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CLASSES OF GRAPHS DEFINABLE BY GRAPH ALGEBRA
IDENTITIES OR QUASI-IDENTITIES

Reinhard PUSCHEL and Walter WESSEL

Abstract Graph algebras establish a useful connection between
graphs and universal algebras. A graph theoretic cha-
racterization of graph quasi-varieties and graph varieties,.
resp., i.e. classes of graphs definable by graph algebra quasi-
identities and identities, resp., is given. The results are
structure theorems of “Birkhoff type": A class of finite undirec-
ted graphs is a graph quasi-variety (greph variety, resp.) iff
it is closed w.r.t. isomorphisms, induced subgraphs, finite dis-
joint unions and homogeneous subproducts (direct products, resp.).
Some examples and applications are also considered.

Key words Graph algebra, graph variety, graph quasi-variety,
term, identity, quasi-identity, homogeneous subproduct.

AMS Subject Classification 05C99, 088399, 08A05, 05C75.

INTRODUCTION

There are many fruitful algebraic concepts in graph theory which
use mostly linear algebra or group theory (automorphism groups).
Less attention has been paid to connections between graph theory
and universal algebra., The introduction of graph algebras I171,
L73(Shallon algebras £101) establishes one possible connection
between graphs and universal algebras. This approach has been ex-
tensively used for the benefit of universal algebra (see e.g. L71,
[13, where many algebras with nonfinitely based identities have
been found among graph algebras; subvarieties of varieties gene-
rated by graph algebras are characterized in E51).

In the present paper the opposite point of view is considered: We
are interested in which graph theoretic results (structure theo-
rems) can be obtained from universal algebra via graph algebras.
In particular, we ask for a graph theoretic characterization of
classes of (finite, undirected) graphs which can be defined by
quasi-identities or identities in their corresponding graph alge-
bras. As an answer to this question we obtain theorems which use
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only graph theoretic closure operations: A class of finite undi-
rected graphs is a graph quasi-variety (graph variety, resp.) iff
it is closed w.r.t. isomorphisms, induced subgraphs, disjoint
unions and homogeneous subproducts (direct products, resp.).

The present paper is a revised version of the manuscript [131;
however, after the manuscript had been finished we learned that
the characterization of graph varieties had been found indepen-
dently by E.W. Kiss €4I(with a different proof). Therefore we
shall deal with this result only briefly (in §3). Moreover, in the
meanwhile this result has been extended also to directed graphs
€113, Thus, in the following we are interested mainly in the cha-
racterization of quasi-varieties (§2).

We want to call attention to the interplay between universal al-
gebra and graph theory. Therefore, at a first step, we shall re-
strict ourselves to the case of finite undirected graphs, which
is easier to handle. There is no doubt that all results can be ge-
neralized to directed graphs (in case of varieties see [111, for
varieties of arbitrary relational systems see[121).

In the last section of the paper we give several examples and
show how the structure theorem (for graph varieties) could be
applied, e.g., every finite undirected graph without loops is an
induced subgraph of a suitable power of the graph G° with two ad-
jacent vertices and one loop.

Throughout the paper by a graph we mean a directed graph without
multiple edges (i.e. a binary relation on the set of vertices).

ACKNOWLEDGEMENTS. Thanks are due to 1.G. Rosenberg and A. Pultr
for critical comments and many useful hints.

1. PRELIMINARIES
wWe recall the following terminology and notations.

V(G)-TrV(Gi) (certesisn product) and E(G) ={(a,b)ev(G)xv(G) |
v 1‘1 ('(1) b(i))cE(Gi)} here, for aev(G), let a(i) denote the
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i-th component: a= (2(1)) g+ Assume the sets V(G,)(1€I) to be
pairwise disjoint (otherwise make the sets V(G4) disjoint, e.g.
use V(G,;)x{1}), then the disjoint union G= /G, is simply the

iel
union of the graphs G,, i.e., V(6)= Uv(s,), E(G)= UE(s,).
i€l i€1

tive strong homomorphism. Hom(G,G') denotes the set of all homo-
morphisms from G into G'.

For a class K of graphs, let I, sk, Pk, PeX, UX, UK
denote the class of all isomorphic copies, induced subgraphs,
direct products, finite direct products, disjoint unions, finite
disjoint unions of members of X, respectively. Let qdf and quf
be the class of finite directed graphs and undirected graphs,
resp., without multiple edges. We omit the index f (=finite), if
also infinite graphs are to be considered.

1.2 For 2all grephs G under consideration, let ® be a fixed
element such that w®m¢V(G). Given a graph G, we define a binary
operation-(expressed by juxtaposition) on V(G)v{m}by setting
ab=a if (a,b)eE(G) and ab=® otherwise (in particular a w =wa=

® for aev(G)). In gensral, this operation is neither commutative
nor associative. The algebra

et ={V(G)v{m}; -, cn>
is called the graph algebra of G (L71, Shallon algebra K103);
here ™ denotes a nullary operation. Remark: c* can be considered
as the one-point completion of the partial first projection of
E(G) together with the constant operation m. For graphs G, and
Gy h:Gl——> G, is a strong homomorphism iff h:Giﬂ-— GZ# (exten=-

ded by h( @)= m®) is a homomorphism of the corresponding graph al-
gebras.

1.3 Let T(X) be the set of all terms over the the alphabet

x:{xo,xl.xz....} using juxtaposition and the symbol . T(X) is
defined inductively as follows:
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(i1) 4if t and t* are terms, then (tt') is a term;

(iii) T(X) is the set of all terms which can be obtained from (i)
end (ii) in finitely many steps.

The leftmost variable of a term t is denoted by Left(t). A term

set of all non-trivial terms. To every non-trivial term t we as-

sign a directed graph G(t)=(V(t),R(t)) where V(t) is the set of

all variables in t and R(t) is defined inductively by R(t)=@ if

teX and R((tt'))=R(t)vR(t')v {(Left(t),Left(t'))}. Note that
G(t) always is a connected graph.

Example: For t-((xoxl)(xzxs)) we have Left(t)-:xo,
v(t)={x°,x1,x2,x3} and R(t)-{(xo.xi), (x2,x3), (xo.xz)}.

- -

signment h:V(t) —# V(G)u{®}. For a set § of identities and an
assignment h:V(§) —» V(G)v{®} (V(I) denotes the set of variables
occuring in ¥ ) we write Gk h(Y) if, for all (t=t*)ey, Gk h(t) =
h(t*); and we write GEY if Gp t=t' for all (t=t')e}.

1.5 Proposition (cf. also £71,E51,[113). Let G be a graph.
(1) For teT(X) and an assignment h:V(t) — V(G) the following
are equivalent:

(a) h(t) ¥ @,

(b) h(t) = h(Left(t)),

(c) h is a homomorphism from G(t) into G.

Note in particular, if the image of h is not connected, then h is

not a homomorphism and we have h(t)= .

(2) For t,t'eT'(X) we have G tat® 4iff Hom(G(t),G) =
Hom(G(t'),G) =: H and h(Left(t))=h(Left(t')) for all heH.

(note that V(t)#V(t') implies Haf, i.e. Gk t=m & Gk t'=m).

(3) We have Gk t=t' (t,t'eT'(X)) for every graph G iff G(t)=G(t")
and Left(t)=Left(t*),
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(4) An undirected graph G can be represented as G=G(t) for some

term teT'(X) iff G is finite and connected.

Proof. (1) and (4) follow from the definitions, (2) follows from
(1), and (3) from (2).H

Remark: For every trivial term teT(X) and any graph G we have
Gp t=®. Thus one can use T*'(X)v{w} instead of T(X) in all fur-
ther considerations. Moreover, for h:V(t) —>» V(G)uv{®} with
teT'(X) and h(x)= o for some xev(t), we have Gk h(t)= .

1.6 A guasizidentity q is a finite set FT={(t,=t;), . (t 2t7)}
of identities together with an identity t=t'; we use the notation
I —>tat' or ty=t;A. At =t’ —»t=t'. A graph G satisfies the
quasi-identiy q, notation Gk q, if for every assignment h: V(q)
—>» V(G)u{m} (V(q) denotes the set of variables occuring in q)
the following implication holds:

h(ty)=h(t]) A w. Ah(t )=h(t}) =p h(t)sh(t').
This will be denoted by Gk h(3) —» h(t)=h(t*) (or Gk h(q)). Note
that every identity t=t*' can be considered as a quasi-identity
because Gp t=t' <=> GE ®=® —> t=t'. For ngd and a set B
of quasi-identities (or identities) we write Kk & if Gegq for

all qed and GeX.

2. CHARACTERIZATION OF GRAPH QUASI-VARIETIES

2.1 pDefinitions. For a set & of quasi~identities and a class

of graphs let B*={Ge qd | 6k 8} and Qid(X)={q| q 18 a quasi-iden-

tity end Xk q}. We set Qvar(X) = (Qid(%))*™ and, for a given class
of graphs, Qvar,(fx) = g n Qvar(X) .A class of this form is cal-

led guasi-equational or a graph guasi-variety in q, in particu-

2.2 Remark. In general, graph quasi-varieties are not quasi-varie-
ties in the usual universal-algebraic sense; e.g. the direct pro-
duct of graph algebras is not a graph algebra again. Clearly,
Qvarq(ﬂc) consists of graphs from q whose graph algebras belong to
the quasi-variety ISPPU%' (cf.€2; p. 219, Thm. 2.25 l,ﬂ(.-{G'IGd}).
However, the most algebras in ISPPU'JL' are not graph algebras.
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Therefore it is reasonable to ask for an internal characteri-
zation of Qvarg(x) using operations on binary relations (=graphs)
only (which avoid ultraproducts and infinite graphs).

a family (G;), .y of graphs, if

(1) G is an induced subgraph of TrGi.
iel
(2) For all a,beV(G) holds either Viel: (a(i),b(i))eE(Gi)

or Vier: (a(1),b(1))¢E(G,).
For a set ¥ of graphs, let PLX (PLe%, resp.) denote the set of
all homogeneous subproducts of families (finite families, resp.)
of members of XK.

2.4 Proposition. Let % be a class of graphs and G be a graph with
Iv(6)l22. Then GeIp, %k iff for all a,bev(G) with afb there exists

8 Ke% and a strong homomorphism y:G —> K such that y(a)#¢(b).

Moreover, if G is finite, then GeIP, X implies GeIP, XK. In case

IV(G)|=1, GeIP k¢ 1ff there is a strong homomorphism y:6 — K.

Proof, "=p": If G g TTG:I. is a homogeneous subproduct, then every
i1

projection pizG —>G; :a > a(i) is a homomorphism which is
strong by 2,3(2). Distinct a,beV(G) must differ in at least one
component ie€I, i.e. py(a)#py(b).

"=": Let I={(a,b) | afb, a,beV(G)} and essume that there is a
strong homomorphism Y(a,b)"G -—-}K(a.b)efk' with ‘f$a.b)(a)"'f(a,b)(b)
for all (a,b)eI. Let B be the induced subgraph o 1:[;[‘IKi with

V(B)'{('{i(c))u]: ' ceV(G)}. Then B is @ homogeneous subproduct
since JieI: (y,(c),y;(c*))EE(Ky) => (c,c')eE(C) =bViel: (y;(c),
‘ﬁ“"”‘E(Kz)‘ Moreover, G is isomorphic to B because c >
(‘fi(c)):lel is an isomorphism by construction, i.e, GEIPh‘K. If
G is finite, this construction gives also a finite set I. ®

Remark. Sometimes it is usetul to know special operations which
can be represented as homogeneous subproducts. E.g. every induced
subgraph of G belongs to P, {G}. Further, let O, be an induced sub-
graph of Ge§, which is an enticligue (i.e. E(0,)=@) such that

all vertices in v(o,) have the same neighbours in G (i.e. O, is
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in G by another anticlique O, (preserving the same neighbourhood
for all vertices) and let G[0 /0 ] be the resulting greph. Then
we have nz2 =p G[on/om]exph{c}. (n,me{1,2,3,..}).

Analogously one can use autonomous cliques K, (with loops) instead
of enticliques (then, for n22, G[Kn/Km]sIPh{G}). Moreover, every

using the just described operations (without restriction to n).

In fact, if GGIPhx, by 2.4 there exists at least one strong homo-
morphism y:6 —» K (Ke¥); but the image of ¢ is a graph which
arises from G by identifying vertices with equal neighbourhoods.

2,5 Lemma, Let t,t'€T*(X) and let B s-[TGi be a homogeneous sub-
- - - = iex - = -

product of (G;)ier+ Then for an assignment h:V(t)uV(t') —>
V(B)u{w} we have BE h(t)=h(t')<4=pYieI: G, h (t)=h,(t"),
where hi is the composition of h and the i-th projection Py
(hy(x)=p;(h(x))=(h(x))(1)., and h,(x)=® if h(x)= ®).

Proof. Since the p; ere strong homomorphisms, hi is a homomor-
phism iff h is a homomorphism. We are done by 1.5(1). ®

2.6 Lemma. Let s,s'€T'(X), Gk G,V G,, h:V(s)uv V(s') —>»V(G)vim}
be an assignment and let h,:V(s)uvV(s') —» V(G,)v{®} be defined
by h;(x)=h(x) if h(x)eV(G,) and h,(x)= @ otherwise (1e{1,2}).

Then (G h(s)=h(s')) ¢ (G, h (s)=h,(s') and G,k hy(s)=h,(s')).

Proof. Obviously h(s)= @ if h(V(s)) V(G,) and h(v(s)) ¢V(G,) (by
1.5(1)). Moreover, h,(s)=h(s) if h(V(s))g V(G;)v{w}and h;(s)= o
if h(V(s)) €V(Gy). Using these properties it is easy to show
h(s)=h(s*) 4=p (h,(s)=h,(s') & hy(s)=h,(s"')). W

2.7 Lemma. For a class % of graphs we have IUPh‘x cQvar K .

Proof. 1) Let B g;n-Gi be a homogeneous subproduct, Gieﬂt(:l.eI),
€I

and let g=(} —> t=t')eQid X . We are going to show Bk q. Let h:
V(q) —>»V(B)v{m} be some assignment such that Bl h(¥). We have
to show BE h(t)=h(t'). By 2.5, YieI: G, k h,(3) (h, defined as in
2.5). Thus VieI: G,k hy(t)=h (t') because G, k q (note G,e’K). Again
by 2.5, Bl h(t)=h(t'). Consequently Bk q.

2) Let G=G, UG, be the disjoint union of Gl.GZEfK and let
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q=(F —» t=t')eQid('X). We are going to show Gk q. Let h:v(q) —>
V(G) v{w} be an assignment and assume G| h(J). We have to show
GRh(t)=h(t'). we define assignments h,:V(q) -—-»V(Gl)u{m}, hy:
v(q) -—-)V(Gz)v{m} setting hi(x)-h(x) if h(x)ev(Gi) and hi(x)=m
otherwise (1€{1,2}). By 2.6, Gk h(}) implies G,k h,(}), conse-
quently G, hi(t)-hi(t') (since G, I q), and, again by 2.6,

Gk h(t)=h(t').

3) By 2) we have U.X gQuarX. we get (cf. 3.3): GeUKX =p Sc{Glg
URK=p 5 {Gls URR=p 5. {G} gQuar X =>GeQvar¥ . &

Now we are ready to formulate the main theorem for quasi-varie-
ties in guf'

2.8 Characterization Theorem, Let ‘X be a non-empty subclass of

Gu¢- Then Qvar,uf(‘x) = TUgP, K. (For infinite graphs see 3.3.)

Proof. Because of 2.7 and 2.4 it suffices to show Qvarq f('.‘I()g
u

IULP % . Since every graph is the disjoint union of its connected

components it remains to show G€IP, X for every given connected

undirected graph GeQvar g (%).Let V(G)={a_ ,..,a_}. Consider the
guf ° n

following set 3 of identities

Z-{xixj.xi | (ai'aj)‘E(G)}U {xixJ- o | (aivej)¢E(G)}'
Y is finite since G is finite. Obviously, under the canonicel as-
signment (:x; k> @, (1=0,..,n) we have Gk ((}). Thus for given
ai.aJeV(G). ai;laJ, the quasi-identity 3 —» x =x, does not hold in
G. Since GeQvar(‘k) there is some K€'X with K'lz — xy=x,, i.e.
there must be some assignment h:V(Z) ——’V(K)v{m} such that
Kk h(Z) but K’l h(xi)-h(xj). By construction of J and connected-
ness of G, for every two variables x,yeV(ZY) there is some sequence
ZyX2Z, ) w0 0ZpZ, 4220, YZp=y of identities from 3, (24000 02,€V(F)) .
Consequently h(x)= @ would imply h(y)=® (note zm= ). Since
h(xi);lh(xj) we have h(x)#  for all xeV(Z)., i.e. h maps V() into
V(K). By construction of ¥, h'=s cthe a; > h(x,) 1s a strong homo-
morphism from G into K; in fact, (ak,al)eE(G) -#xkxl-xkez =
Kk h(x)h(xy)=h(x,), L1.e. (h*(8,),h*(21))€EE(K); analogously one
shows (&, ,8,)¢E(G) =p (h'(a).h*(a7))4E(K): k,1€{0, w.n}.
By 2.4 we can conclude GGIPh‘JC.l
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3. CHARACTERIZATION OF GRAPH VARIETIES

In this section we present a characterization theorem for classes
of undirected graphs which can be defined by identities. Defini-
tions and results can be developed analogously to the case of
quasi-varieties (cf. introduction).

3.1 Definitions. For a set J of identities and classes X and 9
of graphs let 3*={G€§,|Gr¥Y} Td(R) ={t=t’ [Xp tat’, t,t'€

3.2 Characterization Theorem. Let kﬁ%f be a non-empty clags

of finite undirected graphs. Then Varq f.'JC = TUcSPe K.
u

We omit our original proof given in [131 and refer to 41 or I111
(in £111 the general case of directed graphs is treated and 3.2
is an easy consequence). Note that if X is finite then Var & 1is
also generated by a single graph.

3.3 Let us consider what happens if we want to treat also infi-
nite graphs. Since every finitely generated subalgebra of a graph
algebra is finite, we have Var ¥= Var sfﬂt and Qvar X = Qvar sf%
for a given class % of graphs, where Sf‘](, denotes the class of
all finite induced subgraphs of members of ‘¥. Thus, for arbitra-
ry ‘JCG%, we have VargufﬂC =IUScPe X  and Qvarguf'x = ISUCP ¢

= IUfthSf’x by 3.2 and 2.8, Moreover, we have
GeQuar K <= S {G} ngar’ X and Gevar X &= S {G} g Var X .
af Fas

This characterizes general graph quasi-varieties and graph varie-
ties; our restriction to finite graphs was not very essential.

3.4 Remark. By a result of H. Werner (cf.[13) almost all varie-
ties generated by greph algebras of undirected graphs are nonfini-
tely based. This situation changes if we consider graph varieties.
Many classes defined by forbidden subgraphs can be characterized
by finitely many identities. E.g., the class 7(_-{66 guf' G has
no loops and @(G) & l} (@(G) = clique number = cardinality of a maxi-
mum sized clique) is finitely besed with respect to graph varie-
ties (cf.0103), e.g. 7(2-{“ %fl Gk (xo(xi(xzxo)))-m}. However,
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for m22, fﬂm contains a chain with 4 vertices, the graph algebra
of which generates a nonfinitely based variety (cf. £11).

4, EXAMPLES AND APPLICATIONS

Many graph theoretic properties can be expressed as identities or
quasi-identities. We mention here some examples which may be of
graph theoretic interest, too.

4.1 Examples of graph varieties. S_ shall denote a set of identi-

ties such that Z’ is the indicated class of graphs:

a) Grephs without loops: I = {x X = @} ;

b) Undirected graphs: Zs{xo(xixo)nxoxl} ;

c) Posets (reflexive, antisymmetric and transitive relations):
z={xox0-x°, Xo (X9 X )mxy (X X4) s xo(xixz)-(xoxz)(xlxz)} :

d) Disjoint unions of complete graphs wtih loops:
= {%5%o™%gr Xo(X1%o)=XoXq 0 (XoXq)Xp=Xo(X1Xp)} 5

e) Undirected graphs with bounded clique number (cf. 3.4, there is
one identity t=m such that ¥ ={c€§; | 6k t=@}).

f) Undirected graphs with bounded chromatic number, in particular
bipartite graphs (it is known that a z exists which consists of
identities of the form t= @ only, but no J is explicitely known,
except for bipartite graphs, cf. [113).

Every graph variety is also a graph quasi-variety. The converse is
not true, and we mention here some graph quasi-varieties (of undi-
rected graphs without loops (4.1a,b) which are not graph varieties.

4.2 Example. Let Cé’uf be a connected greph without loops. Up to
isomorphism we can assume V(C) sx-{xo,xl.-.} and (xo.xi)cs(c). Let
‘% be the class of all undirected graphs without loops which con-
tain no induced subgraph isomorphic to C or to a strong homomor-
phic image of C (if different vertices of C have different neigh-
boorhoods then there are no strong homomorphic images of C except
C iteelf). Then ‘X is & graph gquasi-variety characterized by 4= &"
with B={x x =@, x (x,x )=x X, 2(C) =»x =x, } where
J(C) ={xy=x | (x,y)€E(C)} v {xy= @ | (x,¥)¢E(C). x,yeV(C)}.

4.3 Example. a) Perfect graphs (for definition see e.g. E32) form
a graph quasi-variety in guf‘ since they are closed w.r.t. P .
and Uy (this can be shown without difficulties, use e.g.
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£3; p.53, 3.11 and the remark after 2.4). A concrete system of
quasi-identities characterizing perfect graphs is not known.

b) If the Strong Perfect Graph Conjecture (cf. L3; p.713) were
true, then perfect graphs are those which contain no induced sub-
graph isomorphic to Cy,4 (o0dd cycles) or 62k+1 (the complementa-
ry graph) for k 22. These graphs, however, can be characterized
as a graph quasi-variety by the following set B of quasi-identi-
ties if we apply 4.2: B={x X = ®, X (X% )=X X }u{Z(Cpy,q) —
— x_=x, | k22Fu{Z(Cop4q) = %,=%2 | k 22}. Here we assume
V(Coiuq)*V(Eapyg)={Xg e X s e i Xpicds E(Copepq)={(Xg0Xy,q) | 120, e 26
v {(xi+1.x1)' 1=0,-.,2k} éindices take modulo 2k+1),

E(52k+1) = {(X'Y)‘V(czk.,i) ' (xvY)¢E(c2k+1)} .

4.4 Let G':,equf be the graph oo——pi . L., V(Go)-{o.if,

E(G,)={(0,1),(1,0).(1,2)}. From a result in E7; p.2113 follows
that Vquu {Go} contains all undirected graphs without loops.
f

Together with 3.2 this gives the following proposition:

4.5 Proposition. Every finite undirected graph without loops is
isomorphic to an induced subgraph of & finite direct power of Go‘
|
The graph G, and the result 4,5 are considered more or less expli-
citely also in £133,[171,I91,041,L141. Moreover, the graph Go ap-
pears in connection with investigations of subdirect irreducibles
of “productive classes” of graphs (i.e. closed w.r.t. direct pro-
ducts) in papers of A, Pultr and J. Vinérek (e.g. E153,[161).

4.6 Definition. Let chuf be without loops. The least number n
such that G is isomorphic to an induced subgraph of GO" is called

Proposition 4.5 ensures that every Geq;fwithout loops has a fi-
nite Go-dimension. In [63, lower and upper bounds for dinGoG are
given, and the Go-dimension is exactly determined for some clas-
ses of graphs. The Go-dimension is a special case of the dimen-
sion proposed in E15; p.773, where the general problem to investi-
gate the various kinds of dimension is posed. Let us note that 2.8
and 3.2 provide structure theorems for every concretely given
graph quasi-variety or variety and give rise to numerical numbers

characterizing the complexity of the structure, like e.g. the G-
dimension. Here are many interesting problems of research.
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