d u c t i o n . Let W(t), t Z0 be the standard Wiener pro

cess . Introduce the process I(t)= 6 J W(s)ds, trO, where tf > 0 

is a parameter . The problem is to construct an estimator of the 
o 

unknown parameter 6 based on observations I(t,),...,I(t ), 

0=t < t, < . . . -<t . o 1 n 

2.* Fundamental relations. It is easily seen that I(t), t>. 0 

is a Gaussian process with zero expectation. An elementary calcu

lation gives the covariance function 

+ 3 +2h 
(1) R(t,t+h)=cov(I(t),I(t+h)) = f- + IjH, t > 0 , h>0. 

I(ti+1)-I(t.) 
Denote D.= — =-~ , 1=0,1,...,n-l, 

t -t xi+l xi 

A Di = Di+r°i> is0,l,...,n-2. 

Next lemma yields a useful decomposition of the random variables 

D.. 

Lemma. The random variables 0., 1=0,1,...,n-l, can be ex

pressed in the following way, D,= 6 (W.+Y . ) , where Y., 1*0,1,... 

...,n-l, are mutually independent random variables having nor.mal 

- 737 -



distribution N(0,(ti + 1-ti)/3) and Wi = W(ti), i = 0,1,... ,n-l. Mo

reover, cov(W. ,Y . )=0 for j > i and cov(Wi , Y . ) = (t. +1~t. )/2 for 
3< i. 

Proof. The following equality is obvious . 

i D.=W(t.) + (t. ,- t . ) " 1 / "r1 (W(s)-W(t.))ds. 
*y X X X "T X X C ' •*• 

Set Yi = ̂ "ti+i-'
ti)"1 / f r (W(s)-W(t. ))ds. Now, computing the vari

ances and covariances cov(W.,Y.) using (1) and independence of 

increments of the Wiener process, we accomplish the proof. 

Using the lemma we get some properties of differences AD. . 

Property 1 . The variables AD-, i=0,1, . . .,n-2 are normally 
x 2 

distributed with zero expectation and variances E(/JD.) = 

= e2(ti+2-t.)/3. 

Property 2. Cov(A Di, AD i + 1)= 62(ti+2-ti+1)/6, i=0,l,... 

...,n-3. AD i, AD. are for |i-j|^2 mutually independent. 

3. Construction of the estimator. We shall employ the the

ory of the Kalman filter. It can be easily verified that the se

quence Y?, i = 0,1,. . .,n-2, defined by the following model, has the 

same distribution as AD./c' , i = 0,l, . . . ,n-2. 

(2) Let X.+1=aXi+U.+1 

Y ^ c X ^ U ? , i = 0,l,...,n-2, 

where a = ( 0} l) , c = (1,1), X. = I I 
\ 0, 0 i 1 Vxj 

assume that 

f0\ /0, 0 
U.= such that U.^ N(0,d.), where d.= 

1 S' X x ' lMt i + 2-t i + 1) /6 

U j / v N ( 0 , d j ) , where d ° = ( t . + 2 - t . ) / 6 , 

' X ^ 1 ^ N ( 0 , t 1 / 6 ) , j = l , 2 , 
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u.,U?, i=0,1,...,n*2 and X^,, j=l,2 are mutually independent. 

We shall construct the Kalman 'filter for model (2). (See e.g. 

Xstrbm Lll.) 

Denote r
i
 = E(X

i
-^

i
)(X

i
-X

i
) ' and r^=-E(X

jL
-XJ[")(X

i
-Xp '. Kalman equ

ation is 

(3) X.= ̂ +k
i
(Y°-c XT), where x:

 + 1
=a x\ , 

-1= ( J >
 г
- l

=
 (

n +
 ,J , k.=rľ c'(c гľ c' + dp 

0\ /t.,/6, 0 
1 J ,. _- „ v „ „- „' . .o^-l 

O' "x v 0 , t1/6 

For the matrices r. and r. we have 

(4) r7 + 1= a r t s' + d i + 1 and r i + 1 = r i + 1 - k 1 + 1 c r" + 1. 

It follows from the theory of the Kalman filter that 
(Y?-c X7), i=0,1,...,n-2, are mutually independent random variab
les having normal distribution N(0,c r7 c'+d?). Therefore the 

sum .Hn(Y°-c X7)2/(c r7c'+d?) has % -distribution with (n-1) 
•i/ -*. 0 1 1 1 I

 v 

degrees of freedom and J L 7-£. (Y?-c X7)2/(c r7 c'+d?) Qi£°l a.s. 
n-i t, » o l i i i 

2 
Now we can construct the estimator of £ . 

Theorem 1. Let AD. be as before. Replace Y? by AD. in 

Kalman equation (3). Introduce the following variable 

s n = T r r I f o c * V c x : > 2 / ( c r : c - + d ° ) 
2 2 

Then S is a consistent unbiased estimator of 6 . 
Moreover, ^-j S has \ -distribution with (n-1) degrees of free-

dom. 

Proof of the theorem follows from the preceding reasoning. 

Remark. Kalman equation yields the orthogonalization of 
the sequence D., i = 0,1, ...,n-2. 

2 We shall derive the form of Si" suitable for computation. 

It follows from (4) that 

(5) c ri + x
c =^ ri^22 +^i+3" ti+2^ 6' w n e r e ^ri^22 deno"fces tne 

element on the position (2,2) in the matrix r.. 

Using (4) to compute (r^)?? we obtain the recurrent-formula for 
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variances v.=c r7 c'+d?. Namely, 

(6) v
i+1=(ti+3-ti+1)/3-(36 v i ) " 1 ( t . + 2 - t . + 1 ) 2 with the initial 

condition v =t2/3. 

, o A-X 2 /° °) • Because X. -=a X.+a k.(Y?-c X.) and a = ' 1 , we 
l+i 1 1 1 1 \Q Q / 

A „ /0\ A_ 

have a X.= for each i=0,l,...,n-2. Consequently, c X. ,= 
1 lg/ 1+1 

=c a ki(Y?-c XT). After a short computation we get 

(7) c x:+1=(ti+2-ti+1)(Y°-c 2:)/u v.). 

Theorem 2. Let vi} i = 0,l, . . . ,n-2, be as in (6). Let Z|+1 = 

= A Di + l""<*ti+2"ti + l^Zi/^6 vi^' Zo = A°o* T h e n t h e e s t i m a t o r Sn h a s 

the form 

Sz= .-£._ 51 Z./v. . 

Proof. The theorem is an immediate consequence of (6), (7) 

and of Theorem 1. 

Remark . (Special case.) Let t . . + 1 -t. =K, i = 0,1, . . . ,n-l, whe

re K is a positive constant. Then the estimator S can be com

puted as follows. 

Sn = KTr-T) ̂ o ^ V * h e r e v u l = 2/3-l/(36 vp, 

v0 = 2/3, Zi+1=AD.+1-Zi/(6 vp and Z o=AD Q. 

Note that v^O.625, vNo.622, i-2,3,... . 

The author wishes to express his thanks to Dr.P. Mandl and 

Doc.Dr.3. §t§p£n for useful suggestions and comments on this 

paper. 
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