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COMMENTASTЏNЄS MATИЭДШCAE ШIVERSITÄTIS CAROLГNAE 

2S,4 ( m ? ) 

RANDOM FUNCTIONAL OIFF£*ENTIAL HCLIISIOWS KITH 
NQNCONVtX RIGHT HAND SIDE II I A BANACH SPACE 

NiVolaos S. 

Abstract: In this paper we prove the existence of random solutions for 
stochastic functional-differential inclusions defined in a separable Banach 
space and with an orientor field which is nonconvex valued, lower semiconti-
nuous and satisfies a compactness type hypothesis involving the Haustiorff 
measure of noncompactness. The proof is based on the "measurable selection 
method" which makes use of an earlier deterministic result that we proved . 
Our theorem extends the earlier results by Deimling, Ito, Ladde-Lakshmikant-
ham and ?\lowak. 

Key words and phrases: Functional-differential inclusion, measurable 
multifunction, lower semicontinuous multifunction, selection theorem, Haus
tiorff measure of noncompactness, Kamke function, separable Banach space. 

Classification: 34G20 

1. Tntrodijction. In this note we prove the existence of random solu

tions for a class nf random functional-differential inclusions with a non-

convex valued orien+or field defined in a separable Banach space. 

The study of random generalized equations started with the work of Cas-

taing f 2] and since then there have been developed two basic approaches to 

the subject. The first is the so called "measurable selection approach", in 

which for each fixed value of the random parameter m we solve the correspon

ding deterministic problem and then from all those solutions through a suit

able measurable selection theorem we choose one that depends measurably in 

<*> . Th is approach was used by Deimling I4J (for single valued differential 

equations in Rn) and by the author I13J (for functional-differential equati

ons in Banach spaces). The second approach is the "random fi*ed point appro

ach" and proceeds to the solution of the problem through the use of an appro

priate random fixeti point theorem. This method was adopted by Itoh £73 (for 

single valued differential equations), hy Nowak £103 and Papageorgiou C133 > 
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logy, Mathematics Division, Thessa lon ik i 540 06, Greece. 
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[12] (for differential inclusions in Rn and a separable Banach space respec

tively) and by Phan Van Cuong [15] (for integral inclusions). 

In this note we follow the first approach. Based on an earlier result 

proved by the author C143, we prove the existence of random solutions for 

the stochastic problem. This way we extend the earlier results on random dif

ferential equations (single valued and generalized) obtained by Deimling 4 , 

Ladde-Lakshmikantham [8] and Nowak [103. 

2. Preliminaries. Throughout this note (XIjS,^) is a probability spa

ce and X is a separable Banach space. Also by Pf(X) we will denote the family 

of nonempty, closed subsets of X and by Pk(X) the family of nonempty, compact 

subsets of X. A multifunction F:il—> Pf(X) is said to be measurable if and 

only if for all yeX, co —>d(y,F(o>))=inf *[|y-xll:x6-F(u>)) is measurable. By 

Sp we will denote the set of all integrable selectors of F( • ) i.e. SF= 

= {fi.L1(X):f(a>)€F(<*>) ^ a . e . ) . 

If Y, Z are Hausdorff topological spaces and G:Y—» 2 \{0J we say that 

G( • ) is lower semicontinuous (l.s.c.) if and only if for all U£Z open, 

G~ (U)=4yeY:G (y) r .U4.0 . 

Let Pb(X) be the family of bounded subsets of X. The Hausdorff (ball) 

measure of noncompactness #:Pb(X)-*»R+ is defined by: 

(3(B)=inf { T > Q : B can be covered by finitely many balls of radius rj. 

Finally, a function w: [0,b]X R+~>- R+ is said to be a Kamke function 

if: (1) t—* w(t,r) is measurable, (2) r—>w(t,r) is continuous. 

(3) |w(t,r)| 4- y(t) a.e. and (4) w s 0 is the only solution of the integ-
f w(s,u(s))ds, u(0)=0. 
0 

3. The existence theorem. Let T= C0,b], TQ= [-r,0], ?= [-r,b] (r,b>0) 

and as already stated X is a separable Banach space. 

If x: [-r,b]—>X is a function, then for t6[0,b], xt: [-r,0]~**X de

notes the past history of the function from time instant -r until the present 

time i.e. x. (s)=x(t+s), s c [ - r , 0 . ] . 

Consider the following functional-differential inclusion defined on X: 

1 x(t)eF(t,x+) a.e. on T 

x(u)=xQ(u) ufeTQ 

where x 6 C(T ,X). By a solution of (# ) we understand an absolutely continu

ous function x : ? — • X that satisfies ( # ) . In fl4] the author, among other 

things, proved the following existence theorem concerning (*)• 
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Theorem 1 £14]: If F :T*C(T o ,X ) -~> Pk(X) is a multifunction s.t. 

( 1 ) ( t , y ) — > F ( t , y ) is measurable, 

(2) for all ttT, y — > F ( t , y ) is l.s.c, 
(3) |F(t,y)|^a(t)+b(t)«yfi0Oa.e. with a(0,b(.) feL1-

(4) for every BeC(T ,X) nonempty and bounded we have: 

( K F ( t , B ) ) £ w(t, (5(B)) a.e. where w(-,0 is a Kamke function, 

therF(# ) admits a solution. 

Here we will consider the following random version of (* ) , with the 
random parameter belonging in a probability space. So we have the following 
multivalued Cauchy problem: 

(**) 
x ( c o , t ) б F ( б > , t , x ( t o , t ) ) ((txÄ-a.e. 

x (ы,u )=x n (a>,u ) foг all (00,11) ь £LxlQ 

where A is the Lebesgue measure on T. By a random solution of (**0 we un-
derstand a stochastic process x: JflL;><T---* X with absolutely continuous reali
zations s.t. for ̂ (--almost all co §12 , x ( o , . ) solves the corresponding de
terministic functional-differential inclusion. 

We have the following existence theorem concerning ( * # ) . 

Theorem 2: If F: iX^T?<C(To ,X)--> Pk(X) is a multifunction s.t. 

(1) ( c o , t , x ) — • F ( c J , t , x ) is measurable, 

(2) for every ( < u , t ) e XI>*T, x —> F ( o > , t , x ) is l.s.c, 
(3) | F ( a ) , t , x ) U a ( o , t ) + b ( a > , t ) l x l a > fixA-a.e. with a(.,0, b(.,Os 

fcL^iZxT), 

(4) for every B£C(T ,X) nonempty and bounded we have: 
|3(F(c4>,t,B)£ w( a > , t , f ( B ) ) ffrxA-a.e. where for every eue-CL, w(6>,*,0 is 
a Kamke function. 

(5) x
0
!fl.*T — > X is measurable in o> , continuous in reT 

then ( * ) admits a random solution. 

Proof: Consider the following functions: 

p:ilxfKC(f,X)xL1(X)-^X 

defined by 

f x ( t ) - x n ( & > , 0 ) - / f(s)ds for t*T 
P(^t,x,f) = J ° J° 

L x ( t ) - x Q ( c j , t ) for t£T Q 

and q : H . * C ( f , X ) K L 1 ( X ) - ~*R defined by: 
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q(«,X l f ) -d( f ,s l ( 6 l > . ( X i ) ) . 

From the above definitions, it is easy to see that: 

o> —•pC«*>,t»x,f) is measurable and Ct,x,f)—> pC«*>,t,x,f) is continuous 
Therefore Lenwa III-14 of Castaing-Valadier £33 tells us that 

Cc*>»t,x,f)—•» pCo>,t,x,f) is measurable. Let { tJ . . be dense in T and define 

fKt->,x,f)=sup pC<*>»t »x,f). 
m%*i m • 

Clearly then (t«i,x,f)—•* pC«a,x,f) is jointly measurable. 

On the other hand for q(»»%») we have: 

=inf-{/f|f(s)-g(s)|ds:g*sJ(4j> ^ x # )! *£mi - | l fCs )~z | : z *F ( fe . * ,s ,x s )J ds = 

= /#d(f(s),F(«ti,s,xs))ds. 

Consider the map h:fxC(f,X)->f>-*CCT0,X) defined by: 

hCs,x)=Cs»xs). 

Clearly hC*»») is continuous. Hence the map h,:C«^»s,x)~-> C«->>x,s ) is meas-

surable from ,QLxT.*CCT,X) into Jlx TT*CCT »X). Furtherraore since by hypothe-

sis (1) F(»,»,*) is jointly Measurable, for every y€X we have that ru: 

:(ft>»s»z)—* d(y,F(a>,s,z)) is Measurable. Then 

hr,* h-. :(«A>,S,X}--«* d(y,FC«a »s,xg)) 

is measurable and since y~-v d(y,F(ca,s»x )} is continuous, we conclucte that 

(«a,s,x)-—*d(f(s)»FC«a»s»x )) is measurable. Thus fron Fubini's theorem we 

deduce that: 

C*>,x,f)—* Q<*»M>=<-(f*S*( x ^ = / dCf(s},FC€->,s,xs)}ds 

i s measurable. Now consider the roultifunction 

R : H - ^ 2 C ( T , X ^ 1 ( X ) defined by: 

RCo>)= <Cx,f)fi.C(f,X)>«L1CX):pCfe>,x>f)=0, <|<*>,x,fMJf • 

From Theorem 1 we know that for all t*j c iX , &(«<*>##- Also using the 

measurability of p(.».,.) proved earlier, we get that: 

Sri*- 4(«^,x,f)#.f i i»*C(f,X)^L1(X):Cx,f)*RC«i>}|% 

f>21 -< BCCCT,X)»«.L1CX)}=2:^BCCCf,X))^iCLICX}} 

Apply Theorem 3 of Saint-Beuve tUJ to get %%: Jt—* CCT,X) and X^t 

: .&-->L*(X} both measurable s.t. C^U*}-^o*}}***£«-»} ^-a.e. 
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Set .tA,(«o)(t)=x(<*>,t). Clearly x1(»,«) is a Caratheodory function (i.e. me

asurable in <*> , continuous in t). Also from Lemma 16 p. 196 of Ounford-

Schwartz [53 we know that there exists f 6L*(JQ.*T,X) s.t. f(a>,»)sA2(6>) 

.*L-a.e. Then 

x(<o,t)=xQ(co,0)+Jj|f(co,s)ds ^u,-a.e. for all t e T , 

x(w,u)=x0(«^,u) for u * T Q • 

Invoking Lemma 2.2.1 of Ladde-Lakshmikantham C8l we conclude that x(»,») 

is the desired random solution of (*#). 

Q.E.D. 

Renark: Our result extends Theorem 5.1 of Nowak [10J, which to our 

knowledge is the only other existence result for random differential inclu

sions idch nonconvex orientor field existing in the literature. In his res

ult Nowjk had X=fP and F(o,t,x) was Hausdorff Lipschitz in the x-variable, 
while the system had no memory (i.e. r=0). So our theorem is a significant 

extension in several directions of the work of Nowak. Also Nowak's result 

was a random version of an earlier deterministic result by Himmelberg-Van 

Vleck C6J. Our theorem even in the absence of randomness (i.e. no &* depen
dence) is more general than the resui, at Himmelberg-Van Vleck. Also it ge

neralizes the finite dimensional deterministic results of Bressan £13 and 

Lojasiewicz [91. 
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