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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,4 (1986), 

O N SET TIGHTNESS and T-TIGHTNESS 
A. BELLA 

Abstract: The main purpose of this note is to study the be-
haviour of the set tightness and the T-tightness under maps and 
products . A particular result is the following: if X is a compact 
space and Y a Hausdorff space then t (XxY)£t(X)tg(Y) and 

T(X^Y)^ T (X) (T (YJ . Finally a little bit refined version of two 
results in 3uh£sz's first book concerning the depth of a topologi
cal space is g iven . 
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Secondary 54020 

°- In t roduct ion . Recently two hew cardinal functions, clo

sely related to the tightness have been introduced: the set tight

ness t (X), by Arhangel'skii, Isler and Tironi (see ElJ), and the 

T -tightness T(X), by JuhSsz (see L8J). In this paper we study the 

behaviour of these two cardinal functions under some topological 

operations, in particular the product operation. In the last sec

tion we will make some remarks on the depth of a topological spa

ce . The author wishes to thank the referee for his useful comments. 

1. Some preliminaries. For notation and definitions not ex

plicitly mentioned here we refer to 163 and [73. mt<p will deno
te cardinal numbers and oc, ocQ ordinal numbers. A cardinal number 

is an initial ordinal. For any set S , |S| denotes its cardinality 

and exp(S) (respectively expm(S)) the set of all subsets (respec

tively the set of all subsets of size at most m) of S. For any 

family /ycexp(S) we briefly write Uy (respectively r\y ) for 

the union (respectively the intersection) of all members of -y. 

Every topological space is assumed to be T1 and every map 

continuous ^nd surjective. Compact means compact Hausdorff. If A 
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is a subset of a topological space X we denote its closure by cl(A) 

or sometimes clx(A). If /ycexp(X), cl('y) denotes the family 

-\cl(B)|B e yl. 

We recall the following 

Definition 1.1. If A is a subset of a topological space X, 

the tightness of A with respect to X is the cardinal number 

t(A,X)=minfm| VC c X such that Ancl(C)4B0 there is CQ£expm(C) 

with the property that A n c K C )=M}. 

If A={x^we briefly write t(x,X) instead of t({x'i,X). 

The tightness of X is defined as t(X)= sup,t(x,X). 
X 6 X 

Definition 1.2 (see L83). For any topological space X the 

T-tightness of X, denoted by T(X), is the smallest cardinal number 

m such that whenever ^.FeC\C€p is an increasing sequence of closed 

subsets of X and cf(p )>m also ^^ip^*, *s closed. 

It is clear that T(X)^t(X). 

In 183 there is proved the following 

Proposition 1.3. a) If X is a compact space then t(X)=T(X); 

b) if for a space X,t(X) is a successor cardinal then t(X)=T(X). 

Definition 1.4. Let X be a topological space, the set tight

ness at a point xeX, denoted by t (x,X), is the smallest cardinal 

number m such that whenever xecl(C)\ C, where Cc X, then there 

is a family QT€ exp (exp(C)) such that x$ Ucl( •#•) but xccl(Uy). 

The set tightness of X is defined as t (X)= sup t (x,X). 
s i( 6 A S 

It is clear that t (x,X)-4 t(x,X) and t (X).£t(X). 

The next two propositions are two typical results concerning 

the set tightness. 

Proposition 1.5 (see [1 , prop. 2.2]). If X is a Hausdorff 

space then t (X)^s(X), where s(X) is the spread of X. 

Proposition 1.6 (see D , thm. 53). If X is a regular space, 

then t (X) ̂  F(X), ̂ where F(X)=sup{m | there exists in X a free 

sequence of length m . 

Remark 1. The notion of set tightness was first introduced 

by Arhangel'skii, Isler and Tironi in Ell. They called it quasi-

character and studied several properties of this cardinal functi

on, particularly in the realm of pseudo-radial spaces. 

We now introduce the following: 
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Definition 1 .7 . Let A be a subset of a topological space 

X. The set tightness of A with respect to X, denoted by t (A,X), 

is the smallest cardinal number m such that for any set CcX sa

tisfying AnC=0 and Ancl(C)4-0 there exists a family 

y e exp (exp(O) with the property that A n (U cl y )=0 but 

A n c K U y )-M. 

If A is open we put t s ( A , X ) = l . It is clear that in the other 

cases ts(A,X) Z tfQ. 

2. On set tightness 

Theorem 2 . 1 , Let A., , A2 be two subsets of a topological spa

ce X. If Aĵ c A2 and for any set Fc A2\ A1 that is closed in A2, 

there exist two disjoint open sets in X containing respectively 

H1 and F, then ts(A]L ,X) £ t(A-̂ , A2)ts(A2 ,X) . 

Proof. If A1 is open then the theorem is t r i v i a l . Thus we 

can assume that A-, is not open. Let m=t(A1,A2)t ( A 2 , X ) . We need 

to show that for any set CCX satisfying A,nc=0 and A - n c K O - ^ 0 

there exists <yeexpm(exp(C)) such that 

(* ) Axn (Ucl-y) = 0 but A1n cK Ur)*0 • 

Let us fix C and observe that since A1ncl(C)4-0 either A., n 

ncl(A2nC)=t=0 or A-̂ n cl(C \ A2) 4=0. In the first case from 

t(A,,A2)^m and A , o c L (A«n C) = A, n clw(A2 n C) + 0 there exists 

C eexp (A 2nC) such that A,ncl(C >4=0. It is obvious that the 

family nt of all singletons of C has property (*). 

Consider now the second case and let C' = C \ A 2 . 

We have A1ncl(C')=f
R0 and A 2 n C ' = 0. Since ts(A2,X)^m the

re exists at least a family f' e exp (exp(C')) such that 

A 2 n ( U c i r x ' ) ) = 0 but A2ncl( U r ' ) * 0 . Let V be the set of all 

such x' a n d z = 'Vr^ A2 n c 1^ ^ T ) ) - Suppose first that A-̂ n cl(Z)4-

4^0. Since t(A1,A2)=sm there exists Z € exp (Z) such that A, n 

ncl(Z ) + 0. For every zfiZ choose yz e V such that zecl( U^r2) 

and put T = Z f ^ *TZ-
 l* i s clear that •#-€. expm(exp(C)) and A2 n 

n(Ucly)=0, so a fortiori A, n (Ucl-y )=0. In order to prove that 

"3f satisfies property (.* ) it remains to show that A,n cl( Uy)4« 0» 

but this follows easily because cKZ 0)ccKUgr) a.nd A.,n cl(ZQ) *-M» 

To conclude the proof of the theorem it suffices to show the case 

A 1 r>cl (Z) = 0 cannot occur. On the contrary assume A,.ncKZ)=0 
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and choose a set U^ open in X, such that Aj C U and cl(U)nZs0. 

Since A^n el(C')4*0 we have &1 n6l(U AC ')4=0 and so a fortiori 

A2ncl(U AC').^ 0. By virtue of the inequality tg(A2,X)^m there 

exists a family ye expm(exp(U nC ')) such that A2 n ( Ucl-y )=0 but 

A 2ncl(Ur)^0- Since expm(exp(U n C ') c expm(exp(c')) , y belongs 

to the set V defined above. Therefore we must have Z ncKUJ^O-sM, 

but all members of y are contained in U and hence cl(Uy)ccl(U)'. 

This is a contradiction because cl(U)nZ=0 and the proof is comp

lete. 

Corollary 2.2. If F,, F2 are two compact subspaces of a 

Hausdorff space X such that F ^ F2 then t ^ F p X ) -6 t(Fx ,F2)ts(F2,X). 

Corollary 2.3. If F is a closed subset of a regular space X 

then, for any xeX, tg(x,X) -*t(x,F)ts(F,X). 

Now we derive from thm. 2.1 some information on the behaviour 

of the set tightness under maps and products. 

Lemma 2.4. Let X, Y be topological spaces. If the map f:X~> 

— > Y is closed then tg(f"
1( y) ,X) ̂ t g(y ,Y), Vy€Y. 

Proof. Let m=tg(y,Y) and CcX satisfying f (y)r»C=0 and 

f""1(y)ncl(C)^0. Since y € cl(f ( O ) \ f (C) and ts(y,Y)-am there 

exists ^-'G expm(exp(f(C)) such that y 4 U(cl y) but y 6 c l ( U / ) . 

For every S'c T choose a set SCC such that f(S)=S' and let^be 

the family so obtained. It is clear that ye exp (exp(C)), f (y)n 
- i 

n(UclT)-0 anc-» thanks to the closedness of f, f (y)ncl(Ur)4t 

+ 0. 

Theorem 2.5. Let X be a regular space and Y a topological 

space. If f:X—>-Y is a closed map, t (Y)-^m and t(f (y))*-»m for 

all y € Y then ts(X)£m. 

Proof. Let xsX. By virtue of Corollary 2.3 we have tQ(x,X)^ 

^t(x,f"*1(f(x)))ts(f"
1(f(x)),X) and, by Lemma 2.4 

ts(x,X)^t(x,f"
1(f(x)))ts(f(x),Y)-^m. 

If the map f in the above theorem is supposed to be perfect the 

assumption about the regularity of X can be weakened. 

Theorem 2.6. let X, Y be topological spaces, X Hausdorff. 

If f.X—>Y is perfect, tg(Y)^m and t(f"
1(y))^m for all yeY 

then ts(X)-£m. 

Corollary 2.7. Let X, Y be topological spaces. If X is 
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Proof. It follows directly from Theorem 2.6. 

The above corollary can be improved as follows: 

Theorem 2.8. Let X be a completely regular space and Y a 

Hausdorff space. If for every point xeX there exist a neighbour

hood U of x and a compactification C(U) of U such that t(C(U))fi 

-£m, and moreover, t (Y)£m, then t (XxY)-£m. 

Corollary 2.9. If X is a locally compact space and Y a Haus

dorff space then t (X*Y)£t(X)t9(Y). 

Theorem 1.10. Let • S ^ V S A D e a family of topological spaces. 

If |A|^m and for every finite subset B of A, t (^TT^ X ^ ) ^ m then 

Proof. Let X= TTAX., A* the set of all finite subsets of 

A, X,, = TT& Xw. for every Be A* and ^ n the natural projection 

from X to XQ. Let C be a non closed subset of X and x£cl(C)\C. 

Let A*=-iB | BsA* and JTg(x) $ Jfg(C) \ .For any BeA* there 

exists a family y'g e expm(exp( Jfg(C))) such that .7r0(x) <£ 

4 UcK^'n) but JTg(x) e cKUx'g) • F o r anY s' 6. T Q choose ScC\ 

such that sf„(S)=S' and let ^g be the family so obtained. Now, 

for any BeA*\A* choose an element x- e C such that jrg(xB) = 

= ̂ D ( X ) . Since | A*| & m then the family •#- = $ Û tf-Blr ̂  U xn |B & 
0 B« A* ° 

eA*\A* has cardinality at most m, so j £ expm(exp(C)). From 

our construction it'follows easily that x | U c K x ) but x e c K u ^ ) 

and this completes the proof. 

To conclude this section we'give some theorems dealing with 

the set tightness of the image of a space under a closed map. 

Definition 2.11. A topological space X is said to be scat

tered iff it has no dense in itself subspace, i.e., every subspa-

ce of X has an isolated point. 

Theorem 2.12. Let X be a regular space and Y a topological 

space. If f:X—>Y is a closed map with scattered fibres then 

t9(Y)*t8(X). 

Proof. Let m=t (X), CcY and yecl(C)\C. By virtue of the 

closedness of f, f (y)r> cKf~ (C)) + 0. Let x be an isolated 

point of f~1(y)Acl(f~1(C)). Clearly x e cl(f"1(C)) \ f""1(C). Since 

t (X)£m then there exists a family y 6 expm(exp(f *" (C))) such 
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that x 4 U c l ( T ) but x e c l ( U j ) . 

The set [f" (y) n c K U j ) ] \ K*\, is closed in f (y) and hence 

in X. By the regularity of X there exists a closed neighbourhood 

U of x such that U n {[f"1(y)n cl(U3O] \ {x}} =0. 

Let 7*'= -CBnU|B £ y ? . It is clear that xecl(Ur') and 

f"1(y) n(Ucl( y'))=0. Let ^"= -if (B)|B € r'} . Thanks to the clo-

sedness we have y ^ U c K ^ " ) but clearly y c c K U x " ) and this con

cludes the proof since ^"c exp (exp(C)). 

Corollary 2 .13 . Let X be a regular space and Y a topological 

space. If ftX—*" Y is a closed map and each of its fibres is a 

scattered space of countable tightness then t (Y)=t (X), 

Corollary 2 .14 . Let X be a regular space and Y a topological 

space. If f:X—>• Y is a closed map with discrete fibres then t (Y) = 

=VX>-
Corollary 2 .15 . Let X be a Hausdorff space. If there exists 

a locally finite closed cover ^(X) such that t (F)^m for all 

F € $ then t s ( X ) ^ m . 

Proof. Let © ^ be the topological sum of the spaces belon

ging to T , and let f: (Stf -—>- X be the natural map. Now we can 

proceed as in Theorem 2.12 - just by observing that in this case 

since the fibres of f are finite, it is sufficient to assume the 

space X Hausdorff. 

Question 2.16. In the statement of Theorem 2.1 is it possib

le to replace t(A,,A2) with tg^ijAo)? In particular, if X is a 

compact space and Y a Hausdorff space, is it true that t (X>-=Y) ̂  

.*t8(X)tg(Y)? 

Question 2 .17 . Let f:X—> Y be a closed map, is it true that 

t8(Y)£t8(X)? 

3. On T-tightness 

Theorem 3.1. Let X, Y be topological spaces. If f:X—->Y 

is a quotient map then T(Y)-£T(X). 

The proof is straightforward. 

Theorem 3.2. Let X be a regular space and Y a topological 

space. If f:X—>Y is a closed map, T(Y)^m and T(f (y*))^m for 
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all y €Y then T(X)^ m. 

Proof. Let "̂ t̂Lr€<©
 D e a n increasing sequence of closed sub

sets of X such that cf(<t>)>m. Put F= U F and assume that the-
> est <S (O « * 

re exists a point x€cl(F)\F. 

Let F^ = f~1(f(x))r. F^ , Voc e p ; the family !&«,*«> i s a n 

increasing sequence of closed subsets of f~ (f(x)). Since 

T(f"1(f(x)))^ m then the set U FT =Fn f" 1(f(X)) is closed in the 

subspace f" (f(x)) and hence in X. 

By regularity of X, there exist two disjoint sets U and V, 

open in X, such that xeU and F n f_1(f (x)) c V. 
L e t F* =F*,X V Voo « (0 . It is clear that x e c K ^ U F^ ) and 

f_1(f(x))n( u F" ) = 0. The family -Cf(F" ) L ^ is an increasing 

sequence of closed subsets of Y. Since T(Y)j£m then the set 

JO f(F!' ) = f( U F" ) must be closed and, by the continuity of 

f, f(x) c cl(f(oCU F£ )) = f<-ty
 F^ ), but this is impossible be

cause f_1(f(x) ) n ( _ U F" ) = 0. 
ot 6fp OC 

This proves that F is closed and so T(X)-s-m. 

If in the above theorem the map f is supposed to be perfect 

the assumption about the regularity of X can be weakened. 

Theorem 3.3. Let X, Y be topological spaces, X Hausdorff. 

If f:X->Y is a perfect map, T(Y)^m, and T(f_1(y))^ m tf y € Y 

then T(X)^£ m. 

Corollary 3.4. Let X, Y be topological spaces. If X is com

pact and Y Hausdorff then T(XxY)^ T(X)T(Y). 

As in Theorem 2.8 we can improve the preceeding result as 

follows: 

Theorem 3.5. Let X be a completely regular space and Y a 

Hausdorff space. If for every xcX there exist a neighbourhood U 

of x and a compactification C(U) of U such that T(C(U))-£ m, and 

moreover T(Y)^ m then T(XxY)^m. 

Corollary 3.6. If X is a locally compact space and Y a Haus

dorff space then T(Xx Y) ̂ T(X)T(Y). 

Theorem 3.7. Let ^ X ^ ^ ^ A be a family of topological spaces. 

If |A|-£-.m-and for any finite set B c AjCr^X*) *6ni then T^J*AX#e)^m. 
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Proof. Let ^s
 K^\c* A* *he set of all finite subsets of 

A, X Q S ^ J T X^ and ;#B the natural projection from X to XD. Let 

*f^ot6(D De an increasing sequence of closed subsets of X such 
that cf((0 )>m. Let xecl(F), where F=V F, . For every Be A* 

the family -tcl( ̂ gO^, ))JoCc^ is an increasing sequence of closed 

subsets of Xg and rtQ(x) e clf^U cl( ̂ B(Fo0))). Since T(Xg5.6m" 

then there exists an index oC0 such that rfa(x) € cl( 3fQ(F_ )). 
D D D OCQ 

Since |A*|j£m and cf(p )> m then there exists an index cc such 

that otB e ocQ VB^sA* . Now we have 3TB(x) € cl( tjr-jCF̂  )), VB€A*, 

and this clearly implies x c F . The last assertion §hows that 

xcF and so F is closed. ° 

4- Depth and T-tightness 

Two well known cardinal Inequalities involving the depth are 
the following (see [7, th.2.18 antf 2.19}); 

a) if X is a connected space then k(X) -£fy(X)J + , 

b) if X is a topological space then k(X)£ L(X)t(X), 

where k(X), 3((X) and L(X) denote respectively the depth, the cha

racter and the Lindelof number of the space X. 

The aim of this section is to give refined versions of the 

previous inequalities. 

We recall the following: 

Definition 4.1. Let X be a topological space. A family of 

subsets of X, (G^J^^ , is said to be a strongly decreasing sequ

ence of length y> if E"ft % G^ for any oo € f3 e f . The depth of X, 

denoted by k(X), is the supremum of the cardinal numbers p such 

that in X there exists a strongly decreasing sequence of open 

sets of length rc . 

Theorem 4.2. If X is a connected space then k(X) & t.T(X)] + . 

Proof. Let m=T(X), We need to show that every strongly de

creasing sequence of open sets in X has length at most m+. Assume 

the contrary and let j> be a cardinal number such that m+ < f> . 
Suppose there exists in X a strongly decreasing sequence of open 
sets of length tj> , say -f Gj_, ̂  . The set H = ' ^ A G. « f^ IT is 
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closed and, moreover, it is nonempty because G + c H . Observe that 
m 

the family -CX \ G^aCC m+is an increasing chain of closed subsets 

of X. Since T(X)=m and cf(m+)=m+, the set U (X\ G,)=X\ H is 

closed. As the space is connected, this leads to a contradiction 

and so the theorem is proved. 

Remark 2. The "long line" (see [7, example 6.41) is an exam

ple of a connected space in which k(X) = [T(X)3+ . 

Definition 4.3. A family ^G gl s c S of subsets of a topological 

space X is said to be a weak cover for X provided that X= TJ G" . 
s«S s 

The weak Lindeldf number of X, denoted by wL(X), is the smallest 

cardinal number m such that every open cover of X has a weak sub-

cover of cardinality at most m. 

It is clear that wL(X)^L(X) for any space X. In fact, spaces 

can be found for which the gap between the weak Lindeldf number 

and the Lindeldf number is arbitrarily large (see examples in 121). 

Theorem 4.4. If X is any topological space then k(X) ±= 

^wL(X)T(X). 

Proof. Let m=wL(X)TOO and assume there exists in X a strong

ly decreasing sequence of open sets of length m+, say {B,} + . 

Let H= n G. = n ^ \ . The family -LX\ G I . is an increas

ing sequence of closed subsets of X and, since T(X)£m and cf(m+) = 

=m+ the set U X X \ G J = X \ H is closed. Observe that the family 
oC cm/*" •* 

-vX\TV\,^m+ is an open cover of the subspace X\H. As X \H is 

closed and open in X, we have wL(X\ H) 6 wL(X) =s m and then there 

exists a set of ordinal numbers Acm such that |A|^m and X\ H= 

~^UK (X \ G ). By virtue of the regularity of m+ there exists an 

ordinal St € m+ such that A c oo .We have G. c G ̂ c G for every 
* .„ «C ot <oC 

oC6 A and thus U A (X \ G\) c X \ G ^ . This imp l ies X \ H c X \ G . . v , 
"* oC <E A ** eC oO 

i.e. G^ c H. This is a contradiction because H is a proper subset 

of Gw . Therefore the theorem is proved. 

Corollary 4.5. If X is a topological space then k(X) .£ 

«*L(X)T(X). 

Remark 3. The above corollary xan be deduced from Theorem 1 
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in 15J in which it is proved that F(X)-4 L(X)T(X), recalling that, 

for any space X, k(X)£F(X). 

Remark 4. Note that Theorem 4.4 fails if we replace k(X) 

with F(X) at least when X is not a normal space. In fact, the spa

ce Y constructed in [2, example 2.43 is completely regular and 

wL(Y)=T(Y)= -tf For any qcQ the set-tqrxaeis a closed discrete 

subspace of cardinality at of Y, and, since a closed discrete sub-

space can be regarded as a free sequence, we have F(Y)= ae > -.-» • 

Question 4.6. Under which conditions other than paracompact-

ness, does the inequality F(X) =£. wL(X)T(X) hold? 

Added in proof. In H43 a notion of local T-tightness is in

troduced and a result similar to Theorem 2.1 is proved . 
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