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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,2(1987) 

ON ANALYTICAL DIMENSION OF RINGS OF BOUNDED UNIFORMLY 

CONTINUOUS FUNCTIONS 

Jan HEJCMAN 

Abstract: Analytical dimension of the ring of bounded uni­
formly continuous real-valued functions on an arbitrary uniform 
space is characterized by properties of the space. For pseudo-
metrizable spaces some more satisfactory characterizations are 
obtained. 

Key words: Uniform space, uniform dimension of spaces and* 
mappings, analytical dimension. 

Classification: 54E15, 54F45 

M. Kat6tov was the first who examined (see [6] and [7]) the 

relations between the dimension of a topological space X and pro­

perties of C*(X) - the ring of all bounded continuous real-valu­

ed functions on X endowed with the usual sup-norm (C*(X)=C(X) 

for compact X, C(0) = i0\). For this purpose, he introduced a 

concept of the analytical dimension. 

Let us recall basic definitions. A subring C, of a real com­

mutative topological algebra C with unit is said to be analytic­

ally closed provided C, is a subalgebra containing the unit, C, 
1 ? is a closed subset and y £ C, y e C, imply yeC,. A subset B of 

C is called an analytical base of C if there is no analytically 

closed subring C, with B c C ^ C . The least cardinal number of an 

analytical base of C is called the analytical dimension of C and 

will be denoted by Ad C. 

If X is a non-void compact metric space, then dim X=Ad C(X) 

(see [6]). Since the values of dim are non-negative integers or 

00 and the values of Ad are cardinals, such equalities should be 

understood in the sense that either both sides are finite and 

equal or they are both infinite. 

Kat§tov in [7} generalized this result for any compact Haus-

dorff space and, using the equality dim ftX=dim X, for any Tiho-
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nov space, he used, however, a modified concept of the analyti­

cal dimension of the algebra C; let us denote it by ad C. This 

is defined as the least cardinal number such that for any coun­

table M c C there is an analytically closed subalgebra A with 

M c A, Ad A £ ad C. Clearly ad C 4 Ad C and the values of ad are 

countable cardinals only. 

If X is a uniform space ( specially a metric space) we de­

note by U*(X) the subalgebra of C#(X) consisting of all bounded 

uniformly continuous functions. The analytical dimension of U*(X) 

was examined in L4l and [ O , the basic result asserts that 

Ad U*(X)= A d X for any non-void metric space X. The symbols Ad 

and c/d denote the great and the small uniform (covering) dimen­

sions (for definitions see [5]). The aim of this paper is to se­

arch for properties of an arbitrary uniform space X which cor­

respond to the values of ad U*(X) and Ad U*(X). The matter of 

ad will be simple (Theorem 1 below). Then Ad will be characte­

rized by the existence of mappings with certain dimensonal pro­

perties. 

Given a uniform space (X,tO (where %l is the filter of uni­

form entourage, see e.g. [8] , no separation axiom is assumed) 

and U in % , we say that a collection 3C of subsets of X is a 

U-cover of a subset Z c X if for each z £ Z, UCzJ o Z c K for some 

K in X • All mappings for uniform spaces are supposed to be uni­

formly continuous. Let us repeat the definition of the uniform 

dimension Ari of mappings from [3] and at the same time define a 

new concept of a D-mapping, which will be, however, used in Theo­

rems 6 and 7 only. 

Definition 1. Let ( X , ^ ) , (Y,0(.) be uniform spaces, f:X-» 

— > Y. Assume that for each U in It there exist V in I f , W in 

It and a natural number m such that, if M c Y, M x M c v, then 

there exists a collection "X such that K x K c U for each Ke% 

and X is a W-cover of f~ [Ml with order at most m. Then we will 

say that f is a D-mapping. If the number m can be chosen fixed, 

then the least possible non-negative value of m-1 is defined to 

be A d f. If such a fixed number does not exist or f is not a 

D-mapping, we set Ad f = oo . 

If f is the mapping of a non-void uniform space X onto a 
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one-point space then Ad f= Ad X and f is a D-mapping if and on­

ly if X is distal (see 1 2 1 ) . In [31, distality was called pro­

perty (f). 

However, for the purposes of this paper we also need anot­

her concept of uniform dimension of mappings which would relate 

to the dimension Ad similarly as, for dimensions of spaces, oTd 

to Ad. We will use the following definition. 

Definition 2. Let (X , U ) , (Y,V) be uniform spaces, Y pre-

compact, f:X—>Y. Then ô d f is defined as the smallest non-ne­

gative integer n with the following property: for each finite 

uniform cover <Jfr of X there exist V in V and W in 21 such that 

if H e Y, M x M c V then there exists a collection % such that 

% refines ty and % is a W-cover of f~ [M] with order at most 

n+1. If such a number does not exist we set cfd f=rx>« 

The following properties of cTd f are almost evident. 

Proposition 1. Let X, Y be uniform spaces, Y precompact, 

f :X — > Y. Then cfd f ̂  Ad f. If X is precompact then cfd f = 

= Ad f. If X + 0 and Y is one-point then <fd f = cTd X. 

It might be surprising that in Definition 2, mappings with 

precompact range are considered only. However, first, it will be 

quite sufficient for our purposes, moreover, the definition of 

c/*d f = 0 will suffice. Secondly, this paper is not devoted to a 

detailed study of cfd f and I do not know now what definition 

vould be the most suitable in general case. 

We will also use Hausdorff modification of a uniform space. 

This concept has appeared in the literature under various names 

(see e.g. [9],[10] , [11] ); let us recall some facts and agree on 

the terminology. Let (X,U ) be a uniform space. Then there ex­

ists a finest uniformity hU on X / A U such that the mapping 

q : ( X , U ) — > (X/HU ,hU) defined by xeq(x) is uniformly conti­

nuous. The uniform space (X/OU , h U ) is Hausdorff and will be 

termed the Hausdorff modification of (X,U) and shortly denoted 

by hX. The mapping q will be called the canonical projection. 

If Y is any Hausdorff uniform space, f:X —>- Y, then there ex­

ists a unique mapping hf:hX—^Y such that f = hf© q. 
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The projection q is uniformly open and if GcX is open then 

q Lq[G]]=G. Using these properties and the fact that, for any 

uniform cover (J- of a uniform space, the collection of the inte­

riors of all sets from Q is again a uniform cover, one easily 

proves 

Proposition 2. For any uniform space X, cTd X= cTd hX, 

A d X= Ad hX. 

Let us turn to the analytical dimensions. 

Lemma 1. Let X be a uniform space, hX its Hausdorff modi­

fication, q:X—»* hX the canonical projection. Let shX' be the Sa­

muel compactification of hX, e:hX — > shX the (proximal) embed­

ding. Then for each feU*(X) there is a unique #(f)eC(shX) such 

that f= 6(f) o e © q. The mapping 6 :U*(X)—> C(shX) is an isomet-

ry onto and also a linear, ring and lattice isomorphism. If 

L c U*(X), L separates far subsets of X, then 61L] separates 

distinct points of shX. 

Proof. Besides using properties of q, the proof is quite 

similar to the proof of Lemma 1 in L4l. 

Theorem 1. If X is a non-void uniform space, then ad U*(X)= 

= oTd X. 

Proof. By Lemma 1, U*(X) and C(shX) are isometrically iso­

morphic algebras, hence ad U*(X)=ad C(shX). Now, by Proposition 

2 and by V.2 in 15] we have <fd X= cfd hX= cTd shX = dim shX. By 

Proposition 4 in [ 7] , ad C(shX) = dim shX. Therefore ad U*(X) = 

= oTd X. 

The characterization of Ad*U (X) will be more difficult 

(Theorem 5 below). The letter I always stands for the unit in­

terval l0,ll endowed with the usual metric. If A is a non-void 
A 

set then I denotes the usual product uniform space, each ele­

ment x € I should be understood as x = (xoC; cc G b) and for 06 a A, 

pr^ denotes the usual projection x .—> x^ of I onto I. For 

sets and collections in pseudometric spaces, the symbols 

dist(x,Z), diam Z, mesh *€ and of-discreteness have the usual 

meaning. 
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The following lemma is only a reformulation of Lemma 2 in 

Ul. 

Lemma 2. Let X be a topological space, F a finite non-void 

set, f.X—> I continuous. Let L be a sublattice and a submodule 

of C*(X) that contains all pr, o f for oc e F and all constant 
F 

f u n c t i o n s . Suppose that 3, K are intervals, K c 3 c l , K is clo­
sed and 3 is open in I . Then there exists a non-negative h e L 
such that h ( x ) = l for x e f " 1 [ K 3 , h(x)=0 for x e f _ 1 [ I F \ 33. 

Theorem 2. Let X be a uniform space, A + 0, f :X —-> I , oTd f = 

= 0. Then -fpr^o f: oce A? is an analytical base of U*(X). 

Proof. Let L be an analytically closed subring of U*(X) 

that contains all pr^ ° f, notice that L is a sublattice, too. 
We will prove that L separates far subsets of X. Let C, D be 

far subsets of X. Then ^X\C,X\ 0} is a uniform cover of X. Sin­

ce oTd f = 0, choose for this cover a finite non-void Fc A and 

J> 0 such that if 

V= 4(x,y)e IAx IA;|xotf-yoC|<rcr for ec e. Ff 

and M A M c V then there are far subsets M', M" of X such that 

f_1CMl=M'u M", M'c X \ C , M M c X \ 0 . Let pF denote the projection 

(x^; oc e A) i—> (Xoc,; °c €. F), p^ the projections (xa; see F) I—> x^. 
Let 31,...,3T, be intervals open in I such that diam p [3.3<</for 1 r r

 p ôc I 
i=l,...,r and U(3.;i=l,...,r)=I . Choose, for each i, a closed l P 
interval K.c 3. such that U(K. ;i = l,. . . ,r) = I . For the mapping 

Pp© f and each 3., K. choose in L a function h.:X —>-1 by Lemma 

2. Now let, for i=l,...,r, M^ and MV be far sets in X such that 

f~1[pp1[3.3] =Mt'u MV, M : c X \ C , M V C X \ D . Put k.(x)=h.(x) for 

x e X \ M.', k.(x) = -h.(x) for u M J , i = l,. . . ,r. Then k ^ U*(X), 

ki = hi e L ^or lkil = lnil e L ^ » L is analytically closed , hence 

ki c L. Finally, put g(x)= Sl(ki(x)+|kA|(x) ;i = l,...,r), clearly 

g€L. Let xeC. Then there exists i such that pp(f(x)) q. Ki .Hen­

ce hi(x) = l, xeMV, ki(x)=hi(x), thus g(x)S2. Let xeD. Then for 

any i,either pp(f(x))c3. and x e M.', ki(x) = -h.(x), or pF(f(x))4 

^ 3 . and hi(x)=0, ki(x)=0; consequently, g(x)=0. 

Now apply Lemma 1, use the mapping & . We know 6TL3 se­

parates points of shX, hence by Stone-Weierstrass Theorem,61 Li = 
=C(shX). Thus L=U*(X) and the proof is complete. 
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Notice that Theorem 2 generalizes Theorem 1 from C4). 

Lemma 3. Let X, Y be uniform spaces, Y compact, f:X—w Y. 

Then <Aj f=0 if and only if for each finite uniform cover <J. and 

q e Y there exists a neighbourhood V of q and a uniformly disc­

rete collection X v that refines Q- and such that t l\ll = UXy. 

Proof. To prove the sufficiency, using the compactness of 

Y, we take a finite uniform cover by the neighbourhoods V. 

Lemma 4. Let Q- = (G.;jeB) be a uniform cover of a uniform 

space X. Then there exists a family (g.jjeB) where g.:X — ^ I 

such that if Z c X, Z c G. for no j e B then there exists j e B 

with diam g.[ZJ £ 1. 

Proof. Let d be a uniformly continuous pseudometric on X 

such that for each xeX, {y e X;d(x,y)< 1} c G. for some jeB. Put 

for x e X , j e B , g.(x)=min i l,d-dist(x ,X \ G. )?. Let ZcX, ZcG. 

for no j. Then Z4-0, choose z e Z . There is j with g.(z) = l. Fur­

ther, there exists y e Z \ G . , hence g.(y)=0. Therefore 

diam g . [Zl £g.(z)-g.(y) = l. 

Lemma 5. Let 11/ be a filter of subsets of a set Y, let X 

be a uniform space, f:X — > Y a mapping. Let S be the set of all 

geU*(X) with the following property: for each cT> 0 there exist 

V e %X and a uniformly discrete collection cr€ such that UtrC = 

= f""1[VJ and mesh -vgCHljH e 3€ 3 4 <f . Then S is an analytically 

closed subring of U*(X). 

Proof: is identical with the first part of the proof of 

Theorem 2 in [43 (namely a),b) and c) on page 384). We omit it 

here. 

Theorem 3. Let (X,U) be a uniform space, A 4-0, f:X—->I . 

Let i pr^ o f; oc c A? be an analytical base of U*(X). Then oTcJ f = 0. 

Proof. Suppose that o~d f > 0 . By Lemma 3, there is a fini­

te uniform cover (̂  of X and q e Y such that, for no neighbour­

hood V of q, f~ LVl can be expressed as in Lemma 3. Keep these 

Cfr and q fixed. Let W be the filter of all neighbourhoods of 

q. Let Sc U*(X) be defined by X, Y, f and %r as *in Lemma 5. By 

Lemma 5, S is an analytically closed subring of U*(X). Let 
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oc £ A. If oT> 0 put 

V= {zeIA;|zar - q j < cT/2|. 

Clearly, diam (pr^© f) f "Hv J.i diam proCEV3 ̂  of , thus pr^o f eS. 

Since -Cpr^ o fjoce A? is an analytical base of U*(X), we have S = 

=U*(X). 

Now, let us use the properties of fy and q. Given Ve W and 

U e It define a relation ^ on the set f~ LV3:x^y means there 

exists x = x . x,,...,x.=y such that x. e. f" [VJ and (x. -,x.)eUn 
1 O 1 K 1 -1"-1 1 

n U" for each i. Clearly, ^ is an equivalence on f LVJ, let 

Tft.. y be the collection of all classes defined by this equiva­

lence. Each 17L v is uniformly discrete and, by the property of 

(fr , no 7ft refines Q- . Suppose Q.=(G.;jeB) where B is fini­

te. For jeB, take the functions g. from Lemma 4 and put 
T.= UU,V) e %xW ; mesh ig,[Z3;Z <£ ?nn yj 2 1?. 

By Lemma 4, U(T. ; j e B)= U * UK . The set U x W is directed by 

the relation <* # defined by (U-^Vj)-« (U2,V2) S U X D U 2 and V-^oV,,. 

As B is finite we can choose j such that T. is cofinal in 

( U x W , -. ). Let d"< 1, V e ft" and let W be the collection for 

g = g. from Lemma 5. Then di is refined by some 7T2 Take 

(U 1,V 1)cT. with (U,V)--. (U1,V1)„ Now (U,V)eT, and hence g. $ S 

which is a contradiction with S=U*(X). 

Let us recall Theorem 2 from [43 in a slightly stronger form. 

A 

Theorem 4. Let X be a pseudometric space, f:X—> I where 

A is countable. Let -tpr^ o f; oc e> A1 be an analytical base of 

U*(X). Then Ad f=0. 

Theorem 2 in [43 concerned metric spaces and finite A only, 

ut the proof is the same. We use only the fact that each point 

has a countable neighbourhood base. 

Every precompact metric space Y can be uniformly embedded 
A I with a cc 

lowing assertion. 

of I has a countable neighbourhood base. 

Eve 
A into I with a countable A. Thus Theorems 2 and 4 imply the fol-

Corollary 1. Let X be a pseudometric space, Y a precomp­

act metric space, f:X—*» Y. Then d>d f = 0 if and only if Ad f = 

= 0. 

Using a constant function f, the following well-known result 
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follows. 

Corollary 2. If X is a pseudometric space, then cTd X = 0 

if and only if Ad X = 0. 

Of course, for pseudometric spaces X and countable Ad U*(X), 

Theorem 3 is weaker than Theorem 4. On the other hand, Corollary 

1 might be proved independently and Theorem 4 would be a conse­

quence of Corollary 1 and Theorem 3. However, all the techniques 

used for the proof are the same in both ways. 

Theorem 4 does not hold for non-pseudometrizable uniform 

spaces X, even for finite A. In fact, let X be any uniform space 

with cTd X = 0 and A d X=oO (see e.g. [51, V.5). Then, we have by 

Theorem 2, Ad U*(X)4 1 (moreover, equal to zero - see Theorem 5 

below), but the existence of f:X—> I with arbitrary, finite or 

infinite, A and Ad f=0 would imply (by Theorem 8 in [33) that X 

is distal and consequently cTd X=Ad X (L5l, V.5). 

In the following summarizing theorem, A may be empty as 
a 

well; I is a one-point space. 

Theorem 5. Let X be a uniform space. Then A U*(X) is the 

least cardinality of a set A such that there exists F:X —»- I 

with cTd f = 0. 

Proof. Suppose Ad U*(X)=0, thus 0 is an analytical base of 

U*(X). Let f :X—>I be any constant function*. Now, -If I is an 

analytical base of U*(X), too, and by Theorem 3, cTd f =0. Thus 

a ° 
oTd f = 0 for f :X —»- I , too. On the contrary, if oTd f = 0, then 
necessarily cfd f =0 for any constant f :X —^> I and, by Theorem 

2, -tf_\ is an analytical base of U*(X). But each constant func­

tion can be excluded from any analytical base, thus 0 is an ana­

lytical base. The rest of the proof follows from Theorems 2 and 

3, we need only the fact that in any analytical base of U*(X) 

each function can be replaced by a function mapping X into I. 

Kat§tov proved (16), Theorem 3) the following similar the­

orem: If X is a compact Hausdorff space then Ad C(X) is the 

least cardinality of a set A such that there exists f :X — > I 

with ind f~1tyli0 for each y e I A . 

This theorem directly follows from Theorem 5, because 
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dim f [yl = 0 for any y e l is equivalent, by Theorem 3 in [33, 

with Ad f = 0 and this is, by Proposition 1, equivalent with 

cfd f = 0 . On the other hand, Theorem 5 can be derived from the 

Katgtov's theorem. It is more complicated, it needs still Lemma 

1 with the equality </d f=Ad tf(f). This follows from a modifi­

cation of Theorem 2 in [33 and other assertions. 

Theorem 5 characterizes the value of Ad U*(X) by means of 

existence of certain mappings, thus by no intrinsic properties 

of X. We can prove only the following connections with dimension. 

Proposition 3. Let X be a uniform space. Then cfd Xs 

4Ad U*(X). If cfd X^O then Ad U*(X) = 0. 

Proof. If Ad U*(X) is finite, take f:X~> IA from Theorem 

5 for a suitable A. Applying Theorem 5 from L31 for f as the* 

map of the precompact modification of X, we get the first ine­

quality. It also follows from Theorem 1. The second assertion 

directly follows from Theorem 5. 

Let us show that finite cfd X admits Ad U*(X) being uncoun­

table. Let X be the space "long line", i.e. the lexicographical 

product of countable ordinals with I \ i l*i . Then Ad X= cfd X = 
A 

= dim X = l. But if A is countable, f:X—> I is continuous then, 

for some y e l , f [y] must contain a segment, thus cfd f > 0 . 

Nevertheless, for a pseudometric space X, Theorem 5 imp­

lies an intrinsic condition for finiteness of Ad U*(X). For a 

countable A and f:X — > I , ot~d f = 0 is equivalent with Ad f = 0, 

by Corollary 1. Let A= *fl,...,n}. By Theorem 7 in [31, there is 

f:X — > lA with Ad f = 0 if and only if Ad X-£n. See also Theo­

rem 3 in L41. 

Now, we are going to present a similar characterization for 

infinite countable A. 

Theorem 6. Let X be a pseudometric space, let A be the set 

of all positive integers. Then the following statements are 

equivalent: 

(1) X is distal. 

(2) There exists f:X—> IA with Ad f = 0. 

(3) There exist a distal space Y and a D-mapping f:X-—>Y. 

Proof. The implication (2)=>(3) is obvious. The proof of 
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(3) ===̂ (1) is easy, in fact the same as the proof of Theorem 8 

in t33. Suppose (1) holds, X4-0 and let us prove (2). 

Since X is distal, there exists, for each j=l,2,... a 

uniform cover %. of X with finite order m. such that mesh 3C. £ 
£2~ J. Clearly, m.£l. Put s =0, s .=m1+.. .+m., N.= -fifeAjs. ,< 

< i = s j for j = l,2,... . We may suppose that (see e.g. 151 , 
IV.25) 3C.= Uityi ;i * HA where each Q-. is an ^.-discrete col-

lection for some ^ ^ O with mesh Q.£2 J. Choose, for j = l,2, 

.., 0 < <f.'k 1 such that for each xeX there exist ieN. and 
G e Q-. such that {ye X;dist(x,y) •< <$ Ac G. For any ieN., x 6 X, 
put fi(x)=min -U,dist(x,Y \ uq.^}. Clearly, f^.X—** I is uni­

formly continuous. Now, define f:X—*~ I by pr. o f = f. tor all 

i€ A. Let us show that Ad f=0. Given e ̂  0, choose j with 

2"J 4 O . Put 

V: •í(u,v) є I
A
x I

A
;|pг.(u)-pг.(v)|^ cГ. foг i є N Л 

i i J j 

Let McI
A
, MxMcV. Suppose f"

1
CMl*0. Choose xeX with f(x)eM. 

By the properties of X., there exists ieN. such that f.(x)^ 
£ d. . Now if yeX, f(y) e M then fi(y) > 0, hence y e U ^ . Thus 

Q,. is a desired n\. cover of f CM] with mesh at most s, . 

Notice that similarly as in Theorem 7 in [31 one can prove 

that the set of all mappings f with Ad f=0 contains a dense 

G^-subset in a certain function space. But in the case of infi­

nite A a direct simple construction of the desired mapping f is 

possible and here preferred. 

Corollary 3. Let X be a pseudometric space. Then Ad U*(X) 

is countable if and only if X is distal. 

Observe that in Theorem 7, the proof of (2) =^ (3) -=^ (1) 

needed neither the countability of A nor the pseudometrizabili-

ty of X. Given a uniform space X and a set A with sufficiently 

large cardinality then the proof of (1) -=^(2) is also possible 

and is very similar. Thus the following theorem holds. 

Theorem 7. Let X be a uniform space. Then the following 

statements are equivalent: 

(1) X is distal. 

(2) There exist a set A and f:X—> IA with Ad f = 0. 
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(3) There exist a distal space Y and a D-mapping f:X—>Y. 

Compare this assertion with the fact that for any uniform 

space X there exist a set A and f:X~~* I A with cfrJ f = 0. It fol­

lows directly from Theorem 3. 
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