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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,2(1987) 

AN ABSTRACT DIFFERENTIAL EQUATION AND THE POTENTIAL BIFURCATION 

THEOREMS BY KRASNOSELSKII 

Jan NEUMANN 

Abstract: A proof of a certain generalization of two poten
tial bifurcation theorems by M.A. Krasnoselskii (see til]) ba
sed on a method used by I.V. Skrypnik to prove another bifurca
tion result (see [2. and 31,respectivelyKjs given. A bifurca
tion solution lying on the sphere S(0,(o) (with a sufficient
ly small positive $, ) in a Hilbert space is constructed as an 
accumulation value (t—*- cc ) of a map k:t£<0,uc) ->- S(Q, { ) 
satisfying a certain initial value problem for an abstract'ordi
nary differential equation. The main contribution of the artic
le consists in a detailed study of properties of this differen
tial problem. 

Key words: Potential bifurcation theorems, abstract ordin
ary differential equations. 

Classification: 35B32, 34A10, 34G20. 

1. Introduction. A proof method, with help of which a cer

tain important bifurcation theorem has been shown by I.V. Skryp

nik (see [2] - p. 161, Theorem 3.4 and [3J - p. 178, Theorem 12, 

respectively), is i n v e s t i g a t e d . The Skrypnik's procedures are 

used to prove a generalization of two bifurcation results by M.A. 

Krasnoselskii (see [ 1J, Theorems 1 and 2). The mentioned genera

lization is not, from the application point of view, e s s e n t i a l . 

The contribution of this article consists in an elaboration of 

some Skrypnik's ideas, which leads to give precision to certain 

details of them* 

The most meaningful results of this treatise are concentra

ted in Section 2 where the following differential equation is ex

plored: 

k'(t)=G(k(t))-(G(k(t)),k(t)) k(t)/ Hk(t)!!2 ; 

G is a continuous operator in a Hilbert space and k an abstract 

a e H,r> 0 S(a,r)=4xeH;llx-ai\=r{ 
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function of one real variable. 

In Section 4,the theory constructed in Section 2 together 

with several simple assertions comprehended in Section 3, is uti

lized to prove our modification of the Krasnoselskii s theorems 

which reads as follows: 

Theorem 1: Let H be a real Hilbert space and let <p > 0. 

Let: 

1. F be a real functional defined and Frechet differentiab-

le on B(0,p )+)c H, 

2. F ' :B(0 , <ju ) c H — ^ H be a completely continuous operator, 

3. F ' ( 0 ) = 0 , 

4. the Frechet differential F " ( 0 ) : H — * H exist. 

Then A 4= 0 is a bifurcation point of the equation A > x - F ( x ) = 0 

(with respect to the line of the zero s o l u t i o n s ) if and only if 

J\ is an eigenvalue of the linear operator F " ( 0 ) . 

Remark: Krasnoselskii (see Cl], Theorem 1 ) assumes, more

over, that the functional F is weakly continuous and uniformly 

Frechet differentiable on B ( 0 , p ) and the operator F " ( 0 ) is 

selfadjoint and completely continuous. Our reduced assumptions 

guarantee the validity of the first, the third and the fourth 

from the conditions introduced (see [4J - p. 104, Theorem 8.2; 

[53 - p. 70, Theorem 5.11 and L41 - p.74, Theorem 4.7). In addi

tion, from the proof it will be apparent that it is redundant 

to suppose the uniform differentiability of F. 

From Theorem 1 the following assertion, being a special case 

of the potential bifurcation theorem by Skrypnik (see [2]- p.161, 

Theorem 3.4 and L3j - p. 178, Theorem 12), follows (see [4] - p. 

99, Theorem 7.6). 

Theorem 2: Let H be a separable real Hilbert space and let 

f > 0. 

Let: 

1. F be a repl functional defined, weakly continuous and 

uniformly Frechet dif ferentiable on B(0,f )cH, 

2. F'(0)=0, 

3. the Frechet differential F " ( 0 ) : H —>H exist. 

+ ) a б H , г > 0 B ( a , г ) = { x e H ; Иx-ai. < г l 
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Then ^ + 0 is a bifurcation point of the equation A-x-F'(x) = 0 

if and only if A is an eigenvalue of the linear operator F M(0). 

The investigated Skrypnik s method may be also exploited to 

derive some interesting assertions on eigenvalues and bifurcati

on points of variational inequalities - an illustration example 

is the content of the author's following article (see £63). 

Note that for the sake of completeness we do not omit some 

standard and simple proofs in this paper. 

2. Basic differential problem. Let H be a real Hilbert spa

ce and let p , T > 0 . Consider a continuous operator G:B(0,p) c 

C H — > H and x e B(0, cp ) \ \0\ . We shall look for an abstract func

tion 

(2.1) k:I — > B(0,-p ) \ * 0 * cH such that 

(2.2) k c C ^ I . H ) , 

(2.3) k'(t)=G(k(t))-(G(k(t)), k(t))«k(t)/ iik(t)n2 for all t£ I, 

(2.4) k(0) = x,' 

where 1= <*0,T> and \0,ac)9 respectively. 

For the main results of this section see Lemma 6 and Example. 

Lemmas 3 - 5 serve not only for proving Lemma 6 but they are also 

applied directly in our proof of the bifurcation theorem. 

Lemma 1: Let k be a solution of (2.1) - (2.4) with I = C 0 , T V 

Then ak(t).» = i« x'» for all ts<0,T>. 

Proof: Because (d/dt)(nk(t);i2)/2 = (k '(t) ,k(t) ) = (G(k( t) )-

-(G(k(t)), k(t))-k(t)/ iik(t)»i2,k(t)) = 0 on<0,T,\ the function 

t € <0,T >—->:! k(t)'t is constant. 

Lemma 2: Let k:\0,T? —+• B(0,p ) \ {Q} cH. Then the following 

assertions are equivalent: 

1. k fulfils (2.2),(2.3) and (2.4) with 1= <0,T,\ 

2. k(t) = x+ 1j*
ti:G(k(r))-(Gk(r)tk(r)).k(r)/ iik(r)!.

2j dr + ) for all 

t e(OJ\ 

3. k(t)= Cx+j^G(k(r)).exp( ,^(G(k(|)),k(<p)/ ,| k(pi!2df)d x ] . 

-e.xp(- /^(G(kC ?)),k(p)/ .!k(b>?dp
 + ) for all t£<0,T>. 

The sign j denotes the Bochner type integration. 
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Proof: is very simple - therefore we introduce a proof of 

one implication only. Let us put: 

(2.5) -rj(t) = (G(k(t)),k(t))/ .|k(t))|2 and 

( 2 . 6 ) l ( t ) = k ( t ) exp( f t ) 1 ( c ) d r ) f o r a l l t e < 0 , T > . 

From the equat ion 3 we have: 

( 2 . 7 ) l ( t ) = x + J ^ G ( k ( ? ) ) exp( j ' | / S l ( ^ ) d p d ' u , 

and hence 

( 2 . 8 ) l ' ( t ) = G ( k ( t ) ) - e x p ( Jc
fc >£ ( p d p . 

From the definition of 1 we obtain: 

(2.9) k(t) = l(t)-exp(- J'% (c)dt). 

Differentiating the last equation and using (2.6) and (2.8) 

we get: r 

(2.10) k'(t) = l'(t)>exp(- J* >h (t)dr)-l(t). >[(t)-exp(-jc >j(c)d;r) = 

=G(k(t))- r)(t)>k(t). 

Lemma 3: Let the operator G be Lipschitz continuous on 

B(0,£). Then for every xeB(0,p)\*01 there exists the unique ab

stract function k=k(.,x) satisfying (2.1) - (2.4) with I=<0,o-O. 

The mapping k:<0,cc ) x B(0,p) \ i0 \ —* H is continuous, i\k(t,x)i\ = 

= \ x \i. 

Proof: Denote: 

(2.11) M = sup -,llG(x)\\jx <&B(0,j;)J (<«>), 

(2.12) L = sup UG(x)-G(y)il/ I. x-yll; x,yoB(0,f),x*yt ( < ^ ). 

1. Existence. Take an x e B(0 ,f) \ -i 0t. Put * = U x H and choo

se a cf> 0 such that 0< <?- cT<: 6> + */<-- cp . Put: 

(2.13) T=min \u /(2M) , l/[4(L+-2M/(^-J') )] \ 

and define the operator 

(2.14) W:S>= \leC«0,T>,H); l(t)d -Kx,cT) for all t c < 0 , T ) i ^ 

—>C«0,T>,H) as: 

(2 .15) (Wl)( t ) = x + / t C G ( l ( t ) ) - ( 6 ( l ( t ) ) , K r ) ) a ( r ) / ii Kxr) li2l d^ 

for a l l 1 & £> and t e<0,T>. 

Obviously W(3> ) c SD and f o r a l l 1 and 1 e 2> : 

( 2 .16 ) sup 4 i i ( W l ) ( t ) - ( W l ) ( t ) i i ; t £ < 0 , T > * * ( l / 2 ) - s u p U l ( t ) -

- t ( t ) | \ ; t £ < 0 , T > L 
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Hence according to the Banach fixed point theorem and Lemma 

2, there is k satisfying (2.1) - (2.4) with I=<0,T>. Making use 

of Lemma 1 we get the existence of k satisfying (2.1) - (2.4) 

with 1= <0,cc). 

2. Uniqueness and continuous dependence on the initial con

dition. Choose e e (0,j>), T > 0 . Let 1 ^ 12 fulfil (2.1) - (2.3) 

on <0,co). Let s * ll li(0).li<p for i = l,2. Put: 

(2.17) c=4-(L+2 M/6). 

Then for all t €<0,T>: 

(2.18) lil1(t)-l2(t)|Ul)l1(0)-l2(0)lU(c/2) •/
t|ll1(t)-l2(^)ll' 

-exp(-c-r) exp(+c«r)dr -̂  lll1(0)-l2(0)ll +(c/2)*supllll1(c)-

- l 2 ( T ) l l . e x p ( - c . r ) ; r € < 0 , T > " i - / c
t e x p ( c p d f = )l 11 (0) -

- l 2 ( 0 ) | l + ( l / 2 ) * ( e x p ( c t ) - l ) - s u p { « l 1 ( t ) - l 2 ( ' c ) j | . e x p ( - c . - c ) ; 
X£<0,T>}. 

Hence we have that: 

(2.19) sup -i!il1(t)-l2(t)lUexp(-ct); t e < 0 , T> { ̂ ill1(0)-l2(0) II + 

+ (1/2).sup iiU1(t)-l2(t)H-exp(-ct); tt<0,T>}. 

Accordingly, for all te<0,T>: 

(2.20) ill1(t)-l2(t)li ^2-exp(cT)Mil1(0)-l2(0)ll. 

Lemma 4: Let: 

1. ^ H-J n*?i
 De a sequence of closed linear subspaces of H, 

2. {e \*°°, be a sequence of positive numbers, lim e = 0, 
n n = i IYt _^co n 

3. G:B(0 ,^ ( )cH —>H be a comple te ly cont inuous o p e r a t o r , 

4. iG : B ( 0 , p ) n H —-* H i *°?* be a sequence of cont inuous opera

t o r s such t h a t HGny-6y II ^ e n f o r a l l n e IN and y e B ( 0 , p ) r . HR , 

5. kxr\
T™1c B(0,<p)\ -£01, xnG HR for a l l n eW, x 6 B(0,p) \ { 0 1 , 

lim x_=x, 
0X~>OO n 

6. kR solve (2.1) - (2.4) with 1= <0,oo), G=Gn, x=xp for all n e IN. 

Then there exist an increasing sequence of positive integers 

^*n^"n = l and an aDStract function k satisfying (2.1) - (2.4) with 

1= <0,oo), G=6 and x = x such that ^ ^ i ^ i tends to k on <0,oo) 

locally uniformly. n 
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Proo f : Denote: 

( 2 . 2 1 ) M=sup -UlGxft; x _ B ( 0 , p ) } ( < oo) , 

( 2 . 2 2 ) tf = in f 4»x n ! i ; n e IN i ( > 0 ) , 

(2 .23 ) cpn(t) = ( G ( k n ( t ) ) , k n ( t ) ) / l i k n ( t ) i l 2 and 

(2 .24) Y n ( t ) = ( G
n

( k n ( t ) ) ' k n ( t ) ) / l l k n ( t ) , j 2 f o r a 1 1 t ^ 0 * 0 0 ) * 
n e IN. 

Choose a T>0. According to Lemma 2, for all n e IN and 
t -<0,T> 
(2.25) kn(t)=pn(t)+qn(t), 
where 
(2.26) pn(t) = x\exp(- /oVn(f)dp^jr

tG(kn(or)).exp(J^9>n(pdf)dr, 

(2.27) qn(t) = xn.[exp(-//i|/n(f)df)-exp(-4Vn(f)dp^(xri-5). 
,exp(- Jo^n(pdp+/HGn(kn(tr))-G(kn(t'))].exp( / ^ ( p d p d t * 

+ If G(kn(r)). Cexp( /t\n(pdf)-exp( f\(p6p)d? 

are continuous functions. 
Using the inequality |exp(a)-exp(b)|4 max {exp(a),exp(b)I * 

«|b-a| and other simple estimates, we obtain that for all n e IN 
and t €<0,T> 
(2 .28 ) J q n ( t ) H 4 e x p ( T ( M + e h ) / e f ) - [ ( 2 + TM/«5)Ten+Hxn-x O . 

Thus, q -=1-0 on the interval <0,T>. 
Obviously, G(B(0,(JB)) is a relatively compact subset of H. 

For every positive integer n let us denote a finite 1/n - net of 
the set G(B(0,£>)) by 36n. For all x,y_H and n c IN put mR(x,y) = 
=max(0,l/n-i.x-yil). Define the sequence of the continuous opera
tors { Mn:x e8(B(0,<p)) H-* ( ' 2 _ mn(x,y) *y)/( % mn(x,y))e 

^ % ( d i rj)!"*^!- A simple account gives: Il Mnx-x II ̂  1/n for all n e IH 
and x £G(B(0,tt>)). For all n,j e \N and t6<0,T> put: 

(2.29) Pnj(t)=?.exp(-J^n(?)df)+/0
tMj S(kn<t:)) -exp( j*9^)df)dr. 

Then for all n, j e IN and t,t'e <0,T> 

(2.30) lp.(t)il* [Hxll + T(M+l/j)].exp(TM/(T) and 

(2.31) l|pn. (t)-pn.(t')|| = \\5 .[exp(-/c
t9n(pdp-exp(- £*„(?)<-?)) + 

+ fi Mjg(kn('c))"texp( J^n (P dP- e x p (/ i^"n
(P dP ] d*+ 
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+ /r M.G(kn(r))^exp(/^n(pdpdrli^ixil-exp(TM/<)-(M/6'). 

-|t-t'|+T(M+l/j).exp(TM/ff)(M/6)-|t-t'|+(M+l/j) exp(TM/ff). 

.|t-t'| = ̂ |xli-(M/e) + (M-Hl/j)^(l + TM/^)l-exp(TM/^)- |t-t'|. 

In virtue of the Arzela-Ascoli theorem for every positive 

integer j the set I P ^ ^ i is relatively compact in C(<0,T>, 

#( 3€. U-lxM)) (and also in C«0,T>,H)). Accordingly, the set 

^Pn^n=i
 is relatively compact in C(<0,T>,H) as well. 

Choose an increasing sequence 4i (T)J"t^| of positive inte

gers. Then there exists a sequence ^j ( T ) l t [ t . chosen from 

U n ( T ) r n ^ such that 4p. (T)in<L is convergent in C«0,T>,H). 

Hence {k. (ry^n-l tends to a k0' in C«0,T>,H). Obviously, the 

set U=lk. (T)(t);n£iN,t € <0,T>i U^k
0,T(t);t 6<0,T>} is compact irt 

H and for all x c lt:^>> lixU^G . Thus, the operator G and the func 

tional $ : | £ U .—»(G£, £)/ ii£|| are uniformly continuous on It. 
Since k. m -.=^k0,T on <0,T>, & o k. m -==* 6 e k 0 , T and $ck. m = J n v ) j Rv ; J n v ) 
- Cjj>. /^ = 4 $ c k 0 ' on <0,T>.Hence it is easy to see that 

Jn<v ) 

(2.32) k°'T(t)= lim k. m ( t ) = limLp. fJ^t)+q. m(t)l--Lx + 
r^^ao 3Rv • ) w-+<x> 3 n v i j 3n^'>' 

+ Jo
fcG(k0>T«:))*exp( /c

r$(k°»T(|))dpdrJ-

.exp(- //$(k°'T(£))df) for all tc<0,T>. 

By virtue of Lemma 2 we have: k0j satisfies (2.1) - (2.4) 

with 1= <0,T>, G=G and x=x. 

Obviously, there exists a system of increasing sequences of 

positive integers ^3n(N)$*^1it.
e^1 with the following properties. 

1. For all N e IN the sequence ^ ^ ( N + l ) * ^ ! is c n o s e n from the 
sequence *3n(N)>'^ . 

2. For all N e IN the sequence (k. tw^t^i "tends to a mapping 

k°' N satisfying (2.1) - (2.4) with 1= <0,N>, G=G and x=x in 

C«0,N>,H). 

Define ft: <0 ,a> ) ~ » S(0,ll*ll); i<(t)=k° ,N( t) on the interval 
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<N-1,N) for all N e IN. Obviously, & satisfies (2.1) - (2.4) 

with I=<0,oo), G=G and x=x. At the same time the sequence 

^k. ^t,-]* where in
s3n(

n) for a11 n 6 ,N» tends to k on <0,oo) 
n 

locally uniformly. 

Lemma 5: Let: 

1. H be a finite dimensional subspace of H, 

2. G:B(0,tp)c H —> H be a completely continuous operator, 
3. 6r6(0f$>). 

Then there exist a sequence -iH }*" , of finite dimensional ^ n n = l 

subspaces of H and a sequence AG :B(0,6)n(H+H )—»• H i +* of 

Lipschitz continuous operators such that llG y-GyII -s 1/n for all 

n £ IN and y £ B(0,<*)r\ (H+HR). 

Proof: For every positive integer n let us denote a finite 

l/(2-n) - net of the set G(B(0,6)) by 3€n. Take a sequence 

<{Mn:G(B(0,6O) — > HR= i£( ̂ p ) } " ^ of continuous operators such 

that HMnx-x li^l/(2.n) for all n £ IN and x G G(B(O,0)). 

Choose an n e IN. Let -ie1,...,e \ and 4e,,...,e } (r2:p) be 
an orthonormal basis of H and H+H respectively. 

(2.33) For all z €. (H+Hn)n B(0,€O :MnGz= . ^ f.((z,ex),.. . 

.. .,(z,e ))-e. where f. (i = l,2,... ,p) is a real function 

of r real variables defined and continuous on B= {^ = (̂ , ,.. . ,*> ) £ 

(2.34) fi(rl) = ( M n G ( . f . i nj'ej>»ei> for a 1 1 V. e B • 

For every i = l , 2 , . . . , p the re e x i s t s a r e a l po lynomia l P. such 

t h a t f o r a l l i i € B: | f . ( 7 2 ) - P i ( ^ ) | ^ l / ( 2 - n ^ p 1 / 2 ) (see 1 7 } ) . Def ine 

the cont inuous mapping G :B(0, f f ) A (H+H )—*~ H as : 

(2 .35) G ^ z ) - ^ P i ( ( z , e 1 ) , . . . , ( z , e r ) ) - e i for a l l z£B(0 ,6T)n 

n(H+H n ) 

and denote 

(2 .36 ) L. .=sup 4 | O P i / a i j ) ) ( p | ; J ? e B i ( < o o ) f o r a l l i = l , . . . , p 

and j = l , . . . , r . 

Then: 

(2 .37 ) f o г a l l z є B ( 0 , S ) n ( H + H п ) : ft Gz-GRz II ^(Gz-M^Gz Һ+ 
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+ ЙMGz-GzІUІlGz-M Gzíl + ( . S 1 . ( f . ( ( z , e , ) , . . . , ( z , e ) ) -

ПП П «v ~ 1 1 -• *• 

-P^ťz.ej) (
г
,e

г
)))

2
)

1 / 2źl/(2.nwД(l/(2-п.p 1 / 2
))

2
)

1 / 2
= 

=l/n and 

(2.38) for all z.z'e B(0 ,«r) A (H+H
n
) : HG

n
z-G

n
z '\\L = ̂  (P.( (z ,e

1
), 

...,(z,e ))-P ((z'.e ) (z'.e ) ) ) 2 . S . i c (,X L.JCz-z', 
J- -- r r ^ = 1 £- -• 1 •-J 

e a ) | ) 2 ^ A ^ , >-2.).„z-z-|i2. 

Lemma 6: Let the operator G be completely continuous on 

B(0,p). Then for every x e B(0 ,<p) \ \ 0$ there exists at least one 

solution k of the problem (2.1) - (2.4) with I=<0,oo). In addi

tion, l,k(t).l = i M for all t£<0,oo). 

Proof: Let an x e B(0 ,p) \ iO] be given. Choose a <o ^ 01 x II,p). 

Lemma 5 guarantees the existence of a sequence iH & of finite 

dimensional surJspaces in H and a system {G:B(0,60o(£6{ xi+H )—> 

— > H f ̂ , of Lipschitz continuous operators such that for all 

n <= IN and y e B(0,6) A (s£-tx}+Hn): l|Gny-Gyli ^1/n. Further, according 

to Lemma 3 for all n B IN a kn:<0,oo) —* ££{x$+Hn satisfying (2.2) -

(2.4) with l = <0,cc>) and G = G has to exist. Finally, in virtue of 

Lemma 4 we get that there exist an increasing sequence {i^t^i c 

c IN and a k satisfying (2.1) - (2.4) with I = <.0,oo) such that 

{k. V"*̂ , tends to k on <0,co) locally uniformly, 
n 

The following example shows that the complete continuity of 

G does not guarantee the uniqueness of the solution of the prob

lem (2.1) - (2.4) for all initial conditions x <z B(0 ,p) \ i 0 } 

(x €. B(0,6) \ \0\ with arbitrary 6fe(0,p), respectively). A poten

tial operator G with a potential F satisfying the assumptions of 

Theorems 1 and 2 is chosen. 

Example: Consider F: IR2—^IR1, F(x , y) = x2 + y2+ | x | 3/2. y2 for 
1 2 

all x,yeR . The functional F is FrSchet differentiable on IR 
2 , 2 2 

and uniformly dif ferentiable on every ball in IR ; F : IR —-> IR , 

F'(x,y) = (2*x+(3/2).sign(xHx|1/2.y2, 2 -y+2 • | x | 3 / 2 y ) T for all 

x,y e IR1. The Frdchet differential F"(0,0) exists; F"(0,0)= 

=diag(2,2). The equation (2.3) is represented by the differential 

system: 
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5/2 L,2,.. ч , ч / 0 ч i. Г . N | 1 / 2 . 4 / (2.39) k ^ t Ы - г Ч k ^ t Л ^ S k ^ Ш + O / г H k - ^ t ) ! 1 ' ^ kJ(t)J 

s i g n ( k 1 ( t ) ) / [ k 2 ( t ) + k 2 ( t ) ] , 

k 2 ( t ) = [ 2 . | k 1 ( t ) | 7 / 2 . k 2 ( t ) - ( 3 / 2 ) . | k 1 ( t ) | 3 / 2 . k 3 ( t ) } / 

/ [ k 2 ( t ) + k 2 ( t ) J 

f o r k = ( k 1 , k 2 ) T . 

Take f : < 0 , V J 7 7 ) ^ I R 1 ; f ( z ) = / / i l 2 df / C f 1 / 2 - ( l - £ 2 ) . (3-7 . £ 2 ) 1 ] 

and &>0. Then f o r every c?e \ 0 , o o > the mapping kj ; k j r ( t ) = (0 ,60 

for a l l te<0,<n, k<r(t) = ( t^ . f"^C? 3 7 2 . ( t - J ) ) , ^ ( l -Ef _ 1 ( 6 3 / 2 -

•(t-tf))32) ) T for all te<d",o&); is a solution of the system 

(2.39) with the initial condition k,(0)=0, k2(0)=6'. The problem 

(2.39), k1(0)=o>, k2(0) = (^
2-fx>2)1/2, 0-* M < €T-VT/7 has the uni

que solution k(t) = (6'.sign(tv).f~1(6:3/2. t+f^"1. M ) ) » tfd-

-[f~1(63/2.t + f(6-
1.k|))J 2) 1 / 2) T. 

Remark: Although the functional F defined in the foregoing 

example fulfils the assumptions of Theorem 1 (and Theorem 2, res

pectively), it is obvious that every mapping k:<0,oo)x-S(0,g) —> 

— > S(0,6), where 6T > 0 and k(.,x) solves (2.1) - (2.4) with H = 
2 

= 1R , l = <0,co) and G = F , is not continuous. 

3. Auxiliary assertions. In this section several simple and 

mostly well known assertions are summarized. 

Lemma 7: Let H be a Hilbert space and let rf>>0. Consider a 

continuous operator G:B(0,^>)cH—> H and define the operator 

D:B(0,^)\-C0$ — > H by the formula: 

(3.1) D(x)=G(x)-(G(x),x).x/iixll2 for every x & B(0,{>) \ \ 0?. Take 

e'c (0,f),x,y&H, y + 0 and -Cx^1"^ c S(0,6O such that xn—-*-x, 

G(x n)—> y and D(xn)—-> 0 in H. Then xn~--> x in H and (y,x)-x/6
2-

-G(x)=0. 

Proof: Evidently 

( 3 . 2 ) l i m [ ( 6 x n , x n ) . x n / l i x n } i 2 J = l i m tGx - D x l =y * 0 
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and consequently 

(3.3) |(y,x)|= lim |(Gxn,xn)|= lim lei -|l(Gxn,xn) -xn/lx_!! 2U = 
m. —yoo n n M.-*OG n n n n 

= tf-llyR + o. 

Thus, (Gxn,xn)4=0 for arbitrary sufficiently large n e IN and 

(3.4) xn = (Gxn-0xn).^
2/(Gxn^n)--> y. 6'

2/(y,x) = x for n ~> oo . 

Then obviously GxR —*- Gx = y and Dx —> 0x = 0 for n —*> oo ; llxli= # • 

Finally, (y ,x). x/£2-Gx = (Gx , x)-x/ltxll2-Gx = -Dx = 0. 

Definition: Let R.be a metric space. 

1. Let M,,M2c R. Suppose that a continuous mapping f:M,x<0, 

I -> —> R s u c n t h a t f(x,0) = x for all x € Mx and f(M1,l)=M2 ex

ists. Then we say that the set M« is a continuous deformati

on o£ the set M, within R. 

2. Let Mc R. We say that the set M is contractible within R if 

there exists an aeR such that {al is a continuous deformati

on of M within R. 

Lemma 8: Let R be a metric space. Let M„cR being contract-

tible,within R be a continuous deformation of M,C R within R.Then 

M^ is contractible within R. 

Proof is obvious. 

Lemma 9: Let H, be a finite dimensional subspace of a H u 

bert space H and let P, be the orthogonal projection of H onto 

H r Put R - i x e H j P ^ + O K Then: 

1. For every (p > 0 the set S p-S(0^)nH, is not contractible 

within R. 

2. Every subset U of R such that P^U ) n ̂ "txQ$ = 0 for an xQ€ 

& H A 40} is contractible within R. 

Proof: 1. Assume the existence of <p > 0 such that the set 

Sp is contractible within R. Then an x 6R and a continuous map

ping f:S >c<0,l>—>R satisfying the relations f(x,0) = x and 

f(x,l)=x for every x€S^ have to exist. Consider the continu

ous mapping g:B(0,©)r\H, — * S p given as: 

(3.5) g(x)= -^.PjfCp-x/tlxll,].- Hxli/5D)/l\P1f((j).x/l\xH,l- \lx«/p)ll 

for all xe B(0,it>)nH1\40j;g(0)= - J>*P1x0/»P1x0». 
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According to the Brouwer fixed point theorem there exists x_€ S 

such that x = g ( x p ) = -f(x(&,0)= -x^. However, it is impossible. 

2. Define the mapping f:1lx<0,l> -> H by the formula 

f(x,t) = (l-t)-x + t-x for all x c U and te<0,l>. Obviously, this 

mapping is continuous; f(x,0)=x and f(x,l)=x for all x e 11 . 

The existence of (t,,x,) £ ( 0 , 1 ) x U such that P,f(x,,t-)=0 imp

lies P1x,=t1'x /(t,-l)e P,(U ) A ̂ C-l xQi , which contradicts our 

assumptions. 

4. Proof of the bifurcation theorem. We confine ourselves 

to a proof of the fact that every eigenvalue A ^ O of F"(0) is a 

bifurcation point of A • x-F'(x) = 0. A proof of the converse imp

lication is obvious. 

1. Choose an eigenvalue hQ>0 of F"(0). Put H Q=Ker(A 0«I-

-F"(0)), H ^ i ^ U ^ Ker( A.I-F M(0))) and H2=H^. Obviously, the 

spaces H and H, are finite dimensional and the one H« is clo

sed. Denote P. the orthogonal projection of H onto H. for i=l,2 

and put R= ixcH;P,x#0}. Without loss of generality we may as-
i 

sume that F(0) = 0. Let us define the functions o>, a>: (0 ,p) — > (R 

(4.1) < ^ ( 6 ) = s u p { | F ( x ) - ( F " ( 0 ) x , x ) / 2 | / í i x ! V ; x *B(0,€J) \ í O H , 

(4.2) co(ef) = sup -{i\F'(x)-F"(0)x!l/tlxll; x t B ( 0 , O \ ^ 0 H on (0,§>). 

Evidently, the functions co, o> are increasing and lim G>(C) = 

= lim co(6)=0. 
6->0 + 

Further, denote A the set of all eigenvalues of F"(0); put 

P\1 = s u p A and A 2 = sup C A f\ (0, A Q) tj \Q}) . Choose a # oe(0,(p) 

such that V ( * o - A 2 - 4.co(6To))/(A1 - X , ) - £(6^) > 0. Put: 

(4.3) ori = ( A 0- A 2- 4-o>(6To))/( 3^- * , , ) , 0^= V ^l" ^ o ^ 

Obviously, the constants d", , oC are positive. Denote: 

(4.4) D(x) = F'(x)-(F'(x),x)-x/..xl\2 for all x e B(0,p) N t0*. 

Finally, choose an arbitrary G'e(0,6 Q). 

2. Choose an x e S ( 0 , 6 ) n H , and consider k satisfying 
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(2.1) - (2.4) with l=<0,cx>) and G = F' (the existence of k is 

guaranteed by Lemma 6). 

(4.5) For all t e < 0,co): Ilk '(t)ll2 = (F '(k(t) )-(F '(k(t)) ,k(t) )-

-k(t)/)ik(t)ll2,k'(t)) = (F'(k(t)),k'(t)) = (d/dt)F(k(t)) 

and therefore 

(4.6) F(k(t)) = F(x)+ f* !ik'(r)ll2drrF(x)> (F"(0)x,x)/2 -

- O J ( 6 ) . l!x!l2 Z C A Q/2- co(f>)Mtk(t)|j
2. 

Further, 

(4.7) for all t £ <0,cx>) :F(k(t)) £ (F"(0)k(t) ,k(t) )/2+ a>(6*) • 

llk(t)li2 = (F'«(0)P1k(t),P1k(t))/2 + (F"(0)P2k(t),P2k(t))/2+ 

+ a)(6)*ilk(t)ll2 * AL» iiP1k(t)il2/2+ JN2- liP2k(t)li2/2+ o)(G)* 

*i\k(t).|2 = ( A x- -A2)-llP1k(t)H
2/2+ A2-lik(t)li

2/2+a>(<3')-

• li k(t)li2. 

From (4.6) and (4.7) we obtain that 

(4.8) ilP1k(t)'l\
2 >(f^ llk(t)il2 for all te<0,oo). 

3. We shall show that for every T >0 a k satisfying the 

conditions (2.1) - (2.3) (I=<0,oo), G=F'), k(0)e H xn S(0,6) 

and k(T)eH +H« exists. 

According to Lemma 5 a sequence "fH $t^\ of finite dimensio

nal subspaces of H and a system \G \B(0,tf ) n (H.+H ) — * " ^ -. i 

of Lipschitz continuous operators such that for all n c IN and 

y &F(u7^) n(H1+Hn):ilGny-F'y li £l/n, exist. Further, according 

to Lemma 3 for every n 6 IN and xeS(0,6)nH, there exists the 

unique kp(-,x) satisfying (2.1) - (2.4) with l=<0,a?) and G=Gn. 

Moreover, for every n e IN the mapping k :<0,cx?)x S(0,6) n H, —* 
r%/ n 1 

— * S(0,6)n(H,+H ) is continuous. 
Choose T > 0 . Let U ^ ^ , c < 0,T>, ^ ^ cS(0,6)nH 1 and 

^pn^n<=lc lN ' pn ^°° ' s u c h that for a11 n e ^ N : Pl kPn^ tn , xn^ = 0 , 

exist. Without loss of generality we may assume that ^"t^t^i and 

^xn^n^l c o n v e r 9 e s *° a tc.<0,T> and an x e S(0,€>) n H, , respecti

vely. For the sake of brevity write 1 instead of kp (-,xn). 

According to Lemma 4 there exist an increasing sequence 4rnitJ?i 

of positive integers and a k satisfying (2.1) - (2.4) with 

1= < 0,oo), G = F' and x = x such that {1 l^tl tends to k on <0,co) 
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locally uniformly. Thus: 

( 4 . 9 ) HP1k(?)H61|P C k ( t ) - k ( t )] I + » p f k ( t ) - l ( t ) J » ^ 
n n n n 

£ Jlk("t.)-k(t )H+sup4ilk(t)-l (t))i; t£<0,T>J. 
n rn 

Passing to the limit (n —>co ) we obtain that P,k(t) = 0. Howev

er, from (4.8) we have: ||P1k(t) II Z <$\/2. ilk(t) 11 = c/*/2. 6 > 0 . 

Hence there exists an n n
= n

n(T)
 e 'N such that for all positi

ve integers n ~ n
0 , te<0,T> and x 6 S(0 ,e>)n H, :k (t ,x)€ R. Evid

ently, for all n £ n :k (T,S(Q,6)n H, ) is a continuous deformati

on of S(0,6)nH, within R. According to Lemma 8 and the first 

part of Lemma 9 for all n £ n :k (T ,S(0,6) n H, ) is not contract-

ible within R. Further, in virtue of the second part of Lemma 9 

we have that for every positive integer n Z n an x eS(0,€DnH, 

such that pikn(T ,x ) e H - i.e. ^ (T ,x ) <=• H +H« - has to exist. 

Finally, according to Lemma 4 there exist an increasing sequence 

A.u \*̂ f, of positive integers greater than n =n (T) and a k satis

fying (2.1) - (2.3) with 1= <0,oo) and G=F' such that 

(k (•»>< )̂ n<Ti tends to k on <0,cx>) locally uniformly. Thus, 
n n 

k(0)= lim k (0,x„ )€S(0,S)nH, and k(T)= lim k (T,x„ )sH + H r m~>co u n u n 1 Tt^oo u
n
 u

n 0 1 

4. Choose an increasing sequence $T It.^?, of positive num
bers such that lim T = oo . Then for all n e IN there exists a k 

•>v -> oo n n 

satisfying the conditions (2.1) - (2.3) (I=<0,oo), G = F'), 

k n(0) e S(0,eO n H, and k (T )€H +H?. According to Lemma 4 there 

exist an increasing sequence \ v j *t°i c IN and a k^ satisfying 

(2.1) - (2.3) with I=<0,oo) and G = F' such that 4.1<v V^., tends 
^ A n " / 

to k^ on<0,oo) locally uniformly. Obviously, k ^ (0) e S(0 ,6) n H, . 
For every T > 0: 

(4.10) F(1^oO(T))-F(1<oo(0))= // (F'(k^ (t)),k^(t))dt = 

- lЪЦť)i2áU fo юt<вc,(t)tt2dt. 

Because the operator F' is completely continuous on B(0,p), the 

functional F is bounded on B(0,^) and hence J liDk
(X>
(t)|| dt < co • 

Accordingly, there exist a sequence of positive numbers it A*"̂ , 

and x,y e H such that %n^oo and D(k
<30
(t

n
)) —-»• 0, ̂  (T^) —=-* x, 
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F'(keo(1n))—> y in H. For every n e IN: 

(4.11) (F'(^00(tn)),P1
/k00(tn))>(F"(0)k00(tn),P1^„(1n))-^(6'). 

•IIK«,(tn)H
22 V ^ e o ' V - 2 -^(e)-!!^^)!!2? 

Sd"2-
|,K«,Ctn)l|

2=d'2.62. 

The last inequality follows from (4.8). Further, passing to the 

limit (n ~**oo) in (4.11) we get: 

(4.12) (y,Ptx) >-oT2.6
2. 

Thus, y4 -0 . Accord ing to Lemma 7 k 0 O ( t n ) —> x e S ( 0 , 6 ' ) and 

(4.13) A. x-F'(x) = 0, where A =(y ,x)/62 = (F '(x),x)/62. 

^ /s 

5. For every n e IN put lR = k >̂ n
 = l"v • Since the functional 

n n 
F is continuous on B(0,p), for every n c IN there exists an m = 
=mQ(n) e IN such that for all m> mQ:F($00 (tR)) £ F(l (tR))+ 6

3. 

Take an n € IN..Choose a positive integer m,?m (n) satisfying 

*-..* V Then f0C a11 "*"l!F<VV>-F<VV> = 

= X7'm'll^(f)ll2df?0 and thus F(k0O(¥n))^ F(lm(^m))+6T
3. Since 

V s . > « V H 2 ' F(kcD^n))^CF"(0)tmtem).lm(^))/2^W6
2
+6:

3^ 
2 

.--=•[ & / 2 + c o ( 6 ) + tfl • tf . Passing t o the l i m i t ( n — > c o ) i n the 

last inequality we get: 

(4.14) F(x)£ l:>0/2+^(6)+ 61. 6
2. 

Further, it is obvious that for all n c iN:F(k00(<E )) ? 
> F(kCD(0))> (F"(0)kco(0),1^oo(0))/2-o(6) . tf

2> [ \/2- ft>(6)3 -€T2. 
Hence passing to the limit (n—>co ) we have: 

(4.15) F(x)> [A0/2-o>(603-6
2. 

2 
The i n e q u a l i t i e s ( 4 . 1 4 ) and (4 .15 ) imp l y : | F ( x ) - 7i $ / I \ £ (ff + 

2 
+ o> (6 ) )»6 . A c c o r d i n g l y : 

(4 .16 ) | \ - * H ( F ' ( x ) , x ) / 6 2 - ftQ| ^ C > " 2 . [ | ( F ' ( x ) - F " ( 0 ) x , x ) | + 

+ | 2 » F ( x ) - ( F M ( 0 ) x , x ) | + | 2 « F ( x ) - A662|3<-= & W + 4 GO (60 + 2-a* . 

The proof is finished. 
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