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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,4(1987)

SET-LIKE EQUIVALENCE AND INNER AND GUTER CUTS

J. MLEEK

Abstract: Our aim is to introduce a notion of the set-like equivalen-
ce (subvalence " resp.) among classes and to explain it (§ 1), namely, with
respect to a relation of this equivalence to a description of semisets with
given inner and outer cuts (§ 2). We present, studying figures in an equi-
valence of indiscernibility, the compatible covering theorem which makes them
more clarified (§ 2). Finally, we study (§ 3) an existence of semisets with
given inner and outer cut.

Key words: Set-like equivalence, J-indiscernibility, inmer cut, outer
cut, compatible covering. .

Classification: 03K10, 03K99

Introduction. The point of the AST consists in the existence of a hier-
archy of variously sharp classes. We accept a so called standard system m
(see [2])(or a system of standard classes) as a system of the sharpest clas-
ses; such a system MV is, roughly speaking, a submodel, containing all sets,
satisfying Godel-Bernays axioms for finite sets and, moreover, every normal
formula is absolute. For example, de, de are such systems of standard clas-
ses. Note that FN ¢ M and,, more generally, no cut is an element of M . We
can even see that a semiset is a standard class iff it is a'set.

Remember that we have two notions of equivalence among classes in the
AST, i.e. = and & . The second one is defined among sets only and is finer
than the first one. We can see that, confining the testified one-one mappings
from the definition of the equivalence of two classes to the standard one, we
obtain a new notion of equivalence which will be designated by X (see § 1).
It is finer than &% and coincides with A¥ on sets. Thus, & depends on a (fi-
xed system M . But it is uniquely determined among semisets.

The notion of redlity can be made larger. Before we do this, let us agree
on the following
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Corwention. Throughout this paper, let capital block-letters be rang-
ing over elements of a (fixed) system M . The script capital letters deno-
te classes.

The usual notation of sets, natural mumbers, finite natural numbers and
constants {e.g. FN, &L N,...) is accepted.

mn codatle class with the coding pair ¥, X> is designated by {¥*x};xe€
LY -

totation. Uxko «> cAx, [XT% {usXlubacl , [TI5<-{us x;
Yul&ead. Let J be a cut. Then LX1’-{usT;lule J?.

By a (3 )-eguivalence on A, where J is a cut, we mean an equivalence
€ on A such that there exists a relation RS &~ AxA with some d"2J and
the following holds: '

« & S~ R"{x} is refiexive and symmetric on A, & <8 6 d—>R'ec} 2
R"{pY, 1fx+1ed—> R fxc+1}o RS +1}g R"c} and N{R"{o0} ;06T =8.
#e designate R"{a«} by R_ . Me say that R is a creating system for ¥ .

A symmetric relation ® on A is J-condensating iff we have ( Vue&P(A)-
- [N E4ix,yle [ulz)((x,y)eﬂ,).

An equivalence ¥ on A is called J-indiscernibility (on A) iff it is a
3r(J )-equivalence, which is, moreover, J-condensating. Note that every e-
quivalence of indiscemibility, defined in [1), may be seen as an FN-indis-
cernitility {on V) under presumption that T =Sd“l‘ . We can, finally, define
that a class is J-real iff it is a figure in an J-indiscernibility.

Note yet the following. Let R be a symmetric relation on A which is J -
condensating. Then there exists a set ue [A17 such that (¥x eA)(3ye u)
{x,ydeR. Indeed, such a u can be found as a maximal (w.r.t. £ ) set-R-net,
where 2 set v&A is an R-net iff (¥x,yev)(xdsy =< x,y>§R) holds; namely,
we can see that (JuceY)(¥vsA) (v is an R-net—» dvi<«) and, consequent-
1y, the existence of the u in question follows from this immediately.

§ 1. Set-like equivalence. Tw: . wses X, Y are set-like equivalent
iff there holds (FF)(F is a one-one functionfdom(F) 2 X & F'T=4Y).
¥e denote this relationby T /3 Y .
X is said to be set-like subvalent to Y, X J Y, iff
(IF)(F is a ene-one functionBdom(F)2 TXF'X s Y).

The following propesition is a list of some elementary properties of the
relations in guestion.

Propesition. 1) & is an eguivalence.
2) A is transitive.
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3) X 2Y - P(RIAPY), TIY—>P(LIAPY).
4) et J be a cut. Then X 2 J— P(x)stvi?..

Theorem. (Cantor-Sernstein.) Let g ,v be two semisets such that
gﬁv&vég- Then §2 V.

Proof. Let f, g be one-one functions such that du-(f)ag Lo g)2 v
and f"fsu ’ g"'us§ hold.

Put x=dom(f), y=dom(g). The function h:P(x} —» P(y) is defimed by the

relation f(u)=x-g"(y-f"u). It is monotonic (w.r.t. € ) and, consequerrtly,

there is a c&x such that h(c)=c. Indeed, let C= fug x;ush(u)f; then c=UC
has the required properties. We deduce that c=x-g"(y-f"c) and x-c €
< g"(y-f"c) hold. Assume that ag x-c. Then ae rng(g) and g'l'(a)cf"’c. Thus
the mapping t:x —» V, defined by the formulas 1(a)=f(a) iff sec and t(a)=
g'l(a) iff aax-c, is one-one. To finish our proof we prove t"fc v . Choose:
bew-f ~. Then g(b)e § -c. Consequently, t(g(b))=g‘l(g(h))=b holds.

Assume that fs X, v< Y. We define

X Y
( E)a(")‘ $1#0;f is a tfunction &fs don(f)&vsmg(fic Yy .
Writing

e meon (§)=(3) -

Assuming X#0 we have X =a Y=XY.

X =Y

We define the mapping F:X = (Y=3 A)—> (XxY)} = A as follows: Let
feX = (Y =2hA). Then F(f) is a function defined on D(f)=Utedxdom(f(x});
x edon({1)¥} by the relation

FCE{x,y)=1(x)(y).

. We can see that F is a one-one mapping onto (XxY) =k A. Let us prove that F
m(;)as«f,)a /!c) onto G:L AA. First, F maps the class in question
into the second one. Indeed, let fe(;)’«‘:)all . We have

(V¥x cf)(3?60)(xadm€f)&ycdm(f(x)) and, consequently, F(f)e :"’)é
=~ 4. Choose ch:L)-&A. Let f be defined by the relation £(x)(y)=g(x,y)
where <x,y6 don(g). Then f& X =a (Y =& A) and F(f)=g. We have £xv < dom(g),

ths (Vxe§Xtme(L) 2 m, ie. u(é‘):s((:)i A). Consequently, F is
anto and we Just have proves
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Proposi tion. (;)a({j)sn\)z XxT)a a.

§xv
Proposition. Let J, } be two cuts. Then
JAY it Y- }
Proof. Assume that f is a one-one mapping such that dom(f) 2 ¥ and

"y =} - Take x & J . Then f'% €7} and, consequently, max f'e €} . e
deduce from this that oc & 2 holds.

Now, we shall study the sum UZ under presumption that 32‘:} and
Z s [ V17, where I is a cut. The required results will be obtained, name-
ly, under presumption that J is regular cut, i.e. the formula (Y u)(u n J
is unbounded in J ~» unJA J) holds.

Lemma. A cut J is regular iff (Yug N)(Veo ,d) (u A Y is unbounded in
J & d is an isomorphism of {e¢ ,&> and {u,e? —dl"Ia w=7).

Proof. The implication from right to left is trivial; let us prove
the converse one. Let u,«,d be such sets as is required and put
}=d'1"(u Nn7). Then J 1is a cut. We conclude, by using the regularity of 7,
that unJR J. We have JRunT and } A T holds.

To formulate the required results, we use the following definitions:
A function h Gdk‘l;'v is called Y-function iff the formula ¢ & Jn dom(h) —»

—» h(et)&[V]*® holds. h is a total J-function if, moreover, domth) 2 J .

Theorem. Let J be a regular cut, closed under « (multiplication),and
let h be an ¥-function. Then 1) Uh'Y3J v (3ye INWN'IJR ),
2) UhJAR Jer 1(3xe T )UNI=Uh"x).

Proof. Note that 2) is an easy consequence of 1) and the equivalence
Uh"J is a sete»(AyeI)(Un"p=Uh"J). We prove the assertion 1) in

two steps (A), (B).

(A) Assume that h is, moreover, an exact function, i.e. h is a function
such that

o & dom(h) —» h(ec 240
and
oG a3 —» h(ec)ah(B)=0.

hold. Then Uh"JR&JI v (3y e I)UN"'JR p) is satisfied.
Proof: Put, for 9 @ dom(h), g(g=)=Uh(y )k and let §(ec )=Z{g(y);
¥ %06}, Then § is an increasing function. Let, for « & dom(®), o« = 1, L
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be the interval [§(ec-1)+1,0(¢ w)_') and I = 10,5(0)]). We assume thatJ is closed
under e ; thus, o« € J — Glew)e T holds. We havi‘-‘,;&i:’ﬁ‘* dom(h) @ J
eSSy
- o =1

ar;d UL =Je>rdom(h) T . Let {&‘ecdcdum(h) be a set such that t, :] &%
&3 he) hotd dom(H). We define the function B on U

(e) holds for every oc & dom(H). We define the function on Y “)X,‘
by the relation: —h/I~ =t € dom(h). We obtain immediately

h"“ ‘EJ:I ke o ‘U,’t:‘ Te =“L‘)Jh(oo)=uh".'7 *

The function h is one-one, thus, consequently, Uh"J ,Q& % I, holds. We can
conclude that the proposition in question is true. (Note that we have not

used the presumption that.J is regular.)

(B) Lemma. Let 9— be a regular cut and let f € U®V be a disjoint func-
tion. Then there exists an exact function ge(™V such that

1) £'Y-=g"7,

(2) if f is an J-function then g is, too

Proof. Put u={o¢ € dom(f);f(cc M= 0F.
(i) unJ is bounded in J , put v=unJ . Let d,d’ be such that d is an
isomorphism of {d’, ¢ ? and{v, &> . We define, for o ed” , glec )=f(d(ec)).
The function g has the required properties.
(ii) Let u n J be unbounded in ¥ , let d,d” be such that d is an isomorph=~
ism of {J*,€? and<u,& > . Put, for ece dom(d), gloc )=£(d(ec)). We can see
that g"J =9"(d-1"(.7n w)=f"(In uw)=£"F . Thus (1) and (2) hold.

To finish our proof, we put, for ot & dom(h), f(e¢)=h(e¢)-h"e6 . Then f
is a disjéint J -function such that f'e¢ =h"e¢ . Let g be a function, guaran-
teed by the preceding lemma. Then Uh"J =Ug"JY and we can use the part (A).

Corollary. Let J be a regular cut, closed under « . Then

2278 % & [VIT—> (UZ 2TvUZeVI?).

Proof. Then there exists a one-one total J-function f such that &=
=f"J . The assertion is a consequence of the previous theorem.

We say that a function is Utunbounded in J iff 1 (e e I )(VE"Y =
=Uf"e ) holds.
Remark. If the function f, presented in the previous proof, is (J-un-
bounded in J then UZ R J .
Proposition. Let J be a cut, closed under o . J is closed under the
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tunction 2 1ff every one-one total J -tunction is U-unbounded in J.
Proof. 1) Suppose that there exists d'¢ J such that 2" 7 . Let

h:# €<% P(d) such that hiec)= o holds for every ec &o”. We have
Urng(h)=d’ . Thus h is a ons-one total J-function which is not U-bounded
inJ.

2) Assume that 9 is closed under 2%; let f be a one-one total ¥ -
function. Suppose that f is not (J-unbounded in J . Then there existsec € J
such that v=Uf"x =ULI"Y and, consequently, P(v)&f"JY holds. We can conc-
lude, using the presumption that J is closed under s and 2%, that ve[V3Y
end 213 I . Further, f'% & P(v) holds for some ¢ @ J , and, by using the
fact that £ is one-one, we see that lvi 2 7 » which is a contradiction.

Corollary. Let J be a regular cut, ¢losed under 2*. Then
ZaIszslvii-uza .

The function f: &’» d'—» V is called JI»J -function iff oc € T —
~1()"'Y 2T holds.

Theorem. ' Let J be a regular cut, closed under « . Let f be an I» J -
function. Then
D Yy fle) TS Y.

2) It 1(B)"TA Y for some B&T then Ut(e)"TR I
L 1%4 .
Proof. Put, for 4 such that {7, 3> & dom(f),
2 "
)= Yptlec)"y .
Then UT"Y = Yyt(e)"d . Inceed, xe UP" e (3¢ T)(xel(y) >

> ( Ay eI (I <cp)xet(oc)"y)e> (A6 T )(x€f(66)"T) 4> x @
Q‘y,t(ec)“y holds. We have, moreover, <e¢, 8> € (I »xJ)ndom(f) ~»
— M(x)"BleT . Thus 76T n dom(D)—» B2 )l g max {B1(e0) " ;
w <yl

Consequently, T is an J-function and the proof can be finished by using the

previous theorem.

§ 2. Figures in an J-indescernibility. Our intention is to study, with
respect to the set-like subvalence (requivalence resp.)‘to ¥ , a figure X
in an J-indiscernibility, submitted to the condition P(Z)s(v17.
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First, our aim is to prove

Theorem. Let J be a cut closed under « . Let & be a figure in an J-
indiscernibility 8 on A such that P (Z)slA)Y.
Then there exists a (total) J-function f such that Z & U £"J holds.

To do this, we shall study the situation in question more generally.
Let R={R, an be a creating system of an J-indiscernibility ¥ on A.
By an{R,¥>-system we mean every system

W=AR {e6} ;xe ulec ) € T §,

where u is a total J-function such that rng(u)s A.
Let T be a relation with dom(T)&N. T is called J-chain iff dom(T)2J
and T"§e¢+136T"{ec 3 holds for every ec+1&dom(T). We designate T"{ec} by Tee

W is compatible with T w.r.t. a property ¢(x,X) iff
(Yot @ I )(Vzau(s)) {y; 9ly,Ry{zh¥aT, .

Theorem (on compatible covering of figures). Let R be a creating sys-
tem for an J-indiscernibility € on A. Assume that % is a figure in
€  and let 9(x,I) be a normal formula (possibly with standard parameters)
which is monotonic w.r.t. L (i.e.@(x,X)& L'g X' ¢(x,T’) holds. Let T

be an 7—chain such that

{X;Q(X,Z)}s‘l‘g"{-d.

Then there exists an{R,Y¥?-system W which is compatible with T w.r.t.
@ (x,X ( and covers % (i.e. & &€ VW),

Proof of the first theorem of this section by using the just presented
one. Let R be creating for “€ . Put T"{e¢}= [a1%%, L) erx e X .
Let u be such that the (R, I>-system W= R {zhzeu(ec)& o« ¢ I} is com-
patible with T w.r.t. @ (x,%) and covers Z.Thenat e Y & zau(ec) —>
—» P(RY {z})SCA]é“.i.e.ecc J & ze u(«.)-—-»R;"-izhtA]“‘ . Especi-
ally,c6 ¥ — U iR {2}z u(e)}& (A2 . Thug, there is ad'2J such
that

xad— U {R;{z};zcu(-c)} is a set.

Put, for o €d” , f(es)= UL Rg{ 2};zeu(ee)}. Then f is a total J-function
and s UI"J.

Proof of the last theorem. We can assume that dun(R)=dm(T)=n for so-
me m2J and that s :9—» P(A) is a function such that s(es) is a maximal
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R

G‘—net. Put, for x € 7,

ulee )= £x;x6 s(ac )k {y; y,Ry £ x3¥S T 3.
Then W=4RL { z};z6u(et )& €J} is compatible with T w.r.t. ¢ (x,T). We

must only prove that W covers Z . Let z € £ be arbitrary. Assume that the-
re exists an oc & J such that

1) 1yiel Ry £zt T, ¢+

i23R" { z}. We obtain, by

Choose 7es(ec+l) with <z,2>s Resp- We have R! o

oG +1
using the fact that @(x,%( is monotonic in & , that

1y; g(RY, . A7Dbety; (v Ry {zDbe T, -
Thus ?‘%ﬁl and z¢ R;*l{?isR:‘ﬂu(cc +1) .
We must prove yet that there exists o« € J such that (1) holds. Assume the
contrary that (1) is false for every o € J . Thus, there exists g ¢ J such
that 1(‘iy;9(y,R’,"{z})}ST.w1); choose y with q(y,R",,{y})& y¢TT+1. P is
monotonic, thus ¢(y,€"fy}) holds and @(y,&) is satisfied, too. We have

V€ Ly & Tn

Theorem. Let J be a regular cut, closed under e . Suppose that & is
a figure in an J—indiscernibility.
Then P()IV17 e (2R v(JuelvIH(Zsu)).

, which is a contradiction.

Proof. We have an J-function f such that Z & Uf"J (see the first
theorem of this section). Thus the implication from left to right follows
from the theorem of the first section. The converse implication is trivial.

We define, for a class A , inner cut SD_(x) by
@ (X)=foe3 (FueX)(uRe0} -

We can see that Sb'(x) isy.losed under & and (D_(x) is a cut iff & is no
set.
Assume that g is a semiset. Outer cut §o+(§) is defined by
@ (§)=NL o6 ;(FuzE)URDS.
*(¢) is closed under £ ; it is a cut iff g is no set. We have, for every
set x, So';(x)= §°+(x)=llxl|.
Note that Su'( % )g 9"(? ) holds for every semise_at ? and sn'(d): Jis

true for every cut J.
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Theorem. Let 7 be a regular cut, closed under « . Let Z be a figure
in an J-indiscernibility.

Then the following are equivalent:

D E(E):=Y.

2) ¥ isa semiset&glf(z =7,

3 2R,

Proof. At first, @I®=T—> P(&)1v)? and EO(Z)-T —1(Jue
6 LV19)(Zeu) hold for m=+and A= - . We can see, by using the pre-
vious theorem, that @ (&)= J— Z2 J and, consequently, (1)~ (2) holds.
We deduce quite analogously that (2) —» (3) holds, too. The implication (3)-
—(1) is trivial.

§ 3. Some properties of inner and outer cuts. In this last section, we
present some elementary properties of cuts in question and we discuss the ex-
istence of semisets with the prescribed inner and outer cut.

Throughout this section, % ,-u,g s fo,... range over semisets.

Proposition. 1) €& v — (@~ (f)se” (v)&go (§)rsp(v)),
DES v (e (g)p (W&p" (g)=p v ).
3) (gb (g) @ (‘u)&gb (‘u)E.;o (g))—b -x(§<n))&1(v<x§)
Proof. 1) Let f be a one-one mapping with dom(f) 2 g and f"§ cv .
Ifue Eg]@ g then £"u Au and f"u&P(w) holds. We conclude that Qull e

cQ “(w). Assuming v 2es we can see that f~ ~ln 'V=w 3 g and, consequently,
fwl g @ (?) Thus, vl *go (g) holds, too. 2) and 3) are immediate conse-

quences of 1).

Proposition. *(f S W) fX .

Proof. Suppose that FE uand lull € (). We have a v & w such that
lull = kvil. Thus § € uRv e v and, consequently, ?4 V.

Let gs 7 be acut, 9 & N. We define

A St R P2 R
Proposition. Let J ,;sq be cuts, ne N.
D eF=dn-piyen-F

Dg=PRa-},
NIsP—(getsg=),
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8 grin=p=%,

5 J=gsper =T

6) K€ —(n-o € Jerok&nysl.

Proaf. Let us prove 1) and 2) only. 1) ¢’ ﬂ{'q -o€, % 633
F(Voe ¢ e p-) > (Vo 6 3 )< - Vo> Fs579 -F
- Qyen -Fy<cn -« Qyen -F)d<n -7)

- Qren -F)d=q-7).

2) Put, for €7, f{yl=y-p . Then t"(n-F)=3+F .

Proposition. Assume § g ¢ € N. Then

N e (43 fra e (g ),

2) (f)‘ TE (wg g).

Pmot. Only 1) must be proved; 2) is a consequence of 1) and the previ-
ous proposition. We have
aee (q-F)e> (Fusy-§IUuk=00) <> (V) § v S p&ivE:y-) &>

+ + ~ N e
- n-L 2P (? ) 6 ETE (;- ) (see 6) of the previous proposition).

Here and down, let 3 denote a fixed number from N-FN.

Now, our aim is the following: let J g J's. m be two cuts. We are loo-
king for a semiset £ &7 such that p (Z)=J and @ (&)= J holds. Our
problem can be reduced to an anlogous one concerning the inner cuts only. In-
deed, let 30=7-, 71= U] —7" and suppose that € g 9 satisfies the conditi-
ons: -

so"(l)= 170, e (q-2Z)= 71.
Then ’
e (2): v (g-T)
and, consequently,
e (E):qrin<T=-T".
Further, note that Z can be found by such a way that Jas Z and 'r‘~3+5
G- Z . These two relations guarantee that
e (B)27, ad @ (9-2)29=T"- 7.

Let us describe the structure of our problem more genmerally: A list
<Q,%,.%,7 is said to be dowblet in & iff B v, s & and ¥, n 7 0.
It s <¥_,7 >-goublet (inQ), where F, 7, are two cuts, ift Z; 1T,
holds for 1=0,1. Assume that {‘yl"}“i 6“1 is a system of subclasses of @ . A

doublet <@, X , .7 is called {7, 7>- y t% y-determined iff the fol-
lowing holds rm- 1=0,1: @ (3 )= . &(vw;mmwi,z ) is ingjpite)
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(we have A(I,‘I}ﬁ(x-y)u(’l}-l)). A doublet <Q,, ZD,II) is fully
<¥,. 3> -4y§ on‘l—detemined iff every larger doublet (i.e. a doublet
{a, i’o,zl), where Zo =) 2; and le 2’1 holds) is (JD, ;71) -{y‘;‘}:‘l-deten-

mined.

Here and down, let @ ,iy‘i‘;:} v Iy J, have the meaning introduced
above. ’

A doublet <@ ,§ , §,> is said to be {J, J>-normal iff it is an
%4 Jo :]p—doublet and the following holds for i=0,1. Put 91=P(a-f T) -

-[a17L. Then we have (8;=08 Q- s v P HROK(Y v eB)(v- §, A).
We have used the notation: U=1, T=0; this one will be used further on.

Theorem. Let <a.,§‘0,$1> be a (J, 91)-nomal doublet in Q. . Then
there exists a larger fully <J, ‘Jl)—{'y"‘i}g |-determined doublet.
’

Proof. We define, for i=0,1, the relations Uss D23 with tom(2, )=
= ) as follows:

if ©,=0 then u'.l'{oc} -,
if @;%0 then &’M{{a? ;cx.ﬁ.(),?=91'

Let, for i=0,1, :11 be the function and Qi the relation defined by
induction on £ as follows:

F (e Uial-F-(FienDuFian)ui@n)luqi®al)),
Qi focke Yb-p ~(Fix nD)v Qe AN))

is a countable class iff ’y";— g0,
Qyfecd =0 iff Y-, 2FN.
Put, for i=0,1, %= ‘;iu?-'fﬂ wQrQ. We have
Z,nZ=0
because of the following relations holding for i=0,1:

Fi0aQ3Q:0, Fi0nE,=0, Q;2n§ ;0
and

F 0nF00, g 2,Q,12-0.
Further, we can see, by using the fact that ¥ o ¥, are one-one functions, for
i=0,1,

Zi-fi~m0
T ' %
Assume Y- ¢ 2 FN. Then Z,- yfﬂ.ﬂ. and, moreover, Z-yi.,_n_
- 645 -
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~
holds for every Zigzi.
o " .
Assume Y- ;A3 Q . Then Q3 {«c} is a countable subclass of
~e
erﬂf— §;). Thus, assuming Z;n Z;=0, we obtain FN ay‘i‘- ii'
Especially, the relation
o e
A(yi,zg is infinite
holds for every & & L, i=0,1 and <@, 55"0, fl) larger than <Q,, 2 ,Z.7-
It remains to prove the following:

Let <4, 2’0, §17 be a doublet, larger than <Q, Z£,Z7. Then 9‘(%’9: 5
holds for i=0,1.

~

First, the relation @ (E )2 7 follows from the fact that ? Z
Thus, we must only prove for i= 0 1 that veP(@)-1a17— s 2’)
holds. Assume uePLQ7] - [0.37. If u nS’-:{aO then u nz..#[) holds tr1v1a11y.
Suppose u ng- 0. We have uge ® and 5' (ec)&u for some o € fL. Thus
EACH )eunZT ie. 7(ug Z) holds, too.

Let us introduce one special type of (JD, 717—normal doublets, being
connected immediately with the problem, we have started with.

We say that a cut 7} is fl-complementary iff we have (Vec ¢ 2)
(et —}s.(l) .

Proposition. Let } be an L -complementary cut and suppose that}zfs
S a. Then a—gm_ﬂ. .

Proof. Let f be a one-one function such that dom(f)=3'2}, t"y' s a and
f"; = . Then g -}/& f"a-—gz Brg holds. We have 7-2"3.0. and, conseg-
uently, a—gz_[). .

Proposition. Let 30, 31 be S.-complementary cuts. Then:
1) Every (‘JO, .71) doublet in a set is (70,31)—norma1.

2) Assume J.s 715 m (for some » & N) and let 270, v 71 be £.-comp-
plementary.
Then &, I, 7~ 7,7 is an( J,, I >-normal doublet.

A proof follows immediately from the previous one. (Remember, for the
case 2) that 7, - Jl 2 "1.—71 holds.)

Corollary. Let J ¢ 7'g 7 be two cuts so that J~ and 9+ J are
Q-complementary. Let {y, "o 1 be a codable system of subclasses of 9 .
Then there exists a semiset g m such that
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‘n'(f =J, So+(§ ="
and, moreover,
Y%, £) and BYT,q-£)
are both infinite for every o € Q.

Example. Let Js % be an .- complementary cutsuch thatJsp+J.
Then there exists Es 7 with

(o"({)::)', e (E)rq=J.
Moreover, suppose that 7§ ns J ; put 7 =7 = } . Then we have
PUENFEIERP.
We finish this section by a short investigation of elementary proper-

ties of Q-complementary cuts.

Proposition. A cut J is S-complementary iff (Vccf I3y ¢ FN)
(Jex -9) holds.

Proposition. Every cut closed under + is JfL -complementary.

Proof. Assume that a cut J& m is closed under +. Then, under pre-
sumption that 7=2-, we have ¥ 4 J . Thusn -T b p Q.

Proposition. Let J be such a cut that N-J is revealed.

Then J is fl-complementary.

Proof. Assume that J & M . We have {n—r\;ne FN}eN-J and, consequ-
ently, there exists ¢ ¢ FN such that 9-yeN-T , i.e. Joq -3 .

Example. Assume o & FN. Then U{o"n;neFN} is an fL-complementary cut
which is not closed under +.
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