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AN ABSTRACT DIFFERENTIAL INEQUALITY AND EIGENVALUES OF
VARIATIONAL INEQUALITIES
Jan NEUMANN

Abstract: A detailed analysis of properties of certain ini-
tial value problem for an abstract ordinary differential inequ-
ality is performed. The result obtained is used to give a new
proof of a Miersemann s theorem on eigenvalues of variational in-
equalities in Hilbert spaces (see [1]). While the proof presen-
ted by E. Miersemann in [1) issues from certain Krasnoselskii s
ideas (see [5)), our access draws from a method proposed by I.V.
Skrypnik (see 6] or [7]).
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Introduction. In this article a new proof of certain eigen-
value theorem by Miersemann (see [1]) is presented. In his proof
Miersemann made use of the ideas of the original proof of Krasno-
selskii potential bifurcation theorem (see [5)), while our method
is inspired with the procedure proposed by I.V. Skrypnik to pro-
ve another important potential bifurcation result for the varia-
tional equations (see [6) - p. 161, Theorem 3.4 and [7] - p. 178,
Theorem 12, respectively). (On the basis of these Skrypnik s ide-
as the author proved a small generalization of Krasnoselskii po-
tential bifurcation theorem - see [9]}.)

Throughout this paper, H, A and K denotesa real Hilbert spa-
ce, a continuous linear operator in H and a cone in H i.e. a non-
empty, convex_and closed subset of H such that for every xeK:
:{t.x; t=0%c K, respectively.

In Section 1 solutions k:{0, ®)—> K of the following abst-
ract ordinary differential inequality are investigated -

(1.1) (k'(t)—Ak(t)+(Ak(t),k(t))-k(t)/“k(t)"z, y-k(t))z 0

for all yeK.
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Section 2 contains a new proof of the following Miersemann's ei-
genvalue result:

Theorem 1: Suppose that the operator A is selfadjoint and
completely continuous. Let w ¢ (0,sup$(Ax,x);ixi=1%) be an eigen-
value of A such that an eigenvector corresponding to w lies in
the interior of the cone K. Denote v the least eigenvalue of
A greater than w .

Then there exist A e (w,»> and x e K\{0}such that

(I.2) (Ax-Ax,y-x)Z 0 for all yeK.

(Thus, A and x is an eigenvalue and an eigenvector, respective-
ly, of the operator A with respect to the cone K.)

The eigenvector x is constructed as an accumulation value
(t —> 00 ) of an abstract function k:te<0,c0)—> K satisfying an
initial value problem for the differential inequality mentioned
above with a conveniently chosen initial condition.

It is possible to use the method presented also to prove ot-
her Miersemann’s results on eigenvalues and bifurcation points of
variational inequalities (see [2, 3, 4)).

1. Auxiliary differential problems. Let T and @ be positi-
ve real numbers. Denote P the projection of the Hilbert space H
onto the cone K;

(1.1) Wx-PxW=inf{lx-yl;ye K} for all xe K.
In what follows, the standard function spaces C({0,T>,H),
cl<o,™,H), L2(0,T,H) and W2-1(0,T,H) will be used.
Remarks {: It is well known that:
1. For all xeH and ye K
(1.2) (x-Px,y-Px) <0,
(1.3) (x-Px,y)<0 and (x-Px,x)=0.
2. The mapping P is nonexpansive -
(1.4) for all x,y € H:IPx-Py ll £ ix-y .
3. wz’l(O,T,H) is continuously imbedded into C(L0,T>,H).
It is easy to prove the following assertions:
4. 1f k, — k in W2'1(0,T,H) then for all te<0,T>:
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k(D) —~ k(1) in H,

5. Let ke LZ(O,T,H), 1€ C(<0,T>,H), 1(t)e K for all te<0,T).
Then the statements introduced below are equivalent:

(1.5 - 6) For all ye K (continuous functions m :<0,T> — K) the-
re exists a set M (M,,l)c(O,T> of measure zero such
that (k(t),y-1(£)) 20 ((k(t),n(t)-1(t))=0) for all
t e<0,TON My (€0,T>\ M7)°

(1.7 - 8) There exists a set Mc<0,T> of measure zero such that
(k(t),y-1(t))z 0 ((k(t),n(t)-1(t))z0) for all yeK
(continuous functions 7 :<0,T>—> K) and t €<0,T>\ M.

Thus, we may write briefly -

(k(t),y-1(t))=0 for all ye K and almost all te<0,T) or

(k(t),m(t)-1(t))2 0 for all continuous functions m :<0,T> —> K

and almost all te<0,T) - instead of each of the statements

(1.5) - (1.8).

6. Suppose that k_— k in LZ(O,T,H), leLz(O,T,H) and for
all n e IN:(kn(t'),l(t))ZO almost everywhere in €0,T?. Then
(k(t),1(t)) 20 almost everywhere in <0,T>.

Further needed properties of the function spaces mentioned
above and the Bochner integral can be found in [8].

Lemma 1: Let ?e CK0,T>,H), xe H. Then there exists the u-
nique abstract function k:{0,T> —> H such that
(1.9) keclo,m,n),
(1.10) k'(t)= g(t)+§)‘(Pk(t)-k(t)) for all te<0,T”,
(1.11) k(0)=x.

Proof: Define the operator U:C(<0,T>,H)—> C(L0,T>,H) by
the formula:

(1.12)  Uk(t)=x+ [ (§(x)+p-(Pk(x)-k(®))dT for all te<0,T>.
Then
(1.13) for all k,1e€C(K0,T>,H) and t €<0,T>:NUk(t)-Ul(t)N=

= \\f‘;c @+ ((Pk(T)-PL(T))-(k(T)-1(T)))- exp(-4 0T )-
exp(4pr)drl £p-[sup {¥Pk(x)-PL(@)l.exp(-4p2);

©ed 0,1} +sup {Ik(x)-1(x)\ -exp(-4pr); v €<0,T>}]-
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.fo‘exp(Ago-q Ydm £ sup { I k(z)-1(2)ll -exp(-4pz ); v e0,T>%-

- (exp(4@t)-1)/2.
Hence

(1.14) sup §IUk(t)-UL(t)-exp(-4 pt); te€<0,T>} £ sup {llk(t)-
-1(t)|t-exp(-4§ot); te<0,T>3/2.

According to the Banach fixed point theorem there is the uni-
que solution of the equation k=Uk. Obviously, this equation and
the problem (1.9), (1.10) and (1.11) are equivalent.

Lemma 2: Let ga.C((O,T),H), x € K. Denote by k the solution
of the differential problem (1.9), (1.10) and (1.11). Put:

(1.15) A =max{ll §(t)N; te<0,T>3:
Then:
(1.16) max {hk(t)-Pk(t)l; te<0,T>}<A/p>

(1.17) max Sk (t)N; te<0,TD¥£2.A,
(1.18) max {hk(t)l; te<o,TD3£2-A- T+ W x\.

Proof: Consider the continuous function
(1.19) F:£0,T> ——>IR1, F(t)= DWk(t)-Pk(t)) for all te<0,TH.
Obviously, F(U)=0-<J\/9 . Assume that
(1.20) there exists t,€ (0,T) such that F(to)>J\/@.

Denote:
(1.21) t1=sup{te<0,to7; F(t).é/\./;o} .
It is apparent that 0< t1< t,, F(t1)=J\/@ and

(1.22) F(t)>j\/go for all te (t,t 5.
Thus
(1.23) F(t1)< F(to).

We shall show that the function F is decreasing on (tl,to).
This fact and the continuity of F on {0,T) imply that F(tl) >
>F(t0), which contradicts (1.23).

Prove the monotonicity of F on (tl,to). For all t e<0,7>
define the function
(1.28) 6,:€0,T% — R!, 6,(5)=Mk(s)-Pk(t)N? for all se<0,T>.

Obviously
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(1.25)  B(t)/2=(k (1), k(£)-Pk(£))=(E(£) ,k(£)-Pk(t))-@-F2(t) 2
£ (DI-F(1)-@-F2(1) £0-(A /@ ~F(1)).F(1).

Thus, if F(t)>A /o , then G{(t)< 0 i.e. the function G, is de-

creasing at the point t.

Let t €(t1’to)' According to (1.22) F(t)>J\/P and there-
fore there exists € >0 such that

(1.26) Nk(s)-Pk(DNZ=6,(s)< 6,(t)= Nk(t)-Pk(D)IZ=F2(t)
for all se (t,t+€).

Moreover

(1.27) F2(s)= 1 k(s)-Pk(s)I2< IKk(s)-Pk(t)I?

and thus F(t)> F(s). The proof of (1.16) is complete. (1.17) and
(1.18) can be obtained easily with the help of (1.16).

Lemma 3: Let § e C(K0,T>,H), xe K. Then there exists pre-
cisely one abstract function

(1.28) kewZ:1(o,7,H)
such that
(1.29) (k' (t)- §(t),y-k(t)) 20 for all ye K and almost all
t e<0,T7,

(1.30) k(0)=x,
(1.31) k(t)e K for all te<0,T>.

For every @ > 0 denote by 59 the solution of (1.9), (1.10)
and (1.11). Then limk =k in w2:1(0,7,H) weakly.

Proof: According to the fifth part of Remarks 1 (1.29) may
be replaced by
(1.32)  (k'(t)- §(t),m(t)-k(t))z 0 for all continuous functions
1:<0,T>—> K and almost all te<0,T).

1. Uniqueness. Let the abstract functions k and 1 solve
the problem (1.28), (1.32), (1.30) and (1.31). Then:

(1.33) (k' (£)- §(1),1(t)-k()) 20 and (1°(t)- §(t),
k(t)-1(t)) 2 0 almost everywhere in <0,T).

Adding these inequalities we have:
(1.34) (k'(t)-17(t),1(t)-k(t))= 0 for almost all te<0,T).
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Thus for all te<0,T)
(1.35) Bk(6)-101%= 1k(0)-1(01 %2 - [k (221" (2) K (2)-
-1(v))dv 0.
Hence we get that k(t)=1(t) for all te<O0,T).
2. Accotdlng to Lemma 2 the set {kP,@ € {0, )}y is boun-

ded in W2 (U T,H). Hence there exist sequences (Glﬁﬁ:yl c Rl
and {knlﬂz clwz’ (0,T,H) with the following properties:

(1.36) the sequence {@n}:”l is positive, increasing and boun-
dless;
(1.37) for all n € IN:k_ is the solution of (1.9), (1.10) and

(1.11) with @= Pns

(1.38) {kn}; ; tends to an abstract function k in Wz’l(O,T,H)
weakly.

Thus

(1.39) k()—=~k(t) in H for all te<0,T> -

see the fourth part of Remarks 1. From (1.39) it follows immedi-

ately that k(0)=x.

3. For every @ > 0 denote M(@)= {yeH;Ily—PyN':./\/(og-

(1.40) The set M(p) is weakly closed
since it is convex and closed. Fix p € IN.
for all positive integers m>p and all te<0,T>

(1.41) ik (£)-Pk (£ £N/pp < Nip,

and therefore km(t)e M(@p); From (1.39), (1.40) and the last
statement it follows that for all te<0,T>:k(t)e M(@P) i.e.

Ik(t)-Pk(t)li é/\App. Passing to the limit (p —co ) in this

inequality, we obtain that k(t)e K.

According to Lemma 2

4. Take an 7eC(<0,T>,H) such that for all t e<0,T:p(t) e
e K. In virtue of (1.36), (1.37) and (1.3) we have:

(1.42)  (k ()= €(t),m(t))= -@ - (k (£)-Pk (£),9(t))20 for all

te{0,T> and ne IN.
The facts introduced above imply that

(1.43) (k'(%)- g(t),n(t))zo almost everywhere in <0,T) -
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see the sixth part of Remarks 1.
5. Making use of (1.36), (1.37) and (1.3) we have:
W2 2 t tE, -
(1.48) Mk (RS- IxW®= 2 [E(E (), k (e))de =2 f (K (T)-

- @)k (©)dT = ~2-0 [F(k (2)-Pk_(¥),k (2))dT =

= -2.9 [Hlk ()-Pk ()I2dT£0 for all n e N and te<0,T).
From (1.39), (1.44) and (1.38) it follows:

(1.45) dk(IZ=1in inf ik (007 1im e 2. [F ( (D),
n-w 0

m ~—» o
k,(z))dl =lxhZe2 . L:(f(t),k(t))dt on the interval
<0,T>.

Hence f;(k'(t)— £ (¢),k(x))dT £ 0. Owing to this fact and the
validity of (1.43) with 7=k we have that (k '(t)- £(t), k(t))=0
for almost all te<0,T)>. Finally, the subtraction of the last
equation from the inequality (1.43) leads to the relation

(1.46) (k' (t)- €(t),n(t)-k(t))Z 0 almost everywhere in <0,T>.
Thus

(1.47) k solves (1.28), (1.29), (1.30) and (1.31).

6. Let k. A~k in WZ’I(O,T,H). It is obvious that then the-

re exist sequences {@r);il c R} and {Qnrﬁilc wz’l(D,T,H) with

the following properties:

(1.48) the sequence {@n :fl is positive, increasing and bound-
less;

(1.49) for all n elN:kn solves the problem (1.9), (1.10) and
(1.11);

(1.50) {Rn}:fl tends to an abstract function k #k in wz’l(U,T,H)
weakly.

Repeating the procedure described above we obtain that
A
(1.51) k solves the problem (1.28), (1.29), (1.30) and (1.31).
The conjunction of the statements k*-ﬂ, (1.47) and (1.51)

contradicts the uniqueness result.

Lemma 4: For i=1 and 2 let gie C(0,Ty,H) and X € K. De-
note by k= Q14§i,xi) the solution of the problem (1.28), (1.29),

(1.30) and (1.31) with g: gi and x=x; for i=1 and 2. Define the
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function £.:¢0,c0)— IR! as follows:
(1.52) £ (c)=c!-(1-exp(-2-c-T)) for all ce0,c0),
(1.53) £.(0)= lim £ _(c)=2-T.

c >0
Then for every nonnegative number c
(1.54) sup {ﬂkl(t)—kz(t)n-exp(-c't); tedo, ! <
< fT(c)-sup {Hgl(t)- Ez(t)l-exp(—c-t); te<0,T>¢ +
+ “XI-XZ“ .
Thus, the mapping @T:C((O,T),H)x.K-—e C(<0,T>,H) is Lipschitz

continuous.

Proof: For the sake of brevity let us write k,§f and x
instead of kl'k2’ ?1— EZ and X1=Xo, respectively. For almost eve-
ry te<o0,T>

(1.55)  (k;(t)- §,(),-k(£))2 0 and (k,(t)- §,(t),k(t))20.
Adding these inequations we obtain

(1.56)  (k'(t)- §(t),k(1))£0 and thus (k'(t),k(t)) £ (f(t),
k(t)) almost everywhere in <0,T>.

Hence we have:

(1.57) MkCiZ= k(o242 + [* (k" (2) k(x))dT £ ixh2e2. [F (f(2),
k(t))-exp(-2.c-T) exp(2-c-w)dr.éuxn2+2-sup g (i
cexp(-c.t); ve<0,T}.sup {lik(=)NM-exp(-c-); ve0,THi-
.ﬁj exp(2-c-z)dz= ﬁxﬂ2+sup {h§(r)h-exp(-c»r); T e<0,T}-
-sup {0 k()N -exp(-c.?); v e<0,T>- exp(2.c t)-f,(c)
for all te<0,7T> and cZ 0.

Accordingly:

(1.58) [sup {Ik(t)-exp(-c-t); te<0,T>3 322 ixNZ+sup LUf (1)
cexp(-c-t); te<0,T>¢-sup fHk(t)h.exp(-c.t); te(0,T>§-

-fT(c)e sup {lIk(t)h-exp(-c-t); te<0,T>5- [“XH+fT(c%
sup {lig (t)W -exp(-c-t); te<0,T>}§ .

In what follows, D is the operator defined on H as:
(1.59) D(x)=Ax-(Ax,x)-x/lixiZ for all xe H\40% and D(0)=0.
Obviously, Dx is the orthogonal projection Ax ontx{xill
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and thus
(1.60) (Dx,x)=0 for all xeH.

Further, DT will denote the operator given on C(<0,T),H) as:
(1.61) (DTk)(t)=D(k(t)) for all te<0,T>.
Both the operators D and DT are continuous.

Lemma 5: Let xe K. Then there exists the unique abstract

function
(1.62) kew? (o, 1,1

satisfying the conditions:

(1.63) (k“(t)-Dk(t),y-k(t))= 0 for all ye K and almost all
te<0,Ty,

(1.64) k(0)=x,
(1.65) k(t)eK for all te<O0,T>.

Proof: 1. The auxiliary result -
(1.66) NIDx-Dylt <« 61IAli-lix-yll for all x,yeH -

will be proved only under the additional conditions x%0, y #0.
(The proof for the remaining cases is very simple.) Without loss
of generality we may suppose that liyl«ixll. Obviously

(1.67) Dx—Dy=A(x—y)—(A(x—y),x)-x/nxhz -
—(Ay,x—y)-x/nxhz-(Ay,y)v(x-y)/HxH2 -

S(Ay,y) ey -Gy = 1 x ) Clly W fUx ) /Clix h2 i yn2)
Hence:

(1.68) WDx-DylahAl-fx-yd + NAR-nx-y Wl xnZ/fix02 +
S ANy tix-y Bt/ ixhZe wAn-hyd 2o xoy i/nxu? +
+ ||All-llyl\30hy—xl\'(llyll + lIXll)/(\lxllz-llyllz)é 6 NAll-H x-y .

2. Define the operator ET:C((U,T),H)-a C(<0,TY,H) by the

formula:
(1.69) E.= $.(-,x)e D .
In virtue of Lemma 4 and the estimate (1.66) we have:

(1.70) sup&\\(ETkl)(t)-(ETkz)(t)\l'exp(-lz-ﬂAll-t); te0,T>} <«

€212 A1)+ sup {10k ) (£)-(Drky) ()M -exp(-12- KAN-1);
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te<0,T73£ 6 -MAN-£,(12.0A0) »sup Sk, (£) -k, (E)N-
cexp(-12-1AN-t); te£0,T>} = sup {"kl(t)-kz(t)ﬂ'
cexp(-12.0All-t); te<0,T>§/2.
According to the Banach fixed point theorem there exists the
unique k & C(0,T>,H) such that k=ETk. It is easily seen that the
last equation and the problem (1.62), (1.63), (1.64) and (1.65)

are equivalent.
From Lemma 5 it follows immediately:

Lemma 6: For every x € K there exists the unique abstract

fuﬁction
(1.71) k:<0,0) — K
such that
(1.72) k/<0,t>e w2 1(0,t,H) for all te (0,00),
(1.73) (k“(t)-Dk(t),y-k(t)) =0 for all ye K and almost all
te<0,00),
(1.74) k(0)=x.
With help of Lemma 4, the estimate (1.66) and elementary g,
d-considerations, the following result can be readily derived:

Lemma 7: The mapping k:(t,x) €<0,00)x K—> k(t,x) e K, where
for every xe K, k(»,x) denotes the solution of the problem (1.71),
(1.72) and (1.73) acquiring the value x at the point t=0, is con-

tinuous.

Lemma 8: Let xe K and let k be the solution of the problem

(1.71), (1.72), (1.73) and (1.74). Then:
(1.75) k()= xh for all te<0,00),

(1.76) Nk (£)12=(k "(£),Dk(t))=(k "(t),Ak(t)) for almost all t ¢<0,m).

Moreover,
(1.77) if A is a selfadjoint operator then (Ak(t),k(t)) >

z (Ax,x) for all te<0,c0) and [*Ik (D) Zdt< + 00
[

Proof: The condition (1.73) may be also expressed as follows:

(1.78) there exists a set Mc {0, «o ) of measure zero such that
(k'(t)-Dk(t),q(t)-k(t))z 0 for all continuous functions
M:€0, @ ) —> K and all t € <0, 00 )\ M.



1. Inserting m=2-k and n=k/2 into the inequality (1.78)
we get:
(1.79) (k“(t)-Dk(t),k(t))=0 for almost all te<0,c0). From (1.60)
and the last equation it follows:

(1.80) (k'(t),k(t))=0 almost everywhere in <0,m ).
Hence
(1.81) Nk(t)N2- Hxﬂ2=2-&;(k'(r),k(t))dr =0 on <0, ).

2. Let us extend the abstract function k on the whole re-
al axis as follows:

(1.82) k(t)=k(0)(=x) for all te (-w,0).
Put:

(1.83) M=4ted0,00); non Llim (h™le(k(t+h)-k(t)))=k (t)1}
UM #>0 '

Because k & LZ(O,T,H) and meas(M)=0, we have that
~
(1.84) meas(M).=0.
A
Thus, for all te<0,@ )\ M

(1.85) (k'(t)—Dk(t),k'(t))=h}i% (k’(t)-Dk(t),h'l-(k(t+n)-
-k(1))) z 0 T

and at the same time

(1.86) (k" (£)-Dk(1) k()= 1im (k" (t)-Dk(t),h~ Lo (k(t+h)-
-k(t))) < 0. o

The inequalities (1.85) and (1.86) imply that
(1.87) Hk‘(t)“2=(Dk(t),k‘(t)) almost everywhere in <0, ).

The validity of the equality (Dk(t),k (t))=(Ak(t),k (%))
for almost all te<0,o) can be verified by a simple account
which makes use of (1.80).

3. Owing to the symmetry of A and (1.76)
(1.88) for every te<0,a): (Ak(),k(t))-(Ax,x)=2 - [ ilk ()i 2dr.

Furthermore, the expression (Ak(t),k(t))-(Ax,x) is bounded by
Z-NA\\'I\XII2 independently of t.

2. Proof of Theorem 1. We start from a simple auxiliary

assertion which will be useful in our proof of Theorem 1.
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Lemma 9: Let ® be a positive number. Suppose that sequences
of elements from H- {x_ {7°2, and iynrnofl - and elements y and z
of H satisfy the following requirements:

(2.1) {xnl*:il tends weakly to the zero element of H,

(2.2) fy @, ckns0,e) *,

Yoo
(2.3) Ayb -1 tends weakly to y,
(2.4) Ay ‘n ) tends strongly to z,

(2.5) (y,z)>0,
(2.6) (xn—Dyn,v-yn)ZO for every n e IN and every ve K.
Then ye K, iyl =@, {ynvn‘zl tends strongly to y, z=Ay and

(2.7) (Xx-y-Ay,v-y) 20 for all vek,
where

(2.8) A= 2 (z,y).

Proof: Since K 1ic a weakly closed set, the weak limit
of the sequence {yn§::1C K - i.e. the element y - belongs to K.
Putting v=y+y, into the inequality (2.6) we obtain:

- ’ 2
(2.9) 0&(x =Dy ,y)=(x_,y)-(Ay ,y)+(Ay_,y )-Cy_,y) /iyl
Passing to the limit in the last relation we have:
(2.10) 0 -(z,y)+(z,y)-ly%/p?

From (2.10) and (2.5) we get immediately: liyli z ® . However
(2.3) implies that hyll-llm olglf lly \\-(u and hence jlyll =@ . From
the facts y —>y and \\y \\~>lly\\ 1t follows that y_ —y. Hence
owing to the Continuity of A we have: Ayn-»>Ay z. Thus A=
=(Ay,y)/uyi?.

Finally, for all veK

(2.11)  (A-y~Ay,v-y)=(Ay,y)-(y,v-y)/iyliZ-(Ay,v-y)=
= lim I(xn,v—y )+(Ayn,yn)(yn,v-yn)/iiynll2-(Ayn,v—yn)] =
= 11m (x -Dy,,v- yn)>0

In what follows, we use the following notations:
1. A is a linear, selfadjoint and completely continuous operator.

aecH, b>0 S(a,b)= §xeH; Ix-al = b}
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2. &D\n&}’nzl(p ¢ IN U {+ %) is the nonincreasing sequence contain-
ing all positive eigenvalues of A.

3. {un}%-l is an orthonormal system in H; for all n e N, n#4p,

u_ is an eigenvector of A corresponding to the eigenvalue .?tn.

Definition 1: Let R be a metric space.
1. Let MI’MZC R. Suppose that a continuous mapping f:M1)¢<0,1>-+
—> R such that f(x,0)=x for all x €M, and f(Ml,1)=M2 exists.
Then we say that the set M2 is a continuous deformation of the
set M1 within R.
2. Let Mc R. We say that the set M is contractible within R if
there exists an ac R such that the set {a} is a continuous defor-
mation of the set M within R.

The basic properties of the notions defined above are suin-

marized for example in [9].

Proof of Theorem 1l: Let m be a positive integer such that

Npop=» and A =@ - thus
(2.12) Ai > A n for all i=1,2,...,m-1.
1. Further the following notations will be used:
(2.13) H1=$({u1,u2,...,um_l}),
(2.14) P1 is the orthogonal projection H onto Hl’
(2.15) R={zeH; Plzwl.
Suppose that up € int(K). Then there exists a d"> 0 such
that S(um,d)c K. Put:
(2.16) F{Q+ D 2.0 .5 wu); « € R for i-1,2
: = mti T YitYili Y or 1=1,2,...
m- 1 2 2
m-1, 4,%4 wi=d %.
Obviously:
(2.17) Fc KnS(0,1)nR.
A simple account using among others (2.12) yields:
(2.18) (Ax,x) > ﬁm for all xeF.

2. It will be shown that
(2.19) the set F is not contractible within R.

According to Lemma 9 from [9]
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(2.20) the set P=S(0,d’-(l+d’2)-1/2)r\H1 is not contractible
within R.

Furthermore,

(2.21) the set F is a continuous deformation of the set P with-
in R.

The deformation mapping can be given on<0,1>x P as: f(t,x)=

=x+t+(1+ 8272y | From (2.20) and (2.21) it follows (2.19)

in virtue of Lemma 8 from [9].

3. Further we shall prove that

(2.22) for all te(0,m0) the set k(t,F) is not contractible
within R.

(For the definition of the symbol k(-,:) see Lemma 7.) Fix xeF
and t ¢ (0,00). Denote k=k(+,x). According to Lemma 8

(2.23)  (Ak(t),k(t)) Z (Ax,x).

From (2.23), (2.18), (2.17) and the first part of Lemma 8 it fol-

lows:

(2.26)  (AK(E),k(£)) > AWk (NZ= A 1P k(1 2% A -n(I-P KD

Furthermore,

(2.25) (Ak(t),k(t))= (AP 1K), P 1K (£))+(A(T-P k), (1-P k() £
< A e k(%A I-p DROIZ,

Finally, comparing the estimates (2.24) and (2.25) we get that

(2.26) \lPlk(t)\\2>0 i.e. PoK(t)+0.

Now it is readily seen that
(2.27) k(t,F) is a continuous deformation of F within R for all
te(0,0) -
the deformation is realized by the mapping k(-,-)/<0,t)< F.
From (2.19) and (2.27) it follows (2.22).
4. Let us prove that
(2.28) for all te(0,00) an x,eF such that k(t,xy) e L(uy 43+
+H{ has to exist.

Suppose that for a te (0,cc) the set k(t,F)(\(&L({um_I})+Hf)

is empty. Hence the set Plk(t,F) N &({um_1§) is also empty. This
fact implies that the set k(t,F) is contractible within R (see
[91, Lemma 9), which contradicts (2.22).

5. Choose an increasing and boundless sequence of positive
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numbers At 37 . For all n € N let x_€F and k(t_,x ) €
c :ﬂ({um_ll)+H%. Because the set F is compact, without loss of
generality it may be supposed that the sequence {xnlﬁil conver-
ges to an xe¢ F. According to Lemma 7 for every positive number t
the sequence &k(t,xn)ﬂfi tends to k(t,x) in H. For the sake of
brevity let us write K instead of k(¢,x). The abstract function

K fultils the condition (1.73)and thus:

(2.29) (k ()-Dk(t),v-K(t))Z 0 for all te<0,c)\M and all ve K,

where

(2.30) Mc<0,00), meas(M)=0.

According to Lemma 8 L;ﬁ\ﬁ'(t)ﬂzdt <+o00 . In virtue of (2.30)
and the last statement we have that

(2.31) meas(Nn= fte<0,00); non LUK ()N £1/n)} U M)< + for
all n elIN.

Now let us construct a numeral sequence {?n :fl in the fol-

lowing way:
A
1. Put to—l
2. For n z1 put
AN

(2.32) Anz <tn_1+1,oo)\ Ny
According to (2.31) An4=ﬂ. Choose an arbitrary element ot An and

denote it by ?n.
The sequence {%nvﬁjl is increasing and boundless. Since four

all n e N:T &N 1.e.l(Q'(%n)ne 1/n,
(2.33) the sequence Xﬁ'(Qn)ﬁxfl tends to the zero element of H.
According to the first part of Lemma 8
(2.34) for all ne IN:K(E DI = hxh =1.
Owing to this fact and the complete continuity of A
(2.35) there exists a sequence {1n ﬁf1 chosen from {%ny:fl such

that {Q(tn)§:Tl converges weakly in H - to some y -

and {Aﬁ(«n)};fl converges strongly in H to Ay.
Further by virtue of (2.35), (1.77) and (2.18) we have:

. (94 S -
(2.36) (Ay,y)= ml_}lg]c (Ak(fc’n),k('c‘n))l (Ax,x) > 9\m- w>0.
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Finally, for all n e N: tr1¢ M which guarantees that
(2.37) (Q'(fn)-DQ(tn),v-Q(Tn))Z'O for every n € IN and ve K -
see (2.29).

The validity of the assertions (2.33), (2.34), (2.35), (2.36)
and (2.37) makes it possible to use Lemma 9 for the sequences
&ﬁ'(mn)izfl and &R(cn) ;:1. The application of Lemma 9 mentioned
above leads to the conclusion which reads:

(2.38) yeKnsS(0,1), {k(f )i*m tends strongly to y and for all
veK:(A.y-Ay,v-y) 20, where A =(Ay,y).

Thus, according to (2.36)

(2.39) A > Q\m: “ -

6. It remains to prove that

(2.40) 2 <= QA =v.

m-1

roc . s
n=1’ { rngn , and {Xn}n , defined in
the foregoing part of the proof. Fix p e IN and ¢ > 0. Since

+ 00 * . .
{k(tp,xn) n-1 tends to k(Tp) and A is a continuous operator,

Consider the sequences 4t }

\(Ak(rp,xn),k(rp,xn))}:fl tends to (Aﬁ(vp),ﬁ(tp)). Thus, there

exists an n0=n0(e,p) € IN such that for all positive integers
nz no:
(2.81) ARz ) R(z)) = (Ak(T ), x ),k(fc‘p,xn))+€,.

Furthermore, because 11§>t , a positive integer n1=n1(e,p)z
—»
> no(e,p) such that t_ t has to exist. Obviously:
l
(2.42) (Ak(r_,x_ ),k(x_,x_ ))=(Ak(t_ ,x_ ),k(t_ ,x_ ))-
p>rny P ny’om Nyt

.tm N . 2
-2 ir 10k ('c‘,xn Nifde e« (Ak(t, ,x, ) k(t X

)).
n 1 1 M 1 M

+Ht)r\5(0,l) implies:

Finally, the fact k(tn ,xnl) e(ﬁﬁ{um_l}

1

(2.43) (Ak(tni,xnl),k(tnl,xnl)) P

From the relations (2.41) with n=n
follows:

1 (2.42) and (2.43) it
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(2.44) for all ¢ > 0 and all p e:N:(AQ(cp),Q(cp))e Ap_ +&-

Passing to the limit (p —- c0 and & —> 0+) in the last estima-
te we obtain (2.40). The proof is finished.
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