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MINIMAL MONADS
K.CuDA, B.VOJTASKOVA

Abstract: In the paper we present an analogue of some properties of
classes of indiscernibles for minimal monads. Further we prove the existence
of a minimal monad of a special character and using it we show six equiva-
lents of the property of natural numbers "to be very far one from the other".

words: Alternative set theory, minimal monad, infinite natural num-
ber, Rudin-Keisler s ordering, definability with a parameter.

Classification: Primary 03E70
Secondary 54J05

m‘this paper we are interested in a relation between relative definabi-
lity and distance of natural numbers. This relationship is important especi-
ally when one supposes the existence of infinitely large definable natural
numbers. For our investigations 'there are very convenient minimal monads
which have some properties analogous to the properties of classes of indis-
cernibles.

We introduce and examine the notion << FNﬂ of great distance bet-
ween o , 3 which expresses the fact that 3 cannot be reached from o¢ by
any definable function transforming FN into FN. Six equivalents of this featu-
re are given. The mosf interesting are the following ones:

There are an endomorphic universe A with standard extension and » £ [3
such that o ,y’€ ExA(FN) and aLeExAl_ﬂ(FN).

There is an endomorphic universe A such that for each function f €A we
bave

f'FNSFN wp f(o0) < 3. |

Let us remind now several facts from [{-K).

Let [ ) be monads in (i.e. classes of'decmposition of V ac-

=

{1¢
: [ ] :

cording to &?\ ). We say that &, {-e‘} @2 iff there is a function Fe Sd'te}
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such that Fn"‘z"‘l’

The ordering {4} on monads is similar to Rudin-Keisler's ordering on
ultrafilters (monads correspond with ultrafilters on the ring of so{ 1 clas-
ses by a one-one correspondence).

A monad @ (n.x {‘c’:l ) is minimal in{é] iff each function Fg Sdoy is

either constant or one-one mapping on @ -

In further considerations we shall limit ourselves to infinite momads.
Moreover, we shall assume that they are subclasses of N, where we have natu-
ral ordering " € ". This restriction is not substantial since there exists
F& Sd such that F is a one-one mapping of N onto V (see [V]).

For an easier typing we shall, through the whole paper, use for elements
of N also small Latin letters, e.g. x «Def is an abbreviation for x&DefnN.
This convention does not refer to the notation of set-definable functions and
subsets of N.

When writing F:A~» B we bear in mind that F is a function such that
F'A%B (i.e. we do not ask for dom(F)=A).

§ 1. At first we prove that monads camnot be divided intc two parts by
any definable element, i.e. that all elements of a monad have "the same posi-
tion" with respect to the elements of Def.

Definition. Let X be a class. We shall call the class
1€;(3B . 7eX) B ¢ o &Ya convex hull of X and denote Crh(X).
Lesma 1. let M(SN) be a monad in (kg . Then Crh(m)nDefg oy =8.

Proof. Let xeCnh(@m)nDefgoq - Then there are t,u e @ such that t<x<
<y - a contradiction with the fact that the elements of a monad fulfil the
same formulas.

Theoren 1. Letphea-:mdin{%i. Then
(a) (¥x) Ix<Crh(g@)=p (aeDefy 3 Ix<caciii@)],
®) (V) [x>Coh(@s) = (Faabefi .y Yorh(m)<aexd.

Proaf: We shall prove (a), the assertion (b) can be proved anmalogously.
Take x<Crh(@).

Let @= M)gn,nsm}, where {xn;nem} is a descending sequence (in ¢ )
of classes froe Sd (see [V]). Forxnuesnlla‘mm min(x .} >
>min(x ). (12 un(xml).-m(xn), we put x",,l.xml Lmin(x 1)} and
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o= NHX ;nGFNE.) We would like to prove:
¢} (IneFNmin(X )>x;
i.e. we show that {Xn;nGFN] is cofinal with & . Denote anqnln()g‘) for every
n&FN. Let us prolong the sequence {an;nﬁFN}. Then we can easily prove that
2 (35)(V1)[FN<7<[5¢3,‘_:'¢,J.
To this end we shall construct a descending sequence {f3 ;né FN} such that
pi>FN for every i& FN and

(VS (i< J<fsi=p a

Ooviously, it is enough to choose B, like this: Let 3, be the maximal elem-
ent such that for each

icy<f,= a € X;.
But then there is such B* that FN < g%<f, for all i&FN. Hence (2) is val-
id.

axi).

Thus, for each ¢ , it is true that e m . Let aE be the smallest
element of the prolonged sequence for which ag » x holds. For proving (1) it
is sufficient to show now that there exists k&FN such that § =k (i.e. that
the index of a¢ is finite). From the construction of af we know, however,
that a§_1< x which implies foleFin (in the opposite case we obtain af'l‘
€ @ which contradicts (2)); therefore EG Fin. Thus a is the required ele-
ment from Defge3 fulfilling (a).

For further considerations it is useful to take the following notation:

Def N=DefnN, % Def N=Def N-FN
and analogously for Def, .
Y ic}
If we suppose that infinitely large definable numbers exist, then they
can separate monads. It is therefore useful to examine elements which are ve-

ry far (in natural ordering) one from the other. A characterization of “"great
distance" gives the following definition.

Definition. Let a,b <®Def N. We say that b is much greater than a with
respect to FN (notation a<<FNb) iff
3) (VFfe Sd ) (F:FN —FN = F(a)<b).
. 5 -« -
Notice that, for *Def N=#, a << P
describes the distance determined by all definable functions.
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Very often, when working with functions from FN into FN, it is conve-
nient to suppose that they are non-descending. Such a "trick” justifies the
next lemma.

Lemma 2. There is a sequence of non-descending Sd0 functions {Fi;ie
€ FN} such that
1) (Vie FN)(dom(F;)=N&F, :FN = FN).’
2) For each Sd0 function G:FN —2>FN there is FkG{Fi;iGFN3 such that
G(d.)‘Fk(O(-) for every o € dom(G).
Proof. Let us enumerate all 5d, functions from FN into FN by {Gi;ieFN}-
Put, for every e & N,

(8) Fi(u )=max(5lsJ1-' Gb’(cﬂ-l)) .

Then {Fi ;1€ FN$ is the required sequence.

The next theorem asserts that each monad which comes into consideration
intersects segments determined by the points which are very far one from the
other. '

Theorem 2. Let a,b< ®Def N, a <<p\b and let s be such a monad that
& O (NP0ef N)&P. Then wnla,bl4@ (where [a,bl ={x;a&x&bd).

Proof. Let A be a set-definable class, (A’-E ASN. We shall define a
function G on N as follows:
(5) (VY t&N)G(t)=min {A-1[min(A-(t+1))] +113 .

Realize that for setting G(t) we find, roughly speaking, the "first" element
of A which is over t and then G(t) is the "second one with the same property".

Obviously G:FN —> FN, G eSdO . From Lemma 2 it follows that there is
i & FN such that/F.l(t)>G(t) for every te FN. Furthermore, for all neFN, we
have

(6) [n,Fi(n)]nA*ﬂ.
Let 7o be the largest element such that every less element fulfils (6); i.e.
(VY < 7)) [ .Fi()lnAxa.

Then ¥, eDef and it is infinite. Therefore a < 7 (since a<®Def N) and (6)
for a holds. Thus la,Fi(a)}nA*ﬂ. Suppose & =ﬂ{An;n6FN}, where
{An;nt FNY is a descending sequence of Sdo classes. Then (note that M s A)
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. for each i & FN we have [a,b]NA. * @, which - due to the prolongation (see
LV]) - completes the proof.

Remarks. Definition of <<FN’ Lemma 2 and the previous theorem can be
reformulated into "parametric version" and proved analogously.

It follows from compactness of equivalences of indiscernibility that
there are monads whose intersection with segments determined by points which
are not very distant, is non-empty; hence the large distance is not a neces-
sary condition.

In the next paragraph we show that each two different points of minimal
monads are very far from each other.

Theorem 2 can be generalized also in another direction, as will be shown
later. Before this we introduce a new notion and prove several assertions.

Definition. Let x¢Def{ 1 Then we shall denote the class |
N- [Cnh(Dety 4 A x)UCnh(Det oy N (N-X))

Intge3 (x) and call it an interval of x (with respect to the parameter c).

Notice that Int&d (x) is the class of all natural numbers which have
"the same position" w.r.t. Def{c} as x has.
From the definition it follows immediately:
Lemma 3. Let x,y‘Def{c} , then the followirg holds:
a) )'(GInt‘c-;(x),
b) Int‘d(x)*lnt{c;(y)@ X%y,
©) Xy Y= Intgay (O=Intg 3 (y),
d) Intgo3 OO=Crh(Int ¢o3 (x))=Cnh( g o3 (x)).

Further we shall deal with a generalization of the minimal cut (i.e. FN).

Definition. Let XEDef{c} such that (VteDef{c}) teX=(3ueX) u2t.
Then X is called a cut.

We shall work only with cuts which have not the largest element - we de-
note them ©-

Lemma 4. For each cut @ there is o¢ @ N such that 9=Def{e} Nnot ;
such a cut we denote (@ (at).

Proof. Since @ & Def& P ® is a countable class and therefore there
is an increasing sequence {xchef;c} ;1€ FN% which is cofinal with P .
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We prolong this sequence in such a way that the monotony will be preserved.
Let {y;:i & FN} be an enumeration of all elements from (Defe.y -@). Let B
be the largest index of the prolonged sequence such that xp_< Yi (for all
i&FN). Then {ﬁi;iEFN} is a non-increasing sequence. Because {ﬂi;iﬁ FN} is
countable, there exists 3 ¢ FN such that B < B for every iGFN. Put =
Xg > obviously @ (u)=Def{c} Nno

Further we shall take the following notation: Let x § Defgo3 » then we
put

Qc-‘(XﬁDef{c‘ nx,

?{C}(X)=Def{c-‘ N (N-x) .
Note that now

Intgoy (X)=N-[Cnh(@5ey () winh( Bge 3 (x))].

For an easier typing we shall use - when there is no danger of misunder-
stending - only @ instead of @, 3(x) and analogously @ instead of
Bey -

Lemma 5. Let xQDef{c} s XsSd{c} . Then the following properties are
equivalent:

1) X is cofinal with Piei®),

2) X is coincial with @, . (x),
.P{c'}

3) XhInt“‘(x)’kB.

Proof. We prove only 1) = 3); for 2) = 3) it suffices to modify this
proof for the inverse ordering.

Suppose 1) holds. Since @, @ are countable, we can enumerate them. Let

p=4a;;1€FN}, - = b, ;1€ N} From 1) it follows that
(Vjc—FN)(&Da. La;,b,DaX+p.
But“Q_Ntai,bi]ﬂnt_‘c}(x); hence 3) is valid.

For proving 3) =% 1) assume that agXnlintgeq (x) and X is not cofinal
with @ . Then there is @ € ® such that there is. no be(Xn@)-3 . Put d=
=min(X-(d+1)). Then deX and d e @ (since dsDef{c}). Moreover, a<d £
¢a(<®) - which contradicts 7 1).

The notion of the property of peints "to be very distant" introduced a-
bove will be established now for more general cuts, mamely @ , and an analo-
gue to Theorem 2 will be proved.
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Definition. Let x mek’ , a,b:e]lm&c‘ (x). We say that B is mucty gre-
ater than a with respect to ﬁcl(') iff

() (YFeSd )(F: @53 (0 — @yep (0 =>F@<h);

notation a < < Pg.3(0b ar only a<<§,m, when tihere is mo danger of confu-
siomn.
For proving the next theorem, we stell modify firstly Lemma 2.

Lesma 6. let @ be a mom-trivial cut om Defgep. Then there is a seque-
nce of non-descending Sdy o3 functions ‘fFi;j;GFN"B such that

D (VieFN) (dom(F)=N&F.: @->@).

2) Far each Sdgey fumction G: @ — @ there is F €{F ;ieFN ¥ such that
Glov) = Fk(-&) for every o & dom(G).

Proof. Let {[Ei;it Fn} be an emumeration of all ELyp Bunctioms which
transform @ into @ . Put

Fy(t)=max( LA B3(1)

When we prove that F,:@—s@ for eath i&FN, then £F, ;i€ FNHwill be the ne-
quired sequence. Suppose, by comtradfiction, #het there exists Fe -f."F.L;-i €FNE

such that F*"@ $ @ . Let ae@ amd F(a) ¢ @ . Then (note that F(a)e Defy 9
there is b €@ such that F(a)>b. From our definition of $F ;i&FNkit fol-
lows that there are j&FM amh t &a such thet 6.(t)>b.. Denote t the smallest

of elements for which G,(t)>b. Then ¥ & @ (since Tedefy . ), but (D¢ @
(because 6. (t)ﬂn and b @ @) - @ comizadiction with E‘ o .

Theores 3. Let ab @€Imt(x),. a“‘g(»)“ amd let - be’ suctr a monad’ that
¢ AImtOOHE. Then e mv Ca, b,

Proof. For provimg this assertiom it suffices to use Lemwa 6 and modi-
fy the proof of Theorem 2. Amalogpusly to (5) we choose the class A and defi-
ne tive functiam G.

We have, towever, too show that Gx PP (an anslogous. flact’ fior G in
the proof of Theorem 2 wes obvigus). Let u & @ ;. then theme exists v.»u such
thet ve A. Take iite smallest of such elements - denmote it Vo - Then V| & @ .
(AmInt(x)#B since g = A; but this implies twat A is cofinel with @ - see
Lemwma 5). Repeat now this consideration for "starting poimt" vis it brings
us to w e P But G(u)=w1 and consequertly G:. @ — gp.

When "ctecking” furthermore thve proof of Theorem 2, we obtain heme ins-
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tead of (6)
(8) (Vpep)(Vtep) [t;Fi(t)JnA#w.

If 4, is the greatest element for which (8) holds, we have that ¥, € Def-P.
Hence a<y, (since a<@) and thus {a,Fi(a)]nA#ﬂ. For completing this proof
it is enough to use the same arguments as in the proof of Theorem 2.

Remark. We know that if *®Def N=@, then FN=DefnN. When, however,
®pef N#@,a natural question arises: How do all elements under @pef N and
reasonably definable look like? Such sort of considerations has brought us to
the following definition.

Definition. Let agDef;.j . We put
Detf 2% (ah)= ix;(IF)(FeSagyk Fip — o & xF(a);
we write here briefly only @ instead of @4} (a).
[

When we compare this definition with the one of a<<9 b, we obtain imme-
diately that

a<<,b=Deff *® ({ab)sb.
ict

s ®

The next theorem asserts that under the same assumptions as in Theorem 3 -

there exists even an infinite set inside @n fa,b). At first we prove, how-
ever, an auxiliary result.

Lemma 7. Let a<<@ b, de [a,bl. Then either a<<_  d or d«@ b.

®

Proof. Evidently it suffices to verify that
[ dnd P —>P | vl 4
d<Defi oy ({al)=> Defl 3 D& Def {ah),

Let Fe Sdenq , F: @ —>@© . We have to show that there exists G&Sd .3, G:
:@—> @ such that G(a)z F(d). It follows from Lemma 6 that there are non-
descending Sd{e-, functions Gl, G2 such that d‘Gl(a) and F(d)£ Gz(d). Then,
however, G,(d) &G,(G,(a)). Put now G=G, °G;.

Theorem 4. Let a,b & Int(x), a << x) D and @ be such a monad that
@ NInt(x)%@ (hence wm Int(x)). Then there is m¢Fin such that m & @n [a,b).

. Proof. The monad @ is a ar-class and therefore it is revealed. Since
[a,b} is a set, @ n [a,b] is revealed, too. Hence it is sufficient to prove
that there is an infinite countable class C such that Cs m n [a,bl. For mak-
ing the proof shorter we show only that Cg @ n{x;a<x<bl. We shall const-
ruct the class C by means of Lemma 7 and Theorem 3.
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Y
Let a,6 g N fx;a<x<b}; we have that a<< (x)%1 OF 8 <<p(y)b- Sup-
pose e.g. that a<<g @(x )a and apply again the above mentwned assertwn etc.
Thus we obtain a cauntable sequence {al,lcFN’iof elements from
w Nix;a<c x<bt. Put C= {al,u FNE.

Remarks. When substituting P(x) by FN in Theorem 4, we have an analog-
ous generalization of Theorem 2.

Theorems 3 and 4 can be similarly proved also for their parametrical ver-
sion.

The following theorem speaks about monads generally, but its main signi-
ficance will not become evident before studying monads of indiscernibles. In
the forthcoming paper we show that if Ind is a monad of indiscernibles for
the language L and t € Ind then t nInd is a monad of indiscernibles for L‘ﬂ_-
Theorem 5 implies that the assumption t €Ind is a substantial one.

Theorem 5. Let g4 be a monad. Then there are c, x such that
: . 2
M—f\lnt&:‘(x) is not a monad in T

Proof. Since M & Fin, there isc s @ which is infinite, too. Then
( ‘%’ is compact) there are x,yec, xsy such that x ‘sg-‘ y. Suppose x<y. For
proving Theorem 5 it suffices to find te w nIntic‘(x) for which\
a(t 4:0"9 x) holds. Denote the smallest e.lement of c which is greater (in <)
than x by z. Obviously z € m (since ze&c). Moreover, chnt{c’(x); for this
realize that x,y cInt(cl(x)=Cnh(Int{c-}(x)) - see Lemma 3. Hence
ze M nInt{c}(x).

We show that ~1(z ‘%’ (x). Suppose that z ‘%,‘ x. From the construction
of z it follows that z is definable from x and c. This fact implies the exis-
tence of Sd“c* function F such that F(x)=z. Then, however, F(x) &%} x which
resulted in F(x)=x (see Theorem 1 from [(-K)) and hence z=x - a contradiction
with the definition of z. For completing the proof it is enough to put z=t.

§ 2. In the first theorem of this paragraph we prove that there exists
a minimal monad close over FN which, moreover, possesses the following proper-
ty: each set-definable function (with parameter c) either maps FN into FN or
transfers this monad over an infinitely large definable element.

At first we shall formulate an assertion which is an immediate consequ-
ence of Lemma 5.

Lemma B. Let xé&Defgcy be not cofinal with FN. Then there is k FN such
- 699 -



that (x-k)AFN=§.

Theorem 6. There exists a minima) monad @ in the class X={et;FN<e <
< et N} such that for every Fe Sdy ), F:N—>N, there is XeSdy q,
Z 2 @, such that either (i) or (n) takes place, where
(i) FPrE :FN—> FN,
(i) F*EnFng.

Proof. For ®Def c]H we have X=N-FN and c&Def. Then the assertion is
valid - see [{-X), Theorem 11, and realize that (i) is true for each Fesd,.

Assume further "Daf cyN*8. ¥e shall construct a descending sequence
{xn,nGFN'i with the follmmu properties:
1) (YneFN)x «Def, Y
2) (VnGFN)xn is cofinal with FN;
3} (V¥YeSd, ) [YSN-D(3n§FM)(xnszxnsﬂ-\‘)];
&) Let{F ;ntFN! be an erwmeration of all Sd‘c' functions. Then F_ is eit-
her crrshnt or a one-one mepping on x el (for all neFN);
S) If {yn,ntﬂt! is an erumeration of "nef*c‘bl then x ., ey, (for allne

6) For each F € {F ;nGFN} either (i) or (ii) is true when we put T,

The sets x will be constructed by induction based on n.
At first take, arbitrerily, x,& ”M‘C;N; denote ¥}=x;hy,, where y; is
the first element of our enumeration of "’Def{c‘N. We shall investigate S1=Yln
ndm(F,), where F) is the first element of {F :n&FN}.

It ﬁ‘l is not cotinal with FN, put x,=%,-dom(F,). Obviously x, possesses
each required property except 3), which will be examined later for all possi-
ble cases all at ance.

For f.‘] being cofinal with FN we shall examine the system of classes of
decomposition of ?1 accarding to the e -ivalence aub-Fl(a)=F1(b). There are
two possibilities:

a) (3 terng(F))F] l'iﬂnﬂ is cofinal with FN,

b) the negation of a) m.'lds.

In the case a) take te mng(F)) such that F'"{tin ) is cofinal with FN.
Then evidently teDef ccy (Teslize for it that F)€Sd, 4 and F] FREDef A).

Put xl.s‘l-mnx exupt 3) and 6) all conditions are valid.

Assume further b). Then we can take x1 as the set of all smellest elem-
ents from classes of decomposition of %) (sccording ta F)). @bviously 1), &)
and 5) hald. We prove now 2) fer x . Suppose the contrary Then there is k ¢FN
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such that (X, -k)NFN=§ - see Lenma 8. Put t-min(¥,+); then & & FN. Let fu-
rther w contain all classes of decomposition of )?1 (over F) such that their
smallest elements belong to ';':'l—k. Then for each z&w we have z Z & and hence
w is not cofinal with FN. The class ?ru has, however, only a finite number
of elements from the decomposition. Thus at least one of them must be cofinal
with FN - a contradiction (we suppose that none is).

Now we shall construct x,. If F is constant on’i‘l, it suffices to put
2:;‘{1 and all conditions except 3) are valid for x,. Assume further that F,
is one-one on x - If FY X "l is not cofinal \uth FN, there is k&€ FN such that
G X L KINFN= B see Lemna 8. Put x,=%) -r Lug; it is evident that 1), 2), &),

5) are true. For 6) realize that now (11) td(&s'place.

Suppose F} X, is cofinal with FN. Without loss of generality we may thirk
that F,(t)> t (otherwise we shall take Fl+l). The set x, will be constructed
by indu:tion; we demand, at the same time, xzsi'l. Let t; be such an element
that F..t,) is minimal in F} “'1. Obviously t,& FN (cofinality condition) and
Fl (®)-(t;+1)) is cofinal with FN. Let t, be such an element that F)(t,) is
minimal in FJ(X;-(t;+1)), etc. This set-definable construction will go until
a certain number m & N. When we put now x,= it ;7e 9}, we'have that 1),
2), 4) and 5) are fulfilled. Moreover -om our cunstmctmn of Xos it fol-
lows that (i) comes (if t; & x, AFN, then i€FN and therefore Fl(ti)GFN). Hen-
ce 6) is also true for Xy

Analogously we can construct X3 from Xo» X from xy, etc. The obtained
sequence {xn; ne FNY possesses all required properties except 3), which we
prove now. Let YeSd{c.‘, YSN and let X, be its characteristic function.Then
1Y=Fk, where Fk is the function from our erwsmeration which is on Xl either
one-one or constant. Since dom(y )¢ Fin and ng(x )= 40,1}, ¥y has to be
constant on Xieel If for each te X, We have 1Y(t)=0, then "l«l‘"‘v; in
the case '{Y(t)=1 we obtain X SV The sequence {x;n&FN} fulfils therefo-
re 3) and hence ﬂ(xn;n&FN! is a monad - let us denote it @ . Owing to &)
¢ is a minimal monad.

For proving @ & X it suffices to show that X n @ #@. Assume the cont-
rary; let ueX, t® & . Then Int c}(U)nIn ‘(t)-ll Construct p(c}(u) and
P{cl(t)' Evidently ?{c}(“) =FN and gb{c}(t)*FN which implies the existence
of & & ®Defy N such that ec €@ 4(t). Then ec <t, but &c < (&, therefore
there is k& FN for which o¢ < X -2 contradiction with 2).

For completing the proof it remains to show that for each Fe Sd{c}’ F
:N—» N, there is 2(5&1“:‘, % 2w , such that either (i) or (ii) takes pla-
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ce. Obviously it is enough to find F € §F ;n € FN% for which F=l =F, and put
z el

Remark. In a forthcoming paper we prove the consistency of the existen-

ce of a minimal monad @ in X such that for a certain Sd function there is
o e 5d,, % 2 @, with properties (i) or (ii).

There is a question: For what t there exists a minimal monad inside

Int c&(t)' A partial solution gives the following theorem, which is a simple
consequence of Theorem 6.

Theorem 7. Let t¢ Defg.y-Let there exist e € X= {9;FN< g < ®Def, N}

tcl
and a non-descending Sd{ 1 functlon F:N-=» N such that F(et) eInt{ }(t)

Then there is a minimal monad » & Int{c}(t)

Proof. Firstly we show that we can assume dom(F)=N. If dom(F)=m, denote
o’ =max(m) and for all t >d put F(1)=F(d"). Let further dom(F) be a proper

class. If F is not defined in some o, put F(d")=F(3), where 3 is the smal-
lest of all elements from dom(F) which are larger than .

Suppose now dom(F)=N. Evidently, F remains to be non-descending. This,
however, implies that F" Int{c‘(oc)ﬂnt{c}(F(d)). Let @ be a minimal monad
in X - it exists due to Theorem 6. Denote »=F"@ . Then » QInt{C}(t) (if
8 € @ then Int{c}((&)-lnt{cx(m)-x and F(ﬁ)eInt{c (t)). The monad » can-
not be a trivial one, since t#Def{ 1 and hence Int{ ‘(t) cannot be a single-
ton. As @ ‘is minimal, F has to be one-one on 4 and hence ? is minimal, too.

Next four theorems show an analogue of one property of classes of indis-
cernibles for minimal monads.

Theorem B.- Let (4 be a minimal monad in {%! which is a semiset. Let

FeSd{c‘ be such a function that F(t)<t for some (and hence every) t € @ -
Then either 1) or 2) is valid, where

1 (Vuep)(uet=b ucf(t));
2) (3diUEf{C})(Vteﬁ) F(d)<t<d. - '

Proof. Since F is defined on the minimal monad wm
Or oOne-one on & -

Suppose, at first, that F is constant on @ . Denote F(t) efortae 45
evidently esDef{C} . Construct F'l“ {e}. Obviously F~ 1 -ie}iSd{c} and

- "
@ SF 1" § e¥. Because (w is a semiset, there exists ¥¢Def ic such that

, F is either constant

§ > . Put dnax((F" fePnF. Since e,5aDety y , FeSdy; and F(d)=e,
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we have d&Defy 4 . Moreover, 4§ & (since € >w), @& F-1"ted, therefore
d » & . But F(d)=e=F(t)<t for each t € @ . Hence F(d)<t<d and 2) is
fulfilled.

Let further F be one-one on (4 . We shall assume = 1)& 12). It foll-
ows from 712) that there exists t & @ such that F™1 g o (1) & @gcy(D). Let

us fix such t. Put k:min(dom(F"l)) and define for each uZk a function H as
follows:

H(u)=max(F_1"(u+l)u fu+1}).

Obviously He Sd{c} is a non-descending function and H(u)>u for each uZk.
Define further a function G as follows:

G(0)=k & G( +1)=H(G(4)),

i.e. G(y) is the y-th iteration of H when starting from k. Finally, put for
each uZk

Flu)=max(§ 9 ;6(y)< ud).

Then F & Sd{c} and F is also a non-descending function. Denote e =F(t). We
would like to prove that o¢ & Def{C} . In accordance with our assumption = 1)
we have that there is v & m such that v<t and F(t)&v. If we prove that
l?(t)=?(v), we shall know that also F(v)= & and since A is a minimal monad,

this will imply that F is constant on @ and therefore F(1)= oc € Def{C} .

Let us prove F(t)=F(v). Since T is a non-descending function, the inequ-
ality vt implies F(v)¢ F(t)= e¢ . For proving the converse inequality we
shall show firstly that G(ee )< v..Suppose G(ex )2 v. From the construction of
o¢ it follows that G(e¢)<t and G(ec+1)Z t. Denote F(v)= f8 . Then G(o¢+1)2
Zt implies G(f3+1)Zv. But G(e-1)< v (since G(u—l)<H_1(t)). Thus & > 32
Zo-1 and hence f3 =o¢ -1. This is, however, a contradiction, since t, v be-
long to the same monad. Therefore G(oc )< v, which implies F(v) 2 e =F(t).
Hence F(v)=F(t)= e .

Since o6 € Uef{c} , also G(ec)e Def{ﬂ and at the same time G(oe)<'t.
Obviously G(e¢ +1)eDef{c , too, and from the definition of F we have

G(ot+1) > t. Remember now that G(q.+1)=H(G(ao))' and the fact that for H it is
true Hn?‘ ci(t) [ @{c&(t) - see Lemma 6. We have proved here, however, that

H does mRot fulfil this inclusion - a contradiction.

Remark. Note that for the classes of indiscernibles 2) from the previous
theorem may be strengthened to the assertion "F is constant". In the forth-
coming paper we prove that it is consistent with AST that there exists a
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mimimal momad g for shich 2) cannot be substituted by "F is constant on @ “.
hiow we shall present several modifications of Theorem .

Mhoorem 9. et e be a minimal monad in ‘%* which is a proper class.
MF‘%‘ e such a function that F(t)<t for every t & @ . Then either
1) or 2) is valid, where
1) (Vue gedu<t mpu<F(t));

2) F is constamt on e

Preof. Suppose that £ is one-one on @& . In this case realize that the
condition 2) from Theorem 8 canmot come (since Defg .y < & and thus for each
F;%‘ angd each t &g P@{c}(” ép{d(t) tolds - see Lewma &) and pro-
ceed analogously as im the proof of this theorem.

Theerem 10. et g be a minimal monad in 3 which is a semiset. Let
fesdg 4 e such a function that F(t)>t for one (and hence every) t € (& .
Then either 1) or 2) is valid, where

1) (Vv & @){v>t=p v>F(L));
2) (3delef  )(Vte @) d<t<Fld).

Proof. Let F be constant on @ . Denote F(t)=e for each t ¢ @ . Const-

ruct L fel; then this class is a non-ewpty Sdgc‘ class (since eéﬁef{c‘

and FeSdg ). Put demin(F ! fel). Then deDef; s . d<t and F(d)=F(t)>t -
2) is valid.

Suppose further that F is one-one on g4 . Recall that also F! is one-one
on @ and Y-=F*@ is a minimal monad in {%3 . Moreover, Coh(ge)=Coh(» ),
since F(t) and t are "likewise" situated with respect to Def{c} 3 if
Ity 4 (F())4 Intg 1(t), then 2) holds. Now apply Theorem 8 on », F™! and F(t).

Theorem 11. Let a be a minimal monad in &%; which is a proper class.
Let Fe Sd{c} be such a function that F(t)> t for every t ¢ . Then

(Vv e @)(vat=pv>F(t)).

Proof. Note, at first, that F cannot be constant on g (in the opposite
case we have F(t)ﬁDet{c) for t & m, which is in contradiction with
t>0e£{c‘ and F(t)>t). .

Hence F is one-one on @ . Put G=F ~. Then G is also one-one on M and
G(t)<t for each t @ @ . Denote »=F"@ ; then P is a minimal monad which
is a proper class. Now apply Theorem 9 on G and ¥ .
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Especially, let us stress one consequence of the previous theorems for
minimal monads lying close behind FN.

Theorem 12. Let p<*Def N be a minimal monad, x,y &« (4 and x<y. Then
FN->FN
Def{c‘ ExP<y.
Proof. Suppose, at first, that "Defic‘N=B. Then ¢ «Def and therefore
& is a proper class. In this case it is sufficient to use Theorem 11.

If ”Def{ ct N+ @, we shall apply Theorem 10. Since we work with a func-
tion which maps FN into FN, the case 2) from this theorem cannot set in, the
case 1) is exactly what we want to prove here.

The last theorem which can be also reformulated into a parametric versi-
on, and its corollary describe several eguivalent expressions of the. proper-
ty "to be very far one from the other".

Theorem 13. Let oc & X={ % ,FN<n< ®Def NJ. Then for each 9~ the fol-
lowing are equivalent:
(1) &< 73
(1) (ABeXN(B< T &ox<Tefyqy N).

Proof. (i) = (ii). Let w be the monad from Theorem &. In accordance
with Theorem 4 there are x,y € ¢ such that o <x<y< 3 (take x,y€m). We
would like to prove that for each Fe 5d,, F:N —> N, we obtain F(y)» x. From
the construction of @ we know that there is ¥ & Sd such that @ & X and
F'"ZAFN=@ or FI Z :FN~>FN. In the first case we have that min(F"2> FN and
min(F'Z) & Def. This implies min(F'Z)>X and therefore F"ZsX. Since ye m € X
and F(y) > X, we obtain F(y)» x. If F}:FN —» FN, we apply Theorem 8. The as-
sertion 2) from this theorem is now excluded, hence 1) has to take place. Put

now f=y; we have then "’Det{“

(ii) >=» (i). We have to prove now that for each FeSd,, F:FN —>FN we
have F(o) « 4 . In accordance with Lemma 6 we can suppose that F is a non-
descending function. Pyt B(t)=min(F'1“£u}), where u is the largest element
from rng(F) which is smaller or equal to t. Then G is also non-descending. We
have G(ﬂ)&ﬂef‘m -and, since € X, at the same time G(@ ) §FN (otherwise
F is constant). Hence G(B) >« and F(ee) & R <o«

>X > o o
}

Corollary. For « <8 , & €X={7 ;FN<~< ®ef N},the following are
equivalent:
1) &<<py (33

N
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2)
3)

4)
5)
6)
7

(3eud)we EA(FN)< (), where e.u.A means an endomorphic universe A;
(Je.u.s.A) (0 6ExA(FN)¢ @), where e.u.s.A means e.u. with standard ex-
tension;

(Fe.w.A)(Ig£B ), FeE (FN) & eEAfy] (FN))3

(3ewws A3y =<3 )Xo, y6 ExAgFN)& % SE)ry] (FN))3

Ay (x=<ye (S&ar.<°°0ef{,r; N);

(Je.uA)(VIGA)(L"FNGFN = f(ex)<3).

Proof - see LC-T3.
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