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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,4 (1987) 

MINIMAL MONADS 

K.ČUDA, B.VOJTÁŠKOVÁ 

Abstract: In the paper we present an analogue of some properties of 
classes of indiscernibles for minimal monads. Further we prove the existence 
of a minimal monad of a special character and using it we show six equiva­
lents of the property of natural numbers "to be very far one from the other". 

Key words; Alternative set theory, minimal monad, infinite natural num­
ber, Rudin-Keisler's ordering, definability with a parameter. 

Classification: Primary 03E70 

Secondary 54305 

in this paper we are interested in a relation between relative definabi­

lity and distance of natural numbers. This relationship is important especi­

ally when one supposes the existence of infinitely large definable natural 

numbers. For our investigations there are very convenient minimal monads 

which have some properties analogous to the properties of classes of indis­

cernibles. 

We introduce and examine the notion oc < .< .... /$ of great distance bet­

ween tf ,|3 which expresses the fact that fi cannot be reached from oc by 

any definable function transforming FN into FN. Six equivalents of this featu­

re are given. The most interesting are the following ones: 

There are an endomorphic universe A with standard extension and y 4 {$ 
such that cC ,y€ ExA(FN) and oteEx^ -j(FN). 

There is an endomorphic universe A such that for each function f «A we 

rnve 

f"FNSFN-*f(<*)<(3. 

Let us remind now several facts from tG-K). 

Let f b p ^ be monads in .&, (i.e. classes of decomposition of V ac­

cording to |*. ). We say that (U^ . 4 . (*>2 iff there is a function F* Sd, ~ 
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such that f"*!1-̂ -f*i * 
The ordering €-4, on monads is similar to Rudin-Keisler's ordering on 

ultrafi Iters (monads correspond with ultraftiters on the ring of Sd. . clas­
hes 

ses by a one-one correspondence). 

A monad (*. (in .^t* ) is minimal i".^* if-f each function Fc StiL* is 

either constant or one-one mapping on p* • 
In further considerations we shall limit ourselves to infinite monads. 

Moreover, we shall assume that they are subclasses of N, where we have natu­

ral ordering ° £ M. This restriction is not substantial since there exists 

Fc Sd such that F is a one-one mapping of H onto V (see IV3). 
For an easier typing we shall, through the whole paper, use for elements 

of N also small latin letters, e.g. xeDef is an abbreviation for xtOefrfcK. 

This convention does not refer to the notation of set-definable functions and 

subsets of N. 

When writing F:A — » B we bear in mind that F is a function such that 

F"A*B (i.e. we do not ask for do»(F)=A). 

S 1. At first we prove that monads cannot be divided into two parts by 

any definable element, i.e. that all elements of a monad have "the same posi­

tion" with respect to the elements of Def. 

Definition. Let X be a class. Me shall call the class 

A«C ; ( 3 & , y * X) ft * t*..m-3rla convex hull of X and denote Cnh(X). 

Lemma 1. Let (U,(S.N) be a monad in ̂ , . Then &*(<*) n D e f ^ - 0 . 

ftranf. Let xcCnh((u.)nDef£c-j „ Then there are t,u cju. such that t<x< 
*<u - a contradiction with the fact that the elements of a monad fulfil the 

formulas. 

Theorem 1. Let (* be a monad in r-g-» . Then 

(a) (\i^tx<(^i^m^(M^iMAeiyn<9<aiK^^ 

(b) (Vx )Cx>C^( | * )«^ (Jamu^ 4 c | )C>^( | l c)<a<3 iJ . j 

Proof: is shall prove (a) , the assertion (b) can be proved analogously. 

Take x<Chh(^i.)# 

Let ( * * IHx^^mFN} , where {X^ntFM? i s a descending sequence ( i n fi) 

of classes from 5do (see t v l ) . For Xn Me shall ask moreover: «m()r , ) > 

> m i n ( y . ( I f min(X fHl)*«ifi(X |1), we put S ^ ^ V l " *****Vl)J " ^ 
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f* = n-CXn;n€FN{.) «e would like to prove: 

(1) (3n€FN)iwn(Xn)>x; 

i.e. we show that 4Xn;n€FN} is cofinal with ft . Denote af1=min(Xn) for every 

n€FN. Let us prolong the sequence «fa ;n€FN}. Then we can easily prove that 

(2) (Jft)(V-ar)CFN<afc</J'*ar * ^
J * 

To this end we shall construct a descending sequence { / I ;n€ FN} such that 
A.>FN for every i t FN and 

(V<f)( i<^<A i*&> a<raX i). 

Obviously, it is enough to choose fit like this: Let fik be the maximal elem­
ent such that for each y 

i<T<fit^> a?€ X.. 
But then there is such £ * that FN < ^%<fit for all it FN. Hence (!>) is val­

id. 

Thus, for each y , it is true that a y m. <u. . Let ag be the smallest 

element of the prolonged sequence for which a* > x holds. For proving (1) it 

is sufficient to show now that there exists k€FN such that f =k (i.e. that 

the index of a^ is f i n i t e ) . From the construction of a* we know, however, 

that a,, < x which implies £-i€Fin (in the opposite case we obtain a^ , € 

e £L which contradicts (2)); therefore j € Fin. Thus a. is the required ele­

ment from Defrc| fulfilling (a). 

For further considerations it is useful to take the following notation. 

Def N=Def AN, «°Def N=Def N-FN 

and analogously for Def- - • 

If we suppose that infinitely large definable numbers exist, then they 

can separate monads. It is therefore useful to examine elements which are ve­

ry far (in natural ordering) one from the other. A characterization of "great 

distance" gives the following definition. 

Definition. Let a,b -c^Def N. We say that b is much greater than a with 

respect to FN (notation a « p | . b ) iff 

(3) (VF€ SdQ)(F:FN -*-FN •+> F(a)«cb). 

Notice that, for ̂ Def N=0, a «ffp 

describes the distance determined by all definable functions. 
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Very often, when working with functions from FN into FN, it is conve­

nient to suppose that they are non-descending. Such a "trick" justifies the 

next lemma. 

Lenta 2. There is a sequence of non-descending Sd functions iF.;ifc 

* FNr such that 

1) (Vi6FN)(dom(Fi)=N&F.:FN-> F N ) / 

2) For each SdQ function G:FN—»FN there is Fj<«iFi;i«FNl such that 

G(ec) .4Fk(ac) for every oc e dom(G). 

Proof. Let us enumerate all Sd functions from FN into FN by 4G.;iftFNl« 

Put, for every ot 6 N, 

(4) F.(ot)=max(.U. GV(oc+l)). 
- ? s > J 

Then-|F. ;iCFN} is the required sequence. 

The next theorem asserts that each monad which comes into consideration 

intersects segments determined by the points which are very far one from the 

other. 

Theorem 2. Let a,b< opDef N, a <<p Nb and let (14,be such a monad that 

v * n ( n * D e f N)+0. Then (AnCa,b3 .*0 (where la,b3 = 4x;a£x*bJ). 

Proof. Let A be a set-definable class, (tf.SA£N. We shall define a 

function G on N as follows: 

(5) (Vt«N)G(t)=min4A-lCmin(A-(t+l))l +lji . 

Realize that for setting G(t) we find, roughly speaking, the "first" element 

of A which is over t and then G(t) is the "second one with the same property". 

Obviously G:FN —* FN, GtSd . From Lemma 2 it follows that there is 

icFN such that F.(t)>G(t) for every t«FN. Furthermore, for all n*FN, we 

have 

(6) Cn,F.(n)]r»A40. 

Let r o
 De *ne largest element such that every less element fulfils (6); i.e. 

(v r ^ r o ^ r ^ r ^ A * * -

Then r n 6 ^ ^ m(* ** is -nfinite. Therefore a < r o (since a-i^Def N) and (6) 
for a holds. Thus Ca,F.(a))nA*0. Suppose ft = A-iA ;ncFN}, where 

{A ;n*FNl is a descending sequence Df Sd classes. Then (note that {it & A) 
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for each ifeFN we have [a,b]r. A ^ * 0, which - due to the prolongation (see 

iVJ) - completes the proo f . 

Remarks. Definition of < < C K I , Lemma 2 and the previous theorem can be 

reformulated into "parametric version" and proved analogously. 

It follows from compactness of equivalences of indiscernibility that 

there are monads whose intersection with segments determined by points which 

are not very distant, is non-empty; hence the large distance is not a neces­

sary condition. 

In the next paragraph we show that each two different points of minimal 

monads are very far from each other. 

Theorem 2 can be generalized also in another direction, as will be shown 

later. Before this we introduce a new notion and prove several assertions. 

Definition. Let x + Def* . .* . Then we shall denote the class 

N-£Cnh(Defic-j A x)uCnh(Def^c| n (N-x)3 

Int< cj (x) and call it an interval of x (with respect to the parameter c). 

Notice that Int^-j (x) is the class of all natural numbers which have 

"the same position" w.r.t. Defjcj as x has. 

From the definition it follows immediately: 

Lemma 3. Let x,y4Def,, , then the following holds: 

a) xclntic-j(x), 

b) Int^c|(x)4iInt<cj(y)c-> x+y, 

c) x ̂  y -=» Int^c> (x)=Intic-. (y), 

d) Int i l e | (x) . -Cnh(Int^c | (x))=Cnh (^e | (x)) . 

Further we shall deal with a generalization of the minimal cut (i.e. FN). 

Definition. Let X S D e L . such that ( V t e D e f ^ j ) t e X « ( J u % X ) u>t. 

Then X is called a cut. 

We shall work only with cuts which have not the largest element - we de­

note them fl> • 

Lemma 4. For each cut J> there is oC « N such that $-*=Def*c% n oC ; 

such a cut we denote {*(at). 

Proof. Since {> fi Def,c* , f -
s a countable class and therefore there 

is an increasing sequence ^x.ftDef^cl »i€ FN $ which is cofinal with 0 . 
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Me prolong this sequence in such a way that the monotony will be preserved. 

Let •Cy^jitFN} be an enumeration of all elements from (0e^ c| -f>). Let /^ 

be the largest index of the prolonged sequence such that x~ < y^ (for all 

it FN). Then 4 ^ , 1 * FN] is a non-increasing sequence. Because f/SpiCFN} is 

countable, there exists (& 4 FN such that J$ < ft. for every i€FN. Put «C = 

=x- , obviously <J> (oO=Def,c| A oC . 

Further we shall take the following notation: Let x $ Def|C| , then we 

put 

Pkt(x)=Def i c )n *» 

S5ic^(x)=Defic| n(N-x). 

Note that now 

Int|c7| (x)=N~ t Cnh( y 4 c ^ (x)) uCnh( p | c | (x))J. 

For an easier typing we shall use - when there is no danger of misunder­

standing - only 50 instead of p < cj(x) and analogously jff instead of 

pm(x). 

Lemma 5. Let x^-Def^^ } X&ScL-* . Then the following properties are 

equivalent: 

1) X is cofinal with J-\rci(x), 

2) X is coincial with ^»c->Cx), 

3) XAlnt^ c |(x)#0. 

Proof. We prove only 1) m 3); for 2) » 3) it suffices to modify this 

proof for the inverse ordering. 

Suppose 1) holds. Since p>, m are countable, we can enumerate them. Let 

j> = <ai;i€FN|, f = IbpieFNl. From 1) it follows that 

(Vj«FN)( n . ta.,b.3)nX*0. <*<£ l' l 
Bu"fc 0.. ta, »b^=Intlf%-i(x); hence 3) is valid. 

For proving 3)---•• 1) assume that a fcXnInt^c|(x) and X is not cofinal 

with jo . Then there is a* € §D such that there is.no be(XnJ))-a . Put d= 

=min(X-(a+l)). Then d*X and d s p (since d€Def< cj). Moreover, a<d £ 
4a(< ? ) - which contradicts i 1). 

The notion of the property of points "to be very distant" introduced a-

bove will be established now for more general cuts, namely p , and an analo­

gue to Theorem 2 will be proved. 
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D e f i n i t i o n . Let x f Q e f | c | , arb>*]bn(t.r jC|(.tO\ Wte say tha t & i s mucfr gpe-» 

ater than a with- respect to ftg-fC*) i M 

(7) ( ¥ F * S € t i c . | ) ( F r f ^ c | ( x ) - > f 4 C | ( x ) = ^ F ( a H ) < b ) ; , 

no ta t ion a < < ^ | l C - | ( x ) 6 or only a < - c ^ b , . when there* i s no danger of cnmfia*-
SiQR. 

For p i m i n g the next theaaresv we sftaO mGfflfetty f i r s t l y Lemma 2. 

6„ Le t j» be a non- - t r i v ia l cut GOT Gef C C * . Then there i s a secpe*-

nee of riixi>KiescerTd±na; Sdtg.* funct ions -fF. ; i * F N ' f such t h a t 

1) (Vi#FM) ( d w C F t > = l l » F i r p ^ ^ ) 4 . 

2) For eaefr S c l ^ c | fuinctian G r p — * $ » there4 i s F. * £ F . ;:ifcFt81 suett t ha t 

GC«fc)^Fk(i.fe) f a r every m. # dnm(G). 

FiraedL Let | t £ . ; i c FN$ be an enuirocBtiiin of a O 5 o t v . | ' funct ions whi»ch 

transform A i n to f . Put 

F . ( t ) = m a * ( w U ^ ; ( t ) . 
i *&* J 

IHhen we prove that F.:p—#>jp fo r each i« *F f i r then -&F. ; j ; « Pft?f w i l l * be the es­

quired! secpence. Supposey by conifeadticticin,, ttliat. tthere ex is ts F« iP. ; i€-FN f 

such tha t Frf> 4$. A . Let a- * p » and F(a) $ J* • l^en (note tha t F(a)4r lJet^j) 

there i s to fc^ sauctr tha t F(ai).»tti. Fucsm aim Gtefjimitiian of -&F. ;JL«rFfi l trt f a l ­

lows- tha t there are jfeFW anraii t *a< sutch tha t G-. ( t )>b, . [Denote Fttue smal lest 

of elemente fo r which G . ( t )> to . Tfrem T ® jp (since f f c Q e f r ^ ) , bat G.(T)4* j r 

(because G.( t ) : r to and b € , S ) - y csmniitoadi!^ . 

I hea ra * J . Let a.,.tii fcEnntK*),. Si«}m/^ a™- l e t / * * be1 sueh a monad1 t ha t 

| * n lF r t (x>4 f lL ten p n ^ - b l M * 

For proving t h i s asBsarfciiaoF i t sufEiuees to use Lemma.- 6 and' modi­

fy the proof at Theorem 2. AmaiUagpusl^ to (5) we choose t.he c lass A'« and d e f i ­

ne5 "the func t ion G. 

Ws have, however,, tan- shxaw t h a t Bs <p —#> jjp (sari analjaipiis^ feet flar G i n 

the proof of Theorem 2 was cabvioiis). Let u • jp ;. then thece ex is ts v J*U such 

tha t v*Ak. Tari«ffi the- smallest of such elements - denoitte i t u-,. Then v., «. ^ 

( j tolrr t (x .)-#l8 since {A £ A\; but t h i s impl ies H is t A* i s . c-ofinal wrtti p> - see 

Lemma 5 ) . Repeat now t h i s cons^jGlerafijan fo r "stasrt ing po in t " v~,; i t br ings 

us to w*,. & & . But G(u)=w* and cafisequentLLsy G-..JJ**—**$P-

When "deck ing " ' furtheumone tt ie pramf of Ttieocem 2, we obta in Iterat i n s -
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tead of (6) 

(8) (Vpftcj>)(Vt€P) r.t;F.(trJnA*0. 

If *v is the greatest element for which (8) holds, we have that ^ € Def-p. 

Hence a<*r (since a<$>) and thus ta,F.(a)3nA40. For completing this proof 

it is enough to use the same arguments as in the proof of Theorem 2. 

Remark. We know that if *Def N=0, then FN=DefnN. When, however, 

°*Def N4-0,a natural question arises: How do all elements under °°Def N and 

reasonably definable look like? Such sort of considerations has brought us to 

the following'definition. 

Definition. Let a^Def^j . We put 

Def££* (•fa})=4x;(JF)(F6Sd4c|8i F:y>—*?>& x=F(a))J; 

we write here briefly only p instead of (p.jcj(a). 

When we compare this definition with the one of a < < b, we obtain imme-

diately that 

a < < A b sDefP:**>0.al)£b. 
V "iC t 

The next theorem asserts that under the same assumptions as in Theorem 3 

there exists even an infinite set inside <u.nCa,bl. At first we prove, how­

ever, an auxiliary result. 

Lama 7. Let a < < b, dfcta,b3. Then either a < < _ d or d<<<-) b. 

Proof. Evidently it suffices to verify that 

d « D e f * Y f (fat)-* D e f £ ^ (4dl)*0ef£** tfal). 

Let Fe Sd«c-j , F: »p —*• §> . We have to show that there exists GgSd, » , G: 

: m — * f such that G(a)2rF(d). It follows from Lemma 6 that there are non-

descending Sd<c-* functions G,, G« such that d^G,(a) and F(d)£G2(d). Then, 

however, G 2 (d ) .<G 2 (G 1 (a ) ) . Put now G=G 2©G r 

Theorem 4. Let a,b € Int(x), a <<<-t/x) b and <ct be such a monad that 

p AInt(x)«l-0 (hence (i* filnt(x)). Then there is m^Fin such that m S MoTa,bJ, 

Proof. The monad (14 is a *r-class and therefore it is revealed. Since 

Ca,bl is a set, fxn Ea,b2 is revealed, too. Hence it is sufficient to prove 

that there is an infinite countable class C such that C » ^unra,bl For mak­

ing the proof shorter we show only that Cfi f*n*{x;a<x<bl. We shall const­

ruct the class C by means of Lemma 7 and Theorem 3. 
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Let a,€ £*, n {x;a<x<bf; we have that Q « m r x ) a i or ai<<©(x)^* ^"" 
pose e.g. that a <<<->(x)

a
]
 and aPPly again the above mentioned assertion,etc. 

Thus we obtain a countable sequence «(a. jicFN.'Jof elements from 
|*n*x;a<x<bl. Put C= -fa^ie FNl. 

Remarks. When substituting j»(x) by FN in Theorem 4, we have an analog­

ous generalization of Theorem 2. 
Theorems 3 and 4 can be similarly proved also for their parametrical ver­

sion. 
The following theorem speaks about monads generally, but its main signi­

ficance will not become evident before studying monads of indiscernibles. In 
the forthcoming paper we show that if Ind is a monad of indiscernibles for 
the language L and t*Ind then tnlnd is a monad of indiscernibles for L ^ * • 
Theorem 5 implies that the assumption telnd is a substantial one. 

Theorem 5. Let fl-t be a monad. Then there are c, x such that 

^ ^ I n t - . ( x ) is not a monad in r--=.». 

Proof. Since (tt • Fin, there is c S ft which is infinite, too. Then 

( Jg> is compact) there are x,y*c, x-#y such that x ̂  y. Suppose x<y. For 

proving Theorem 5 it suffices to find t e (u nlnt, *(x) for which 

"l(t . * .» x) holds. Denote the smallest element of c which is greater (in < ) 
•4 C t l 

than x by z. Obviously z * f*. (since zee). Moreover, zflnt- »(x); for this 
realize that x,y *Int. ,(x)=Cnh(Int* .-.(x)) - see Lemma 3. Hence 
z « £4nlnt^cj(x). 

We show that "Kz^-IK (x). Suppose that z A x . From the construction 
of z it follows that z is definable from x and c. This fact implies the exis-, 
tence of SaV • function F such that F(x)=z. Then, however, F(x) ,A. x which 
resulted in F(x)=x (see Theorem 1 from lu-K]) and hence z=x - a contradiction 
with the definition of z. For completing the proof it is enough to put z=t. 

§ 2. In the first theorem of this paragraph we prove that there exists 
a minimal monad close over FN which, moreover, possesses the following proper­
ty: each set-definable function (with parameter c) either maps FN into FN or 
transfers this monad over an infinitely large definable element*, 

At first we shall formulate an assertion which is an immediate consequ­
ence of Lemma 5. 

Lemma 8. Let x€Def^c^ be not cofinal with FN. Then there is k*FN such 
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that (x-k)«%FlMÍ. 

[ «. There exists a Minimal Monad j * in the class X=<*;FN < « < 
< • t M t c f l t i such that for every FaSd^j , F:M~*N, there i s Z « S d | c | , 
I ^ f t , such that either ( i ) or ( i i ) takes place, where 
( i ) FN* :FN-*Flt, 
( i i ) F**r>FHNfc\ 

Proof. For **DBf.c|H=# Me have X=N-FH and c«Def. Then the assertion is 
valid - see K-K-t, Theore* I I , and realize that ( i ) is true for each F*Sd . 

Assuee further •^Jef|C»ll#i. We shall construct a descending sequence 
4*n;n*FNl Mith the following properties: 
1) (VocFW^c ferity 
2) (Vn«FK)x | | is cofinal with FM; 
3) ( V t t S d ^ j ) CYfill*-^(3n%Flt)(x r i&Y^xnft(^y)l; 
4) Uat<Fn;ii«FltI be an enumeration of a l l Sdjci functions. Then FR is eit ­
her constant or a one-one napping, on x ^ (for a l l n*FN); 

5) I f -fy^jotFKl is an enuMeration of ^ef|c«|W» then x-^iSy^ (for a l l n € 
*FN> t 

6) For each F^clF^ncFHl either ( i ) or ( i i ) is true when we P»t SJ-*^-.. 

The sets »n Mill be constructed by induction based on n. 
At f i rst tafce, arbitrari ly, Xj* "•Oef. -^t; denote x^x-i^y,, where y, is 

the f i rst element of our enuaeration of ^Oef .^N. We shall investigate x\=xy> 
n d o * ^ ) , Mhere F̂  is the f i rst element of f F^jncFW*. 

I f ft is not cofinal Mith FH, put X2~%~C*X,I^P* Obviously x2 possesses 
each required property except 3) , which will be examined later for a l l possi­
ble cases al l at once. 

For xl being cofinal with FW Me shall examine the system of classes of 
rJecoMposition of x̂  according to the-«r/ivalence ai*b«Fj(a)=F|(b). There are 
two possibilities.. 

a) CJt*moXF l ) )F~Ht | f t8 1 is cofinal Mith FN. 
b) the negation of a) holds. 

In the case a) take t t m o / F j ) such that F^Mt lnXj is cofinal with FN. 

Then evidently t * | W | c | (realize for i t that f j € S d | c t and F* FKSfex^-ftl). 

Put x t ^ ^ t t f * * ^ except 3) and 6) a l l conriltions are valid. 

A&suae further b) . Then we can take ?• as the set of a l l smallest elem­
ents fro» classes of decoMposition of 4^ (atxordino to F^. Obviously 1) , 4) 

and 5) hold. *% P*ave now 2) for x^. Suppose the contrary. Then there is k *fU 
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such that (x^-k)nFN=|l - see Lemma 8. Put «*=~«Ui(x^-k); then * • FN. Let fu­

rther w contain all classes of decomposition of xl (over F.) such that their 

smallest elements belong to xf.-k. Then for each zCw we have z £«c and hence 

w is not cofinal with FN. The class x.-w has, however, only a finite number 

of elements from the decomposition. Thus at least one of them must be cofinal 

with FN - a contradiction (we suppose that none is). 

Now we shall construct x2. If F is constant o n f p it suffices to put 

x2=x*1 and all conditions except 3) are valid for x̂ ,. Assume further that F^ 

is one-one on 7.. If FJ xl is not cof inal with FN, there is k* FN such that 

(FJ x'1-k)AFN=0 - see Lemma 8. Put
 x
2
=^l~ Fl l w k ; l t is evidant tjhat **» 2*» *̂ » 

5) are true. For 6) realize that now (ii) takes place. 

Suppose FJ x^ is cofinal with FN. Without loss of generality we way think 
that Fj(t)> t (otherwise we shall take F.+l). The set x^ will be constructed 

by indentionj we demand, at the same time, lufix^-. Let \ °© such an element 

that F t , ) is minimal in F" xl. Obviously tj* FN (cofinality condition) and 
Ff ^ i ~ ( t i + 1 ^ is cofinal with FN. Let %2 be such an element that F^tj) is 

minimal in FV(x.-(t1-*-D), etc. This set-definable construction will go until 

a certain number 1% e N. When we put now x«- It^.; ̂ r« ̂ | , we have that 1), 

2), 4) and 5) are fulfilled. Moreovei ram our construction of Xj, it fol­

lows that (i) comes (if t^Xj-iFN, then icFN and therefore FjCt^cFN). Hen­

ce 6) is also true for x?. 

Analogously we can construct x, from x2, x^ from x^,
 etc- t^6 obtained 

sequence -Cxn; n# FN> possesses all required properties except 3), which we 

prove now. Let Y*Sd|c.|, YfiN and let %y be its characteristic function.Then 

XysF., where Fk is the function from our enumeration which is on x^ « either 

one-one or constant. Since dom(^Y)+Fin and m a X ^ y )
3 "f »H» %v n® s *° •* 

constant on x ^ . If for each t c x ^ we have -|y(t)=0, then Xfc+i*-^. in 

the case ^y(t)=l we obtain x ^ s Y . The sequence «Cxn;n*PNl fulfils therefo­

re 3) and hence f U x ^ n c F N l is a monad - let us denote it <o.. Owing to 4) 

p. is a minimal monad. 

For proving £*.& X it suffices to show that Xn^-frfl. Assume the cont­

rary; let u€X, t • <** . Then lnt,c^(u)nlnt-,(t)=0. Construct f».rc<}(u) and 

j»lc|(t). Evidently p,rc|(u)=FN and P|c^(t)#FN, which implies the existence 

of *. c ^Def^.N such that afctp-fcit*)- Then at <t, but oc < (U , therefore 

there is k*FN for which «c< x. - a contradiction with 2). 

For completing the proof it remains to show that for each F€ Sd* %» F: 

:N-*N, there is * < S d ^ , Z 2 fi » such that either (i) or (ii) takes pla-
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ce. Obviously it is enough to find Fk« -£Fn;n c FN? for which F=F. and put 

Remark. In a forthcoming paper we prove the consistency of the existen­

ce of a minimal monad (* in X such that for a certain Sd function there is 

no Z t Sd , % 2 (U , with properties (i) or (ii). 

There is a question: For what t there exists a minimal monad inside 

Int. ,(t). A partial solution gives the following theorem, which is a simple 

consequence of Theorem 6. 

Theorem 7. Let t^Def^.Let there exist occX= iy;FN<'ar<a>Def4c.N} 

and a non-descending Sd^ « function F:N—> N such that F(ac) clntc »(t). 

Then there is a minimal monad v s i n t , *(t). 

Proof. Firstly we show that we can assume dom(F)=N. If dom(F)=m, denote 
cf=max(m) and for all t ><f put F( t )=F(oT ) . Let further dom(F) be a proper 
class. If F is not defined in some ct , put F(oT )=F(/3 ) , where (I is the smal­
lest of all elements from dom(F) which are larger than cT. 

Suppose now dom(F)=N. Evidently, F remains to be non-descending. This, 

however, implies that F" Int# *(eO=Int« -.(F(d)). Let (U. be a minimal monad 

in X - it exists due to Theorem 6. Denote *>=F"(U, . Then i> .mint, , ( t ) (if 

(i c (U. then I n t . c j ( f t ) = I n t f c % ( o t ) = X and F(/3)cInt^c-,(t)). The monad V can­

not be a trivial one, since t^Def, and hence Int*ci(t) cannot be a single­

ton. As (u. is minimal, F has to be one-one on (U. and hence T> is minimal, too. 

Next four theorems show an analogue of one property of classes of indis-

cernibles for minimal monads. 

Theorem 8. Let ju be a minimal monad in .-*?% which is a semiset. Let 

FeSd* * be such a function that F(t)-<t for some (and hence every) t c (U • 

Then either 1) or 2) is valid, where 

1) ( V u « p ) ( u « t ~ * u<F(t)); 
2) (adcDef^XVtcfO F(d)*t<d. 

Proof. Since F is defined on the minimal monad |U , F is either constant 

or one-one on {* • 

Suppose, at first, that F is constant on (U, . Denote F(t)=e for t c /U; 

evidently e 6 Def e % . Construct F "{el. Obviously F " 4e}ftSd--| and 

(U. ft F~ iel. Because ̂  is a semiset, there exists "t-fcDef * \ such that 

1" 
e > < * . Put d=max((F {el)ne. Since e,e«Def|c-i , FeSd, - and F(d)=e, 
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we have d«DefVc-t . Moreover, <ccSe (since e ><u.), f*fi p^'le*, therefore 

d > <* . But F(d)=e=F(t)<t for each t € (M- . Hence F(d)<t-«d and 2) is 

fulfilled. 

Let further F be one-one on ̂ c . We shall assume -* 1)&~|2). It foil-

ows from -| 2) that there exists t ft (U, such that F p* ,(t) S ?\c}(^* *-e* 

us fix such t. Put k=min(dom(F" )) and define for each u 2 k a function H as 

follows: 

H(u)=max(F~1"(u+l)v fu+1}). 

Obviously HeSd*. * is a non-descending function and H(u)>u for each u>k. 

Define further a function G as follows: 

G(0)=k&G(y+l)=H(G(r)), 

i.e. G(y) is the 2f-th iteration of H when starting from k. Finally, put for 

each u £k 

F(u)=max("Cy;G(r)<u}). 

Then Fc Sd, » and T is also a non-descending function. Denote oc =F(t). We 
would like to prove that oc c Def, % . In accordance with our assumption -j 1) 

we have that there is v 6 (U, such that v< t and F(t)*v. If we prove that 

F(t)=F(v), we shall know that also F(v)= oc and since /a is a minimal monad, 

this will imply that F is constant on ̂cc and therefore F(t)= oc c Def-. . 

Let us prove F(t)=F(v). Since F is a non-descending function, the inequ­

ality v < t implies F(v)^ F(t)= oc . For proving the converse inequality we 

shall show firstly that G(oc )< v. Suppose G(oc)>v. From the construction of 

oc it follows that G(oc)<t and G(ot+l)> t. Denote F(v)=/3 . Then G(oc+l)> 

>t implies G(/J+l)2.v. But G(ot-l)<v (since G(ot-l)<H"1(t)). T h u s o o / 3 * 

2ToC-l and hence ft =66-1. This is, however, a contradiction, since t, v be­
long to the same monad. Therefore G(oc)<v, which implies F(v) 2 oc -T(t). 

Hence F(v)=F(t)=oc . 

Since oc 6 Defjct ,
 a--so G(oc)6Def, % and at the same time G(ot)<t. 

Obviously G(ot+l)€Def# » , too, and from the definition of F*we have 

G(ot+l)>t. Remember now that G(oc+l)=H(G(oc))' and the fact that for H it is 

true H"p, c\("t) -* 9 | c \ ^ ~
 see *-emma 6. ̂ e nave Proved here, however, that 

H does Rot fulfil this inclusion - a contradiction. 

Remark. Note that for the classes of indiscernibles 2) from the previous 

theorem may be strengthened to the assertion "F is constant". In the forth­

coming paper we prove that it is consistent with AST that there exists a 
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m M i a l l jDmari |tt, ffinr .wháíOh 2) cannot tie su i is t i ty t^ % "F is constant on <a-". 

to* Me shání ^tnesent several wDdificBtiGins of Theorem fi. 

BHiLiwiiJi 9m tLet f t íse a mnimai woriad i n *g* which is a proper class. 

\be& F € $»-l|~* * » atitíh a ftarrtikin ttihat F ( t ) < t far every t c ^t. . Then e i ther 

1) aer 2D i s nal i t í , where 

1) ( V u * fl-X<u<t--»!U<F{t)); 
2 ) F i s oar̂ starint ©n ,<&*• 

Suppoffie itihat F is tane-cine on £** . In th is case real ize that the 

c ia^f i ion 2 ) finaro Ifihearam 8 cannot oowe (since Oef^c | < $** and thus for each 
f c S % c f ffl^HS, i f i a d h tmfL f ' " p * c % ^ ~ £ * € e ! ^ hoi * * - see Lemma 6) and pro-
aaesdi canaiLogousiy as m the jprctof of this theorem. 

10, Let f/L be a minimal iiionad i n £-"-j which is a semiset. Let 

f *S - - 4 C | * » such a function that F ( t ) > t for one (and hence every) t € (%t . 

Tihen e i ther I ) or 2) i s v a l i d , where 

D (Vv •£0(v>t - a »v>F(t ) ) ; 
2) (adf tOef^iX V t 6 p ) d<t<F(d) . 

Proof. Let F be constant on 4t> . Denote F(t)=e for each t « «& . Const-

nuct F iel? then this class is a rwn~e*pty Sd, , class (since evOef.. , 

m& F t S d ^ i ) . Î it d=«in(F'1*iel). Then d€0ef - -. , d < t and F(d)=F(t)>t -

2) is valid. 

Suppose further that F is one-one on fJL . Recall that also F" is one-one 
on ft and *>=F"fi, is a Minimal aonad in c-g-t . Moreover, Cnh((t.)=Cnh(»> ), 

since F(t) and t are "likewise" situated with respect to Oef* . ; if 

Irtt|c|(F(t))-fInt|c-|(t)f ,then 2) holds. Now apply Theorem 8 o n v , F"
1 and F(t). 

Theorem 11. Let {*> be a minimal monad in A which is a proper class. 

Let f% So4** be such a function that F(t)> t for every t 6 (JL . Then 

(Vv«^)(v>t«-tv>F(t)). 

Proof. Note, at first, that F cannot be constant on ̂ t (in the opposite 

case we have F(t)#0ef^ • for t 6 M., which is in contradiction with 

t>0et^ and F(t)>t). 

Hence F is one-one on (*> . Put G=F . Then G is also one-one on ft and 

G(t)<t for each t ft ft . Denote V=F,,|4. ; then "p is a minimal monad which 

is a proper class. Now apply Theorem 9 on G and V . 
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Especially, let us stress one consequence of the previous theorems for 

minimal monads lying close behind FN. 

Theorem 12. Let f*.<*^)ef N be a minimal monad, x,y « £* and x<y. Then 

Proof. Suppose, at first, that ^)ef. »N=0. Then c %Def and therefore 

£** is a proper class. In this case it is sufficient to use Theorem 11* 

If °°0effc\ N4»0, we shall apply Theorem 10. Since we work with a func­

tion which maps FN into FN, the case 2) from this theorem cannot set in, the 

case 1) is exactly what we want to prove here. 

The last theorem which can be also reformulated into a parametric versi­

on, and its corollary describe several equivalent expressions of the. proper­

ty "to be very far one from the other". 

Theorem 13. Let <** X=-C'»|,FN<i^<o,»0ef N$. Then for each ̂  the fol­

lowing are equivalent: 

(i) o t < « F N T , 

(n) op*x)(/3<r&*<o0M*m N>-

Proof, (i) « # (ii). Let (ut be the monad from Theorem 6. In accordance 

with Theorem 4 there are x,y c (u such that ct <x<y-« ar (take x,y«m). We 

would like to prove that for each FcSd , F:N —* N, we obtain F(y)>x. From 

the construction of ̂  we know that there is % € SdQ such that (dfi2 and 

FMJfnFN=0 or FtZ :FN-*FN. In the first case we have that min(F",j©» FN and 

nun(F'2)*Def. This implies min(F'!»>X and therefore FW*£>X. Since y * ( * MX 
and F(y)>X, we obtain F(y)>x. If FW£:FN -*FN, we apply Theorem 8. The as­

sertion 2) from this theorem is now excluded, hence 1) has to take place. Put 

now fi *y; we have then m®®if»% > x > «* • 

(ii) a-»(i). We have to prove now that for each F«Sd0, F:FN -*FN we 

have F(oc) «-* *f . In accordance with Lemma 6 we can suppose that F is a non-
descending function. Put G(t)=min(F iul), where u is the largest element 

from rng(F) which is smaller or equal to t. Then G is also non-descending, lite 

have G(fl)t0ef{(|{ and, since /5c X, at the same time G ( f l ) 4 F N (otherwise 
F is constant). Hence G(£) > «C and F(*) 4 (i < y • 

Corollary. For <*<</& , «Cr€X=-ii| ;FN<i|<*Def Nj,the following are 

equivalent: 

1) * « F N (*\ 
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2) (3e*u#A)(©& 6 E*(FN)< (3), where e.u.A means an endomorphic universe A; 

3) (3 e.u.s.A)(oi>cExA(FN)«« 0 ) , where e.u.s.A means e.u. with standard ex­

tension; 

4) (3e.u.A)(3r^P)(^,T«E A(FN)&06€E A r y 1 (FN)); 

5) (3e.u.s.A)(3y -*/3 )(<*,ycExA(FN)&oc,«EACy:, (FN)); 

6) ( 3 r ) ( < * < T * ^ ^ 0 t < < i o D e t < r | N ) ; 

7) (3e.u.A)(Vf*A)(fMFNSFN«-->f(oO</1). 

Proof - see IC-Tl. 
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