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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,2(1987) 

AN ABSTRACT DIFFERENTIAL INEQUALITY AND EIGENVALUES OF 

VARIATIONAL INEQUALITIES 

Jan NEUMANN 

Abstract: A detailed analysis of properties of certain ini­
tial value problem for an abstract ordinary differential inequ­
ality is performed. The result obtained is used to give a new 
proof of a Miersemann s theorem on eigenvalues of variational in­
equalities in Hilbert spaces (see [11). While the proof presen­
ted by E. Miersemann in [13 issues from certain Krasnoselskii s -
ideas (see £53), our access draws from a method proposed by I.V. 
Skrypnik (see [63 or £7]). 

Key words: Abstract differential inequality, eigenvalues 
of variational inequalities. 

Classification: 35B32, 35P30, 49A29 

Introduction. In this article a new proof of certain eigen­

value theorem by Miersemann (see [13) is presented. In his proof 

Miersemann made use of the ideas of the original proof of Krasno­

selskii potential bifurcation theorem (see £53), while our method 

is inspired with the procedure proposed by I.V. Skrypnik to pro­

ve another important potential bifurcation result for the varia­

tional equations (see [63 - p. 161, Theorem 3.4 and £7] - p. 178, 

Theorem 12, respectively). (On the basis of these Skrypnik s ide­

as the author proved a small generalization of Krasnoselskii po­

tential bifurcation theorem - see £93.) 

Throughout this paper, H, A and K denotes a real Hilbert spa­

ce, a continuous linear operator in H and a cone in H i.e. a non­

empty, convex and closed subset of H such that for every xeK: 

:{t.x; t i O ] c K , respectively. 

In Section 1 solutions k:<0,co)-> K of the following abst­

ract ordinary differential inequality are investigated -

(1.1) (k'(t)-Ak(t) + (Ak(t),k(t)).k(t)/llk(t)ll2, y-k(t))> 0 

for all y e K. 
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Section 2 contains a new proof of the following Miersemann's ei­

genvalue result: 

Theorem 1: Suppose that the operator A is selfadjoint and 

completely continuous. Let ^ c (0,sup$(Ax,x); l|x| = l|) be an eigen­
value of A such that an eigenvector corresponding to <a lies in 

the interior of the cone K. Denote V the least eigenvalue of 

A greater than ju, * 
Then there exist A e (<a,>>> and xeK\-tO}such that 

(1.2) ( Ax-Ax,y-x)2r 0 for all yeK. 

(Thus, & and x is an eigenvalue and an eigenvector, respective­

ly, of the operator A with respect to the cone K.) 

The eigenvector x is constructed as an accumulation value 

(t —>co ) of an abstract function k: t e <0,oo) — > K satisfying an 

initial value problem for the differential inequality mentioned 

above with a conveniently chosen initial condition. 

It is possible to use the method presented also to prove ot­

her Miersemann's results on eigenvalues and bifurcation points of 

variational inequalities (see [2, 3, 43). 

1. Auxiliary differential problems. Let T and p be positi­

ve real numbers. Denote P the projection of the Hilbert space H 

onto the cone K; 

(1.1) llx-PxtUinfUx-ylhye K\ for all xeK. 

In what follows, the standard function spaces C«0,T>,H), 

C 1«0,T>,H), L2(0,T,H) and W2,1(0,T,H) will be used. 

Remarks 1? It is well known that: 

1. For all x e H and y€K 

(1.2) (x-Px,y-Px) .40, 

(1.3) (x-Px,y)**0 and (x-Px,x) = 0. 

2. The mapping P is nonexpansive -

(1.4) for all x,y € H: i.Px-Py IU llx-y ii. 

3. W2,1(0,T,H) is continuously imbedded into C«0,T>,H). 

It is easy to prove the following assertions: 

4. If kn—--- k in W
2,1(0,T,H) then for all t€<0,T>: 
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:kn(t)~~^k(t) in H. 

5. Let keL2(0,T,H), leC«0,T>,H), l(t)c K for all te<0,T>. 

Then the statements introduced below are equivalent: 

(1.5 - 6) For all yeK (continuous functions T^ :<0,T> —*- K) the­

re exists a set M (M )c<0,T> of measure zero such 

that (k(t),y-l(t))>0 ((k(t) ,tl(t)-l(t)) 2r 0) for all 

t e<0,T>\ My «0,T>\ M^). 

(1.7 - 8) There exists a set Mc<0,T> of measure zero such that 

(k(t),y-l(t))> 0 ( ( k ( t ) , ? j ( t ) - l ( t ) ) > : 0 ) for. all yeK 

(continuous functions ^ :<0,T > —> K) and te<0,T>\M. 

Thus, we may write briefly -

(k(t),y-l(t)) > 0 for all yeK and almost all te<0,T> or 

(k(t),^(t)-l(t)) > 0 for all continuous functions ?i:<0,T>-^ K 

and almost all te<0,T> - instead of each of the statements 

(1.5) - (1.8). 

6. Suppose that kn~-̂ - k in L2(0,T,H), leL2(0,T,H) and for 

all n e IN:(k (t),l(t)) >0 almost everywhere in<0,T>. Then 

(k(t) ,l(t)) > 0 almost everywhere in<0,T>. 

Further needed properties of the function spaces mentioned 

above and the Bochner integral can be found in 183. 

Lemma 1: Let f € C«0,T>,H), xeH. Then there exists the u-

nique abstract function k:<0,T>~^H such that 

(1.9) ke C 1«0,T>,H), 

(1.10) k'(t)= f (t)+p-(Pk(t)-k(t)) for all te<0,T>, 

(1.11) k(0)=x. 

Proof: Define the operator U:C«0,T>,H) — > C«0,T>,H) by 

the formula: 

(1.12) Uk(t) = x+/^(£(<) + p.(Pk(t)-k(f))dt for all te<0,T>. 

Then 

(1.13) for a l l k , l e C«0,T>,H) and t e<0,T> : l \Uk(t)-Ul(t) . l = 

= ft/0
% f • ( (Pk( r ) -P l (T) ) - (k ( t r ) - l ( r ) ) ) -exp( -4g>t : )• 

exp(4f>t)d*i)-=<p'[sup J[ l lPk( t ) -Pl ( i r ) i l .exp(-4pt ); 

<te<0,T>5 +sup O k ( t ) - l ( t ) 1 \ - e x p ( - 4 p t r ) ; t e < ! o , T > n -
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. ^ e x p U p ^ d ^ -= sup -fllk(^)-l(r)ll-exp(-4pr ); re<0,T>J-

. (exp(4^t)-l)/2. 

Hence 

(1.14) sup yuk(t)-ul(t)l|.exp(-4pt); t£<0,T>}^ sup t"llk(t)-

-l(t)l|.exp(-4pt); te<0,T>j/2. 

According to the Banach fixed point theorem there is the uni­

que solution of the equation k=Uk. Obviously, this equation and 

the problem (1.9), (1.10) and (1.11) are equivalent. 

lemma 2: Let £eC«0,T>,H), xcK. Denote by k the solution 

of the differential problem (1.9), (1.10) and (1.11). Put: 

(1.15) A =max-Uf (t)i\; te<0,T>}. 

Then: 

(1.16) max -t!k(t)-Pk(t)l\; t e<0 ,T>} *A /? > 

(1.17) max <Hk'(t)ll; t e<0,T>} -=" 2 -A > 

(1.18) maxUk(t)tt; t e <0 ,T>] £ 2 -A- T+ ft x 1 

Proof: Consider the continuous function 

(1.19) F:<0,T> — > 1R1, F(t)= |,k(t)-Pk(t)ft for all te<0,T>. 

Obviously, F( 0 ) = 0 < A / J D . Assume that 

(1.20) there exists tQe (0,T> such that F(t Q)>A/p. 

Denote: 

(1.21) t1 = sup4te<0,to>; F(t)*A/$o?. 

I t i s apparent that 0 < t , < t , F ( t , )=A/ f> and 

(1.22) F ( t ) > A / j o for a l l t £ ( t l f t o > . 
Thus 
(1.23) F(t 1)<F(t Q). 

We shall show that the function F is decreasing on (t,,t ). 

This fact and the continuity of F on <0,T> imply that F(t,) > 

>F(t ), which contradicts (1.23). 

Prove the monotonicity of F on (t,,t ). For all t€<0,T> 

define the function 

(1.24) Gt:<0,T> — > IR
1, Gt(s) = ttk(s)-Pk(t)l\

2 for all se<0,T>. 

Obviously 
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(1.25) Gt(t)/2=(k'(t),k(t)-Pk(t))=(^(t),k(t)-Pk(t))-p.F
2(t)^ 

£l)£ (t)ll-F(t)-p.F2(t);£r<t>.(A/(o -F(t))*F(t). 

Thus, if F(t)>A/f> , then Gt(t)< 0 i.e. the function Gt is de­

creasing at the point t. 

Let t£(t x,t o). According to (1.22) F(t)>A/jo and there­

fore there exists £, > 0 such that 

(1.26) iik(s)-Pk(t)ii2 = Gt(s)< Gt(t)= II k(t)-Pk(t)ii
2 = F2(t) 

for all s € (t,t+ e*). 

Moreover 

(1.27) F2(s)= « k(s)-Pk(s)ll2^ ilk(s)-Pk(t)ii2 

and thus F(t)>F(s). The proof of (1.16) is complete. (1.17) and 

(1.18) can be obtained easily with the help of (1.16). 

Lemma 3: Let f £ C«0,T>,H), x 6. K. Then there exists pre­

cisely one abstract function 

(1.28) kc W2,.1(0,T,H) 

such that 

(1.29) (k'(t)- f(t),y-k(t))>0 for all ycK and almost all 

t £<0,T>, 

(1.30) k(0)=x, 

(1.31) k(t)eK for all t<=<0,T>. 

For every <p > 0 denote by kp the solution of (1.9), (1.10) 

and (1.11). Then lim k =k in W2,1(0,T,H) weakly. 
(u ~_̂ . CO ^ 

Proof: According to the fifth part of Remarks 1 (1.29) may 

be replaced by 

U.32) (k'(t)- £(t),^(t)-k(t))> 0 for all continuous functions 

?p<0,T>—> K and almost all t&<0,T>. 

1. Uniqueness. Let the abstract functions k and 1 solve 

the problem (1.28), (1.32), (1.30) and (1.31). Then: 

(1.33) (k'(t)- § (t),l(t)-k(t)).>0 and (l'(t)- f(t), 

k(t)-l(t))£0 almost everywhere in<0,T>. 

Adding these inequalities we have: 

(1.34) (k'(t)-l'(t),l(t)-k(t))> 0 for almost all tc<0,T>. 
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Thus f o r a l l t e<0,T> 

(1 .35) i ik ( t ) - l ( t ) J i 2 = i lk(0)-l(0)!i2+2 • T i ( k ' ( r ) - l ' ( r ) , k ( r ) -

- l ( r ) ) d f ±0. 

Hence we get that k(t) = l(t) for all te<0,T>. 

2. According to Lemma 2 the set \k ;<p e < 0 , O D H is boun-

ded in W ' (0,T,H). Hence there exist sequences 4jo 1t"\ c IR1 

and ^knl"
l
n^1 c W

2,1(0,T,H) with the following properties: 

(1.36) the sequence ^p n V n ^ i is positive, increasing and boun­

dless; 

(1.37) for all n £ iN:kR is the solution of (1.9), (1.10) and 

(1.11) with <t> = p • 

(1.38) ^k
ninTi

 ter,ds to an abstract function k in W »1(0,T,H) 

weakly. 

Thus 

(1.39) kn(t)~^k(t) in H for all tc<0,T> -

see the fourth part of Remarks 1. From (1.39) it follows immedi­

ately that k(0)=x. 

3 . For every p> > 0 denote M(co)= { y e H ; liy-Py li s* A/cp I -

(1.40) The set M(p) is weakly closed 

since it is convex and closed. Fix p e IN. According to Lemma 2 

for all positive integers m > p and all t6<0,TN> 

(1.41) «km(t)-Pkm(t)il-A/som-A/Pp 

and therefore k (t)e M(<p,J. From (1.39), (1.40) and the last m > p • 
statement it follows that for all t e < 0, T> :k(t) e M(cpp) i.e. 

Jik(t)-Pk(t)ii £ A/c^p. Passing to the limit (p —vco ) in this 

inequality, we obtain that k(t)eK. 

4. Take an ^eC«0,T>,H) such that for all t £ <0, T>.-^(t)^ 

&K. In virtue of (1.36), (1.37) and (1.3) we have: 

(1.42) (kn(t)- |(t),7i(t))= -fn-(kn(t)-Pkn(t),7l(t))> 0 for all 

t e<0 ,T> and n e IN. 

The f a c t s i n t roduced above imply t h a t 

(1 .43 ) ( k ' ( t ) - ^ ( t ) , ^ ( t ) ) > 0 almost everywhere i n < 0 , T > -
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see the sixth part of Remarks 1. 

5. Making use of (1.36), (1.37) and (1.3) we have: 

(1.44) !lkn(t)\,
2- ilxll2- 2-£($(*),kn(T))d? =2.//(kn0r)-

- f Ot),kn(r))d* = -2-pn //(kn(r)-Pkn(xr),kn(T))dr = 

= -2-pn /* l"!kn(r)-Pkn(r)l|
2dtr^0 for all n e IN and t*<0,T>. 

From (1.39), (1.44) and (1.38) it follows: 

(1.45) *!lk(t)rt2e lim inf !! k(t)l\2= lim [llx!!2+ 2 . /* (f (t), 

m. ~> oo n u->co "'Os 

kn(r))drl =Hxll
2+2 . /t(f(r),k(r))dr on the interval 

<0,T>. 

Hence f* (k ' ( T ) - £ 0c) ,k(r) )dt ^ 0 . Owing to this fact and the 

validity of (1.43) with ?j =k we have that (k'(t)- |f(t), k(t)) = 0 

for almost all t€<0,T>. Finally, the subtraction of the last 

equation from the inequality (1.43) leads to the relation 

(1.46) (k'(t)- £(t),7}(t)-k(t))> 0 almost everywhere in <0,T>. 

Thus 

(1.47) k solves (1.28), (1.29), (1.30) and (1.31). 

6. Let k̂ -r-̂  k in W2,1(0,T,H). It is obvious that then the­

re exist sequences i ^ l ^ c IR1 and {fc^^jC W2,1(0,T,H) with 

the following properties: 

(1.48) the sequence ^$n$n°-S *s positive, increasing and bound­

less ; 

(1.49) for all n e IN:kn solves the problem (1.9), (1.10) and 

(1.11); 

(1.50) ^ n ^ l t e n d s t o a n abstract function k *k in W2'1(0,T,H) 

weakly. 

Repeating the procedure described above we obtain that 

(1.51) k solves the problem (1.28), (1.29), (1.30) and (1.31). 

The conjunction of the statements k*k, (1.47) and (1.51) 

contradicts the uniqueness r e s u l t . 

Lemma 4: For i = l and 2 let f i & C«0,T>,H) and x ^ K. De­

note by ki= f - r - ^ . x . ^ the solution of the problem ( 1 . 2 8 ) , ( 1 . 2 9 ) , 

(1 .30) and ( 1 .31 ) with ^ = ̂  ± and x = xt for i = l and 2 . Define the 
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funct ion fT:<0,oo)—> )R as fo l lows: 

(1 .52) f T ( c ) = c ' " 1 - ( l - e x p ( - 2 . c - T ) ) for a l l c e ( 0 , o o ) , 

(1 .53) fT(0)= lim fT(c)=2»T . 

Then for every nonnegative number c 

(1.54) sup Uk1(t)-k2(t)l|-exp(-ct); t € < 0,T>? ̂  

<£ f (c).sup -tllf^t)- f2(t)|.exp(-ct); te<0,T>| + 

+ »x1-x2ft. 

Thus, the mapping §> :C(<0,T>,H)x K —*> C(<0,T>,H) is Lipschitz 

continuous. 

Proof: For the sake of brevity let us write k,f and x 

instead of k1-k2, f-- f 2 and x,-x2, r e s p e c t i v e l y . For almost eve­
ry t £<0,T> 

(1.55) ( k . [ ( t ) - f1(t),-k(t))> 0 and (k2(t)- f2(t) ,k(t)) > 0 . 

Adding these inequations we obtain 

(1.56) (k'(t)- f ( t ) , k ( t ) ) . £ 0 and thus (k'(t) ,k(t)) £ (£(t), 
k(t)) almost everywhere in<0,T>. 

Hence we have: 

(1 .57) Hk(t)ii2= H k ( 0 ) l l 2
+ 2 . / o

t ( k ' ( t ) , k ( r ) ) d T £ 11 xll2 + 2 . ff (f(<c), 

k ( t ) ) . e x p ( - 2 . c - t ) e x p ( 2 . c r ) d r ^ l i x l l 2 + 2.sup -ll| | ( r ) i l -

» e x p ( - c t ) ; r 6 < 0 , T > ] . sup -Clikte)!!- e x p ( - c s ) ; r e < 0 , T > $ -

>p e x p ( 2 - c z ) d z = ! i x l i 2 + s u p - . : J l P ( r ) i V e x p ( - c r ) ; r e < 0 , T > j -
o » 

.sup 4,1 k(tOll . e x p ( - c r ) ; x e <0,T>? . exp(2 .c t ) . f t ( c ) 

f o r a l l t£ <0,T> and ^ 0 . 

A c c o r d i n g l y : 

( 1 .58 ) [ s u p 4 l k ( t ) H - e x p ( - c . t ) ; t e < 0 , T > ] 3 2 ^ 11 xll2+sup i l l f ( t ) | | . 

- e x p ( - c t ) ; t e <0,T>J.sup - t ( k ( t ) n . e x p ( - c . t ) ; t e <0,T>1 -

« f T ( c ) ^ sup * i l k ( t ) l t - e x p ( - c t ) ; t e<0 ,T>$* Lllxll + f ( c ) . 

•Sup i\\% ( t ) , i - e x p ( - c t ) ; t f e < 0 , T > j . 

I n what f o l l o w s , D i s the opera to r de f ined on H as : 

( 1 .59 ) D(x) = A x - ( A x , x ) . x / l i x i | 2 f o r a l l x e H \ 4 0 * and D(0) = 0. 

Obv ious ly , Dx i s the o r thogona l p r o j e c t i o n Ax o n t £ { x $ 3 
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and thus 

( 1 . 6 0 ) (Dx,x) = 0 for all x e H . 

Further, D will denote the operator given on C«0,T>,H) as: 

(1.61) (DTk)(t)=D(k(t)) for all te<0,T>. 

Both the operators D and D are continuous. 

Lemma 5: Let xeK. Then there exists the unique abstract 

function 

(1.62) ke W2}1(0,T,H) 

satisfying the conditions: 

(1.63) (k'(t)~Dk(t),y-k(t))_r 0 for all yeK and almost all 

t £<0,T>, 

(1.64) k(0)=x, 

(1.65) k(t)^K for all t<=<0,T>. 

Proof: 1. The auxiliary result -

(1.66) HDx-Dyil <- 6IIAIi -lix-y II for all x,y&H -

will be proved only under the additional conditions x4 0, y ̂ 0 . 

(The proof for the remaining cases is very s imp le . ) Without loss 

of generality we may suppose that liy H ..* ilxil. Obviously 

(1.67) Dx-Dy = A(x-y)-(A(x-y),x).x/ltxtt2 -

-(Ay,x-y)-x/itxtt2-(Ay,y).(x-y)/.ixti2 -

- ( A y , y ) - y . ( l l y f t - II xttXHy U + II x i l ) / ( llx H2. li y i l 2 ) . 
Hence: 
(1.68) WDx-DylUftAft.ftx-y* + It All-ft x-y ft • II x tl2/itxfi2 + 

+ II A l \ -Hy . . . . i x -y l i - i ! x l l / l i x i l 2 + H A li-lly l i 2 . |i x - y H/HxO2 + 

+ t l A | t - t t y l i 3 . l l y - x l l . ( l l y l | + II x H ) / ( t ! x ft2. Hylt 2 ) £ 6 . IIA H»I x - y l i . 

2. Define the operator ET :C«0,T>,H) — ^ C«0,T>,H) by the 

formula: 

(1.69) ET= $T(.,x)o DT. 

In virtue of Lemma 4 and the estimate (1.66) we have: 

(1.70) supMKE k 1 ) ( t ) - ( E T k 2 ) ( t ) f t . e x p ( - 1 2 . | I A l l . t ) ; t e<0,T>} ^ 

<-fT(12.|IAM)*3upOKD k 1 ) ( t ) - ( D T k 2 ) ( t ) H . e x p ( - 1 2 . | A H . t ) ; 
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t £<0,T>U6'.|A\|.fT(12.«AlO-sup ^llk1(t)-k2(t)«. 

•exp(-12-U*-t); t 6<0,T>? ± sup tllk]L( t)-k2(t) II -

•exp(-12-l|All*t); t e<0,T>}/2. 

According to the Banach fixed point theorem there exists the 

unique keC«0,T>,H) such that k = ETk. It is easily seen that the 

last equation and the problem (1.62), (1.63), (1.64) and (1.65) 

are equivalent. 

From Lemma 5 it follows immediately: 

Lemma 6: For every x 6 K there exists the unique abstract 

function 

(1.71) k:<0,CO)~~* K 

such that 

(1 .72) k / < 0 , t > 6 W 2 , 1 ( 0 , t , H ) for a l l t c ( 0 , o o ) , 
(1 .73) ( k ' ( t ) - D k ( t ) , y - k ( t ) ) 2 0 for a l l yeK and almost a l l 

t 6 < 0 , O O ) , 

(1.74) k(0)=x. 

With help of Lemma 4, the estimate (1.66) and elementary £, 

^-considerations, the following result can be readily derived: 

Lemma 7: The mapping k : (t, x) e <0,oo ) x K ,—>k(t,x)eK, where 

for every xeK, k(»,x) denotes the solution of the problem (1.71), 

(1.72) and (1.73) acquiring the value x at the point t=0, is con­

tinuous. 

Lemma 8: Let x <=. K and let k be the solution of the problem 

(1.71), (1.72), (1.73) and (1.74). Then: 

(1.75) Hk(t)ll= ilxll for all t£<0,oo), 

(1.76) lik'(t)ll2=(k'(t),Dk(t)) = (k'(t),Ak(t)) for almost all te<Q,a>). 

Moreover, 

(1.77) if A is a selfadjoint operator then (Ak(t),k(t)) > 

Z (A*,x) for all te<0,oo) and f*°°\\ k '(t)ll 2dt < + oo . 
Jo 

Proof: The condition (1.73) may be also expressed as follows: 

(1.78) there exists a set Mc<0,co ) of measure zero such that 

(k'(t)-Dk(t),ij(t)-k(t)) > 0 for all continuous functions 

7):<0, co ) —*.K and all t € < 0 , o o ) \ M . 
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1. Inserting ̂ =2-k and >2=k/2 into the inequality (1.78) 

we get: 

(1.79) (k'(t)-Dk(t),k(t))=0 for almost all te<0,oo). From (1.60) 

and the last equation it follows: 

(1.80) (k'(t),k(t))=0 almost everywhere in<0,co). 

Hence 

(1.81) llk(t)|l2- Hx!l2 = 2-/C(k'(t),k(r))dr =0 on <0,co). 

2. Let us extend the abstract function k on the whole re­

al axis as follows: 

(1.82) k(t)=k(0)(=x) for all tfe(-co.O). 

Put: 

(1.83) M=Ufe<0,<»); non Llim (h"1 • (k( t+h)-k( t)) )=k '(t) 1 \ 
A~> 0 

U M. 
, o 

Because k <s L (0,T,H) and meas(M) = 0, we have that 

(1.84) meas(M).= 0. 

Thus , f o r a l l t e <0,o> ) \ M 

( 1 . 8 5 ) ( k ' ( t ) - D k ( t ) , k ' ( t ) ) = l im ( k ' ( t ) - D k ( t ) , h " 1 - ( k ( t + h ) -

- k ( t ) ) ) > 0 * - 0 + 

and at the same time 

(1.86) (k'(t)-Dk(t),k'(t))= lim (k'(t)-Dk(t),h"X-(k(t+h)-

-k(t)))40. 

The inequalities (1.85) and (1.86) imply that 

(1.87) lik'(t)ll2 = (Dk(t),k'.(t)) almost everywhere in <0,oo). 

The validity of the equality (Dk(t),k'(t)) = (Ak(t),k'(t)) 

for almost all te<0,oo) can be verified by a simple account 

which makes use of (1.80). 

3. Owing to the symmetry of A and (1.76) 

(1.88) for every t € <0 ,cc ) : (Ak( t) ,k(t))-(Ax , x) = 2 -/^ ii k '(r)il
2dr . 

Furthermore, the expression (Ak(t),k(t))-(Ax,x) is bounded by 

2.HA.\'llxii2 independently of t. 

2- Proof of Theorem 1. We start from a simple auxiliary 

assertion which will be useful in our proof of Theorem 1. 
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Lemma 9: Let © be a positive number. Suppose that sequences 

of elements from H- { *n\^i and ^y^p^x " and elements y and z 

of H satisfy the following requirements: 

(2.1) {x V^i tends weakly to the zero element of H, 

(2.2) t y ^ ^ c KAS(0 ) (O)
 + ), 

( 2 . 3 ) A.y }+<x7- tends weakly to y , 
J n n = l 

(2.4) AAy 5 . tends strongly to z, 

(2.5) (y,z)>0, 

(2.6) (x-Dyn,v-y)>0 for every n e IN and every veK. 

Then y&K, 11 y i\ = f> , ̂ yn^n = i tends strongly to y, z = Ay and 

(2.7) ( > »y-Ay,v-y) > 0 for all veK, 

where 
(2.8) % = <p~2-(z,y). 

Proof: Since K is; a weakly closed set, the weak limit 

of the sequence ly \ , c K - i.e. the element y - belongs to K. 

Putting v=y+yn into the inequality (2.6) we obtain: 

(2.9) 0^(xn-Dyn,y) = (xn,y)-(Ayn,y)-f(Ayn,yn).(yn,y)/Hyn!l
2. 

Passing to the limit in the last relation we have: 

(2.10) Ofc -(z,y) + (z,y).llyli2/p2. 

From (2-10) and (2.5) we get immediately: ll y fl 2 f . However 

(2.3) implies that iiy.l-»lim inf lly il = rp and hence il y il = ro . From 
ox ~*cx> n > > 

the f a c t s y -*-=-> y and liy l l—>i iy \ \ i t f o l l o w s t h a t y —.> y. Hence 

owing to the c o n t i n u i t y of A we have: Ay —>Ay = z. Thus A-

= ( A y , y ) / l l y i t 2 . 

F i n a l l y , f o r a l l v e. K 
(2 .11 ) ( ^ . y - A y , v - y ) = ( A y , y ) . ( y , v - y ) / t i y l l 2 - ( A y , v - y ) = 

= i i m a 3
[ ( x n ' v - y n ) + ( A y n ' y n ) ( y n ' v - y n ) / i i y n

| | 2 - ( A y ^ = 

=^ i lSc ( xn-Dyn 'v-yn )^°-
In what follows, we use the following notations: 

1. A is a linear, selfadjoint and completely continuous operator. 

+ ) a & H , b > 0 S(a ,b )« - ^ x e H ; l lx-aA = b? 
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2. i% ^n-l^P €. IN U 4+co} ) is the nonincreasing sequence contain­
ing all positive eigenvalues of A. 

3. ( u J ^ , is an orthonormal system in H; for all n e. IN, n ^ p , 

u is an eigenvector of A corresponding to the eigenvalue A . 

Definition 1: Let R be a metric space. 

1. Let M,,M2c R. Suppose that a continuous mapping f :M., x <0,1> ~* 

—> R such that f ( x , 0 ) = x for all xcM, and f ( M 1 , l ) = M 2 e x i s t s . 

Then we say that the set M2 is a continuous deformation of the 

set M, within R. 
2 . Let McR. We say that the set M is contractible within R if 
there exists an aeR such that the set {a} is a continuous defor­

mation of the set M within R. 

The basic properties of the notions defined above are sum­

marized for example in [9]. 

Proof of Theorem 1: Let m be a positive integer such that 

A ,= v and % - AA. - thus m-1 m l 

(2 .12 ) ^ i > A m for all i = l ,2, . . . ,m-l. 

1. Further the following notations will be used: 

( 2 . 1 3 ) H 1 = ^ ( 4 u 1 , u 2 , . . . , u m _ 1 j ) , 

(2.14) P1 is the orthogonal projection H onto H,, 

( 2 . 1 5 ) R = {z £ H; P 2 z4 :0V 

Suppose that u e i n t ( K ) . Then there exists a cT> 0 such 
that S(um,cOc K. Put: 

(2.16) F = m + c r 2 r 1 / 2 . ( u + .5L °Vu . ) ; °S € ,R1 f o r i = l , 2 , . . . 
m »V ST I X X X 

/m - A 9 9 
m - 1 , . 2 1 . o6 f=cT^? . 

Obviously: 

( 2 . 1 7 ) Fc K n S ( 0 , l ) n R. 

A simple account using among others (2.12) yields: 

(2.18) (Ax,x)>^ m for all xfeF. 

2. It will be shown that 

(2.19) the set F is not contractible within R. 

According to Lemma 9 from [93 
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( 2 . 2 0 ) the set P = S(0,cT-(l+ J'2)"1/2) r\ H-̂  is not contractible 
within R. 

Furthermore, 

(2.21) the set F is a continuous deformation of the set P with­

in R. 

The deformation mapping can be given on <0, 1>x P as: f(t,x) = 
=x+t-(l+ J 2 ) " 1 / 2 . u m . From (2.20) and (2.21) it follows (2.19) 

in virtue of Lemma 8 from [91. 

3. Further we shall prove that 

(2.22) for all te(0,co) the set k(t,F) is not contractible 

within R. 

(For the definition of the symbol k(- , -) see Lemma 7.) Fix xeF 

and t€(0,oo). Denote k=k(-,x). According to Lemma 8 

(2.23) (Ak(t),k(t))£(Ax,x). 

From (2.23), (2.18), (2.17) and the first part of Lemma 8 it fol­

lows : 

(2.24) (Ak(t),k(t))>am. Kk(t)l\
2= Am- liP1k(t)l|

2+^m •lld-P1)k(t)l|
 2. 

Furthermore, 
(2.25) (Ak(t),k(t))=(AP1k(t),P1k(t))+(A(I-P1)k(t),(I-P1)k(t))f: 

4. \> IIP1k(t)li
2+ ^ni.ll(I-P1)k(t)ll

2. 

Finally, comparing the estimates (2.24) and (2.25) we get that 

(2.26) !IP1k(t)l\
2> 0 i.e. P 1k(t)*0. 

Now it is readily seen that 

(2.27) k(t,F) is a continuous deformation of F within R for all 

t £ (0,co) -
the deformation is realized by the mapping k(-,»)/<0,t>x F. 

From (2.19) and (2.27) it follows (2.22). 

4. Let us prove that 

(2.28) for all te(0,co) an x t e F such that k(t,xt)cs i£({um_1J) + 

+H. has to exist. 

Suppose that for a te(0,ce) the set k(t ,F) n (^({u .^n + Hj) 
is empty. Hence the set P1k( t ,F) n ^(-f u m_ 1U is also empty. This 

fact implies that the set k(t,F) is contractible within R (see 

[9], Lemma 9), which contradicts (2.22). 

5. Choose an increasing and boundless sequence of positive 
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numbers U _ S _ , . For all n & IN let x € F and k(t ,x ) € 

£ )£(iu A )+H^r. Because the set F is compact, without loss of 

generality it may be supposed that the sequence jx lf™, conver­

ges to an xe F. According to Lemma 7 for every positive number t 

the sequence Ak(t,x )Lr_*j tends to k(t,x) in H. For the sake of 

brevity let us write k instead of k(«,x). The abstract function 

k fulfils the condition (l.73)and thus: 

(2.29) (k'(t)-Dk(t),v-k(t))>: n for all t<s<0,cc)\M and all veK, 

where 

(2.30) Mc<0,co), meas(M)=0. 

According to Lemma 8 J U k (t)Hdt <+<•%> . In virtue of (2.30) Jo 
and the last statement we have that 

(2.31) meas(Nn= \ t e<0,oo); non L li k '(t) \\ _. l/nl \ U M)< + oo for -

all n e IN. 

Now let us construct a numeral sequence itrJ-v^l *n ^ n e -*°--~ 

lowing way: 

1. Put t =1 
o 

2. For nil put 

(2.32) An= < ^ n 1 + l,oo)^ Nn< 

According to (2.31) A 4-0 • Choose an arbitrary element ol A and 
denote it by t . 

n A 

The sequence 4t V*".??- is increasing and boundless . Since fur 

all n G lN:tR4 Nn i . e . II £'(tn)ll £ 1/n, 

(2.33) the sequence ^ k (tp)l n^i tends to the zero element of H. 

According to the first part of Lemma 8 

(2.34) for all n e lN:.U<(?n)ll = ll x ll =1. 

Owing to this fact and the complete continuity of A 

(2.35) there exists a sequence ^^n^n^i chosen from {t $"*_ , such 

that \k(t )i , converges weakly in H - to some y -

and {fti<(t )in°°l c o n v e r 9 e s strongly in H to Ay. 

Further by virtue of (2.35), (1.77) and (2.18) we have: 

(2.36) (Ay,y)= lim (Ak(r) ,1<(rn) ) £ (Ax , x) > 7i = <y»> 0 . 
/U —» OC " ' » I'l 
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F ina l l y , for a l l n e lN: t J H which guarantees that 

(2.37) (k ' ( r n ) -Dk( t n ) ,v- t<( ' ( : n ) ) >0 for every n e IN and v€K -

see (2.29) . 

The validity of the assertions (2.33), (2.34), (2.35), (2.36) 

and (2.37) makes it possible to use Lemma 9 for the sequences 

Ak'(of ){n°f, and A.k(tr n)in^\ • I
ne application of Lemma 9 mentioned *n = 

above leads to the conclusion which reads: 

i + oo (2.38) y6KnS(0,l)^k(f n)r n* 1 tends strongly to y and for all 

v6K:(% - y-Ay , v-y) > 0, where A=(Ay,y). 

Thus, according to (2.36) 

(2.39) % > Am= {*" 

6. It remains to prove that 

(2.40) A <= ^ m l = V . 

Consider the sequences At it00, , A X V00, and AxJ* , defined in ^ n n=l» n n=l n n=l 
the foregoing part of the proof. Fix p 6 IN and e > 0. Since 

Ak(r ,x )V ° f , tends to k(x ) and A is a continuous operator, 

-\(Ak(r ,xn),k(t ,xn))Jn°f1 tends to (Afi(rp),k(t )). Thus, there 

exists an n
0
= n

0(£»P) s 'N such that for all positive integers 
n Z. n : 
(2.41) (Ak(rp),k(tp))6:(Ak(rp,xn)>k(fp,xn))+& . 

Furthermore, because lim t = oo , a positive integer n1=n1(6,p)> i*v —> oo n 1 1 " * 

>n (6,p) such that t > X has to exist. Obviously: 

(2.42) (Ak( %,x n i),k( S,x n i)) = (Ak(tni,xni),k(tni,xni))-

- 2 Jtm-1 ilk'(ar,xn ))l
2dt «- (Ak(tn ,xn ),k(tn ,xn )). 

V nl °1 Rl 1 1 

Finally, the fact k(t ,xn )e(^£-Cu A +H{") n S(0 ,1) implies: 

(2.43) (Ak(tni,xni),k(tni,xni)) **„,„!. 

From the relations (2.41) with n=n1, (2.42) and (2.43) it 
follows: 
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(2.44) foг a l H > 0 and all p e JN: (Ak(*ť ) ,k(r )) ± л

m
_

1

+ є
' * 

Passing to the limit (p —> co and & —> 0 + ) in the last estima-

te we obtain (2.40). The pгoof is finished. 
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