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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,4 (1987) 

ON FUNCTIONS PRESERVING ALMOST RADIALITY AND THEIR 
RELATIONS TO RADIAL AND PSEUDO-RADIAL SPACES. 

G. D. Dimov, R. Isler and G. Tironi (*) 

Abstract: Some questions asked by A.V. Arhangel'skii, concerning pseudo-
radial and almost radial spaces, are examined in this paper. It is shown that 
the Alexandroff compactification of the space constructed by Ostaszewski 
under Jensen's combinatorial principle is a compact pseudo-radial, not 
almost radial space. Three classes of mappings preserving almost radiality 
are found and relations between them and one other class of mappings 
closely connected with the class of almost radial spaces and lying between 
the classes of pseudo-open maps and quotient maps are fully examined. 
Also the relations between these four classes of mappings and the classes of 
pseudo-radial, almost radial and radial spaces are studied. In particular, it 
is shown that almost radiality is not preserved by pseudo-open or even 
open mappings. Some new generalizations of sequential and Frechet spaces 
are introduced. Finally relations between closed mappings and some of the 
found mappings, preserving almost radiality, are considered. 
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1. Introduction. The definitions of ail notions mentioned in this section, if 
not explicitly given, can be found in section 2 of this paper or in [E], 

In [AIT1] A. V. Arhangel'skii, R. Isler and G. Tironi introduced a new 
class of spaces, the class of almost radial spaces, which lies between the 
classes of radial and pseudo-radial spaces. They proved that a topological 
T\ space is sequential if and only if it is almost radial and has countable 
tightness. This result gives a complete answer to the question of A. V. 
Arhangel'skii from [A1], question 3} if every pseudo-radial space with 
countable tightness is sequential. Let us recall that I. Jane, P. R. Meyer, P. 
Simon and R. G. Wilson in [JMSW] constructed three examples of non­
sequential pseudo-radial spaces with countable tightness: one of them is T2 
but CH is required in its construction (it is based on an example given in 
[JKR]); the other two are Tc spaces (i.e. every convergent chain-net has a 
unique limit), so they are T\ but not T2. It was a question of Arhangel'skii 
if there exists a regular (normal, compact) pseudo-radial space with 
countable tightness which is not almost radial. Recently examples were 
produced of Hausdorff spaces with countable tightness, which are pseudo-
radial but non-sequential (and hence not almost radial). One such example 
is given by P. Simon and G. Tironi [ST]. 

Independently a similar example was given by I. Juhasz and W. Weiss 
[JW]. These examples can be easily shown to be even normal. As far as we 
know till now no such compact space is available. Some other questions 
were raised in discussions with A. V. Arhangel'skii about almost radial 
spaces: first, if every pseudo-radial compact space is almost radial and 
second, which classes of mappings preserve almost radiality; in particular if 
almost radiality is preserved under quotient, pseudo-open or open 
mappings. 

In this paper we answer these questions. First of all we remark that 
the Aiexandroff one-point compactification of the space Q 0 constructed by 
A. S. Ostaszewski under Jensen's Combinatorial Principle 0 in [O] gives an 
example of a compact Hausdorff pseudo-radial space with countable 
tightness which is not almost radial (and consequently is not sequential), 
answering in such a way the first two questions. Then we construct an 
example of an onto open mapping f : X -> Y, such that X is almost radial and 
Hausdorff, Y is T2 but not almost radial. We describe also the "largest" 
subclass of the class of quotient mappings which preserves almost radiality 
(the elements of this class are called qti-maps) and define also two proper 
subclasses of it, the classes of qt2-maps and. of qt3-maps. The class of 
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almost radial spaces is precisely the image of the class of all orderable 
spaces under qtj-maps, for every fixed i « 1, 2, 3. These classes of mappings 
are closed with respect to the composition of functions. 

Let us recall that in [A2] A. V. Arhangel'skii characterized Fr^chet 
spaces among Hausdorff spaces as pseudo-open images of metric spaces 
and in [F] S. P. Franklin proved that sequential spaces, and only these, are 
quotients of metric spaces. Analogous characterization of the class of radial 
and pseudo-radial spaces were given by H. Herrlich in [H]. He proved that 
pseudo-radial spaces and only these are quotients of orderable spaces and 
that radial spaces and only these are pseudo-open images of orderable 
spaces (this last result is not explicitly formulated in [H], but, as was 
pointed out in [A3], the proof is contained in Herrlich's paper). Since the 
class of almost-radial spaces contains the class of radial spaces and is 
contained in the pseudo-radial ones, one might expect, in the light of the 
results cited above, that there exists some class 7 of mappings which lies 
between the classes of quotient and pseudo-open mappings and is such that 
almost radial spaces, and only these, are images of the orderable spaces 
under mappings from 7. From the mentioned example of an open mapping 
not preserving almost radiality, we obtain immediately that such a class 7 
cannot be closed with respect to the composition of maps. Such class of 
maps exists, it is here described, and its elements are called qt-maps. The 
relations between qt-maps and qtf-maps (i = 1,2,3) are studied. In 
particular, it is shown that if f : X -• Y is an qt-map and X is radial, then f is 
a qt2*map, but even when the domain X is radial, these two classes do not 

coincide (see example 3.27). 
It is true, however, that if f : X -* Y is a qt3-map and X is radial, then f 

is a qt-map, but the converse is not true even when f is a perfect map (see 
example 3.56). 

Some other properties of qt-maps related to the preservation of the 
primitive tightness are studied (see 3.28 - 3.32). 

In [A2] Arhangel'skii showed that if f : X ~> Y is a quotient map and Y 
is a T2 Frechet space, then f is a pseudo-open map (see also [F] and [E]). In 
particular, every quotient map between two Frechet spaces is pseudo-open. 
It is natural to ask if some analogous result can be proved when X and Y 
are radial spaces. Let us note that every quotient map between two almost 
radial spaces must be a qt| -map. But in the case of radial spaces the 
situation is more complicated. We give an example of a qt-map between 
two orderable spaces (and consequently radial), which is not pseudo-open 
(see 3.45). Then we prove that if f : X -> Y is a quotient map between two 
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radial spaces such that t(X) <. Xj and Y is Hausdorff, then f is a qt-map. It is 
impossible to drop here the requirement that t(X) <, Xi. In fact an example 
is given of a quotient map f : X -> Y such that X is orderable, t(X) = X 2 , Y is 

radial Hausdorff, but f is not qt. However it is easy to see that when the 
codomain of a quotient map is a radial space, then the map must be qt2. 

A class of spaces, called gF-spaces, is introduced, such that every 
quotient map from some topological space onto a gF-space is pseudo-open. 
Hausdorff Frechet spaces are a proper subclass of gF-spaces, but not all 
orderable (even compact) spaces are gF-spaces. 

Finally some simple observations concerning the relations between 
closed and qt3-maps are made. Some of the results included here were 

announced (without proofs) in [DIT]. 

2. Old and new definitions. Preliminary results and observations. 
In this paper all spaces are supposed to be T 1 . Our standard notations 

and notions are as in [E], but tightness is denoted by t(X). 
Pseudo-radial or chain-net spaces as well as radial or Frechet chain-

net spaces were introduced by Herrlich in [H]. The same class of topological 
spaces was then considered by P. Meyer, S. Mr6wka, M. Rajagopalan, K. 
Malliha Devi, T. Soundararajan in [DMR] and in [MRS], and systematically 
examined by A. V. Arhangel'skii in [Al] and [A3]. Some questions presented 
there stimulated the publication of other papers [JMSW], [Tl], [FIT], [AIT1], 
[IT], [T2], In [AIT2] some new cardinal invariants are introduced and their 
properties are studied in the class of chain-net spaces and in [AIT1] the 
notion of almost radial space is introduced and studied. 

Let us first recall the basic equivalent definitions of pseudo-radial, 
radial and almost radial spaces. 

2.1. Definition. For any cardinal number X a X-sequence S = ( x a ) a<\ 

in a topological space X is a function from X into X. The set of all limit points 

of S will be denoted by lim S. 

2.2. Definition. [H] A topological space X is called pseudo-radial or chain-
net if for every non-closed subset A of X there are a point x € A \ A and a 
X-sequence (x a ) a <x in A converging to x. 

2.3. Proposition. [Al] . A topological space X is pseudo-radial if and only if 
for every non closed subset A of X there exist a point x e A \ A and a family 
?x of subsets of X such that Tx is linearly ordered by inclusion and: 
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i) P r. A # 0 for every P in Tx ; 
ii) for every neighbourhood U of x there is P in Tx such that P c U ; 
iii) 0 ? x = {x} . 

2.4. Definition. [A1], [AIT1]. A subset B of a topological space X is said to 
be topologically directed (in X) if there exists a point x in X such that for 
every neighbourhood U of x, I B \ U I < I B I . Such a point x will be called an 
end of B. If X is a Hausdorff space then there is only one end of B. The set of 
all end points of a subset B of X will be denoted by end B. So B is 
topologically directed if and only if end B * 0 . 

2.5. Proposition. [A1] X is a pseudo-radial space if and only if for every 
non-closed subset A of X there exist a point x e A \ A and a subset Bx of A 
which is topologically directed in X, has regular cardinality and is such that 
x e end Bx . 

2.6. Definition. [H] A topological space X is called a radial or Frexhet 
chain-net space if for every A, subset of X, and every x € A there exist a 
X-sequence in A converging to x. 

2.7. Remark. [Al] If in Proposition 2.3 and in Proposition 2.5 we 
substitute " there exist a point x € A \ A and " with " and for every point x 
e A \ A there exists " we obtain two different characterizations of radial 
spaces. 

2.8. Definition. [AIT1] Let X be a topological space and let be given a 
subset A and a point x of X. The point x is said to be a target point for A if 
for any subset B of A the following assertions are equivalent: 
(i) x'eB; 
(ii) IB I = IAI . 
This property will be denoted by x (tar) A. 

2.9.Definition. [AIT1] A topological space X is called almost radial if for 
every non closed subset A of X there exist a subset B of A and a point x € A 
\ A such that I B I is a regular cardinal number and x (tar) B. 

2.10. Definition. Let S = ( x a ) a < x be a X-sequence of points of a 
topological space X and x a point of the space. The pair (S,x) is called a &-
sequence if X is an initial and regular ordinal number, x e lim S, x a * xp 
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for a # p , a , p < X , and x * {x a € S : a < p } for every P < X . If A is 

a subset of X and S c A, we shall say that (S,x) is a tX-sequence in A. It will 

be convenient to consider every one-point sequence as a tl-sequence. 

2.11. Proposition. [AIT1] X is almost radial if and only if for every non 
closed subset A of X there exist a point x € A \ A and a X-sequence S of 
points of A, such that (S,x) is a tX-sequence. 

2.12. Facts. [AITi] Let X be a topological space and A c X, x € X. 
a) If I A I *> 1, then x (tar) A implies x € A \ A. 
b) If A is infinite and x (tar) A, then x € end A. 

c) If X is a Hausdorff space and x, y are target points for A, then x = y. 

2.13. Theorem. [AITI] The following hold: 
a) Every radial space is almost radial. 
b) Every almost radial space is pseudo-radial. 
c) Every sequential space is almost radial. 

2.14. Theorem. [AITI] A space X is sequential if and only if it is almost 
radial and its tightness is countable. 

2.15. Notations. Let X be a topological space and A c X. We shall use the 

following notations: 
Lim A = { x € X : there exists a X-sequence S of points in A, such that 

r' xelimS}; 
t-Lim A = { x e X : there exists a X-sequence S of points in A, such 
that (S,x) is a tX-sequence}. 

2.16. Using these notations we can reformulate the definitions 2.2, 2.6 and 
2.9 as follows (recall that the original Herrlich's definitions of pseudo-radial 
and radial spaces [H] were in fact as in the proposition below): 

Proposition. [H] The following hold: 
a) A topological space X is pseudo-radial if and only if every subset A 
of X, for which Lim A c A holds, is closed in X. 
b) A topological space X is radial if and only if for every subset A of X, 
Lim A =- A holds. 
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2.17. It is obvious that the following proposition is true: 

Proposit ion. A topological space X is almost radial if and only if every 
subset A of X, for which t-Lim A c A holds, is closed in X. 

2.18. Let us mention that in [AIT1] the following proposition is in fact 
proved: 

Proposition. A topological space X is rat1 i if and only if for every subset 
A of X t-Lim A = A holds. 

2.19. Definition. [J], [A4]. Let X be a topological space, A a subset of X and 
x e A \ A. The primitive tightness of x with respect to A is the least infinite 
cardinality of a set B c A such that x e B; it is denoted by pt(x,A). (Writing 
"pt(x,A)u we shall always assume that x € A \ A holds.) 

2.20. Definition. Let X be a topological space, A, B disjoint subsets of X 
such that An B * 0 . The primitive tightness of A with respect to B is the 
following cardinal number: pt(A,B) = min{ pt(a,B) : a e An B ). 
(Writing pt(A,B) we shall always assume that An B = 0 and An B * 0 

hold.) 

2.21. Remark. Let us first recall the following definition given by R. 
Engelking in [E]: 

The tightness of a set A in a topological space % is the smallest infinite 
cardinal number t with the property that if An C * 0 , then there exist C0 

C C such that I C0 I <> % and An C 0 * 0 . This cardinal number is denoted 
by % (A,X). 

Let now An X \ A * 0 . Then it is easy to see that the following 

equalities are true: 
x (A,X) = sup{ pt(A,C) : C c X, C n A * 0, C n A = 0} = 
= sup{ inf{ IBI : B c C, B n A * 0 } : C c X \ A , C n A * 0 }. 
From the Definition 2.20 we obtain immediately that if An *X \ A # 

0 , then pt(A,X\ A) = inf{ sup{ I B I . B c C , B n A * 0 } : C c X \ A , 
C n A * 0 } . 

The comparison of these two formulas shows that while pt(A,X \ A) 
can be defined as inf sup of some family of sets, t (A,X) in turn can be 
defined as sup inf of the same family of sets. 
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2.22. In order to prove one simple result on the cardinal invariant pt(A,B) 
in radial spaces, we shall recall some definitions and some related results. 

Definition. [AIT1] Let X be a topological space and x a point of it. The 
cardinal number 

qx(x,X) = min{ t : for any A c X such that x e A \ A there is a family 
Y of subsets of A such that I Y ' -* t , x «. P for any P in Y » but x e U y ) 
is called the quasi-character of X at x. The quasi-character of X is the 
cardinal number qx (X) = sup{ qx(x,X) : x e X}. 

2.23. Theorem. [AIT1] For every almost radial space X the equality qx(X) 

= t(X) holds. 

2.24. Definition. [AIT2] Let X be a topological space and x € A \ A. The 
cardinal number 

pqx(x,A) = min{ t : there exists a family Y of subsets of A such that 
I Y I -~ t , x e. P for any P in Y » but x e U y } 

is called primitive quasi-character of the point x with respect to the subset 

A. 

2.25. Theorem. [AIT2] The following hold: 
a) qx(x,X) = sup{ pqx(x,A) : A C X and x € A \ A }; 
b) If X is radial then pqx(x,A) = pt(x,A) for every subset A of X and 
every x e A \ A; consequently qx(x,X) = t(x,X) for every x in X. 

2.26. Definition. Let X be a topological space, A and B disjoint subsets of X 
such that An B # 0 . The cardinal number 

pqx(A,B) = min{ I Y ' • Y c exp B, P n A = 0 for every P in Y, but 
A n UY * 0 } 

(where exp B is the set of all subsets of B) is called the primitive quasi-
characfer of the spfrsej A wjtfr respect to the s^foet B. 

2.27. Proposition. Let X be a radial space, A a closed subset of it and B a 
subset of X such that A n B # 0 a n d A n B = 0 . Then pqx(A,B) = pt(A,B). 
Proof. Let Y = X/A, i.e. Y is the quotient space of X corresponding to the 
decomposition of X into the set A and the one-point sets {x}, when x e.A. 
Then the natural mapping q : X —> Y is a closed map and consequently Y is a 
radial space. Then, from 2.25 and the corresponding definitions we obtain 
thatpqx(A,B) = pqX(q(A),q(B)) = pt(q(A),q(B)) = pt(A,B). 
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2.28. Definition. A continuous map f : X -> Y is called a t i -map if for 
every A C Y, t-Lim A C A implies t-Lim f-*A C HA. If, in addition, f is a 
quotient map, then it is called a qt i -map (let us recall that by definition 
(see [E]) every quotient map is an onto map). 

2.29 Definition. A continuous map f : X -> Y is called a t?-map if for 
every x € X and every A c X, such that x (tar) A with I A I regular, there 
exists a subset B C f(A), such that I B I is regular and f(x) (tar) B. If, in 
addition, f is a quotient map, then f is called qt^-map. 

2.30. It is easy to prove the following proposition: 

Propos i t ion. A continuous map f : X -> Y is a t2-map if and only if for 
every tX.-sequence (S,x) in X, there is a tX'-sequence (S',f(x)) in the subset 
f(S) of Y. 

2.31. Definition. A continuous map f : X —> Y is called a U-map if for 
every tA.-sequence (S,x) in X the X-sequence f(S) contains a cofinal V-
sequence S', such that (S',f(x)) is a t X'-sequence in Y. If, in addition, f is a 
quotient map, then f is called a qta-map. 

2.32. Definition. A continuous map f : X ~> Y is called a t-map if for every 
subset A of Y and every x e f-*A\ f-*A there exists a subset B of A such 
that f(x) € B, I B I = pt(f(x),B) and f-*f(x) n FVB~ * 0 . If, in addition, f is a 
quotient map, then f is called a qt-map. 

2.33. Definitions. 
a) A topological space X is called a gF-space if for every subset A of X 

and for every x e A \ A, there exists a subset B of A such that {x} = B \ B. 
b) A topological space X is called a gs-space if for every non closed 

subset A of X there exist a point x e A \ A and a subset B of A such that {x} 
= I \ B. 

2.34. Example. [ST] There exists a first countable, Hausdorff, locally 
countable, locally compact space Z with cardinality 2 * ° such that if Y = Z u 
{p} with the neighbourhood base at p in Y consisting of all sets of the form 
{p} u (Z \A), where A c Z, A is closed in Z and I A I ^ Xo , then Y is a 
pseudo-radial, Hausdorff, normal, non-sequential space with countable 
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tightness. Let us remark also that in the space Z there exists a countable set 

A with I A I = 2**°. 

2.35. Remark. The results listed in this section will be used continuously 
and often without explicit reference in the next section. 

3. Theorems and examples. 
3.1. Proposition. Let X be a locally compact, Hausdorff, locally countable, 
hereditarily separable, countably compact, non-compact, first-countable 
space. Then the Alexandroff one-point compactification aX of X is a 
Hausdorff compact pseudo-radial, which is not almost radial space and has 
countable tightness. 
Proof. It is clear that aX « X u {p} is a Hausdorff compact space, which is 
hereditarily separable and hence t(aX) = K0. Let us now show that aX is 
pseudo-radial. Since X is first-countable it is enough to consider sets A in 
aX, such that {p} = A~ a X \ A. Hence A is a closed subset of X. But then the 
cardinality of A is greater than K 0, since, if not, A would be countably 
compact and Lindelof, i. e. compact, and hence p e A a ^ . 

Consequently A is an uncountable subset of X. Since the complements 
in aX of compact countable subsets of X form an open basis in aX at the 
point p, it is clear that every minimal well-ordering of the set A will be a X-
sequence convergent to p in aX. Hence aX is a pseudo-radial space. 

We shall prove that aX is not almost radial. Let A be a closed subset 
of X such that A a ^ \ A = {p}. Since X is countably compact no co-sequence 
in A can converge to p. So, if S = ( x a ) a<\ is a X-sequence in A which 
converges to p, and X is an initial regular ordinal number, then X > co0. Since 
X is hereditarily separable, then there exists a countable subset C of S, such 
that S a ^ = C a ^ . Consequently, there exists some ordinal number (3 < X 
such that p € ( x a G S ; a < P }, which shows that (S,p) is not a t X-sequence. 
Hence t-Lim A c A, but A is not closed in aX. So, aX is not almost radial. 

3.2. Example. (0) There exists a Hausdorff compact, pseudo-radial space 
with countable tightness*, which is not almost radial (and hence is not 
sequential). 
Proof. Let Q 0 be the Ostaszewski's space from [O, p. 506], which is 
constructed under the Jensen's Combinatorial Principle 0. Then 0 0 satisfies 
all the hypothesis of the Proposition 3.L Hence the Alexandroff 
compactification Y of 0 0 is the desired example. 
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3.3. Remark. Our Proposition 3.1 was suggested by Example i from 
[JMSW], Example 3.2 answers the first two questions of A. V. Arbangei'skii, 
which we already mentioned in the Introduction. In the rest of this paper 
we shall answer the third question of A. V, Arhangei'skii and prove some 
related results (see the Introduction). 

3.4. Theorem. Let f : X ~> Y be a quotient mapping of an almost radial 
space X onto a topological space Y, Then Y is almost radial if and only ii i i§ 
a t^-map. 

Proof. Let A be a subset of Y. We have that ( A is a closed subset of Y ) if 
and only if ( f-iA is a closed subset of X) if and only if ( t-Lim H A C HA), 

If f is a tj-map. then t-Lim A c A implies t-Lim H A C H A and 

hence A is $ closed subset of Y. So Y is almost radial. 
If Y is an almost radial space, then t-Lim A C A implies that A is a 

closed subset of Y and hence t-Lim HA C H A . 
Consequently, f is a tt-map. 

3.5. Remark. The previous theorem is analogous to Theorem 4 of A. V, 
Arhanpclskii from [A2] relative to the class of Hausdorff Fr^cltet spaces, 

$.6. Proposition. The following are true: 
a) The composition of two tj-maps is a tj-map; hence, the composition of 
two qtj-maps is n qfi-map. 

b) Every to -map is a tt-map; hence every qt2-«tap i» a qtj-map. 

c) There exists a quotient map which is not a qtj-map. 

Proof, 
a) It is obvious. 
b) Let f : X -> Y b e a t2~map and let A be a subset of Y, such that t-Lim A C 
A. If t-Lim (HA) is not contained in H A , then there exist a tX-sequence 
(S,x) such that S is a ^-sequence in H A and x * f'1 A V H A , ¥f0m 
Proposition 2.30 we obtain that there e.<im a t V-sequence ($%((%)) ill Y, 
such that S' is a V-sequenee in A, Hence f(x) * t-Lim A C A, which if a 
contradiction since x «. HA. So, t-Lim H A C HA, and f if a tj~map, 
c) Let Y be the space, which was described in 2,34; Le. Y if a T2 &**&*' 
radial space, which is not almost radial. Theft, by Hcrrlichs theorem (lUh 
Theorem 1) there exist an ordered space X and a quotient imta map tf : % «•• 
Y. Since X is almost radial, from 3.4 we have that f cannot be a tj-map. 
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3.7. Theorem. A topological space X is almost radial if and only if there 
exist an orderable space 2L and a qtj -map f : 2L -> X. 

Proof. Since every orderable space is radial and hence almost radial, from 
3.4 we obtain that, if f : 2L-> X is a qtj-map, where 2L is orderable, then X is 

almost radial. Let X be an almost radial space. Let us consider the set tar-

Lim X = { (S a ,x a ) : a € 21 }, where (S a ,x a ) are tXa-sequences for all a e 21 

and (S a , x a ) * (SP,xP) if a * p (but it is possible that x a = xP for a * P and 

SY=S8for y *5). Let S a = { x" : p < ^ a } and X a = { ( x ^ , a ) : p < Xa } u 

{ ( x a , a ) }. Let us topologize 2La, for every a € 21, letting all points of type 

(x s , a ) to be discrete and the open neighborhood basis at (x a , a ) to be given 

by sets Og ( (x a , a ) ) = { (xa, a ) } u { (x" a ) e X a : 8 < p < X a}, where 5 < 

Xa. Let 2L be the topological sum of all spaces { 2La- a e fl } and let f : 2L -> X 

be defined by f( (x . , a ) ) = x« and f( (x a , a ) ) = x a , for p < Xa , a € 21. 

From Herrlich's Lemma ( see [H] ) it follows that 2L is an orderable space. 
Since the one-point sequences are in tar-Lim X, then f is an onto mapping. 
Obviously f is continuous. 

Let us prove that f is a quotient mapping. Let A C X and f-JA be closed 
in 2L- We shall show that A is closed in X, verifying that t-Lim A c A. Let 
(S,x) be a tX-sequence in A (i.e. S c A). We must show that x is in A. But 
(S,x) is in tar-Lim X and hence there exists a € 21 such that S = S a and x = 

x a Then { ( x&, a) : p < Xa } c HA. Since f-*A is closed in 2L, then f-*A n 

2La is closed in 2La. Hence ( x a , a ) e F A n 2La, so x = f( ( x a , a ) ) e A and 
A is closed in X, i. e. f is a quotient map. 

Since 2L is radial and hence almost radial, and X is almost radial, we 
obtain, from 3.4, that f is a tj-map. 

3.8. Remark. Theorem 3.7 as well as its proof are analogous to the 
Theorem 1 in [H]. 

3.9. Proposition. Let f : X —> Y be a tj-map, (S,x) be a tX-sequence in X 

and f(x) e f(S). Then t-Lim ( f(S) ) c f(S) (where f(S) is regarded now as a 

set). 
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Proof. Let A = f(S). Since x g f-A, but x e t-Lim f-1A, we obtain, using the 
definition of ti-map, that t-Lim A c A. 

3.10. Remark. Let us mention, on the occasion of 3.9, that if f : X -> Y is a 
t2-map and (S,x) is a tX-sequence in X, then f(x) e t-Lim f(S), where f(S) is 
regarded as a set. Hence, if f(x) e f(S) we have that f(x) € (t-Lim f(S)) \ f(S) 
when f is a t2-map, while when f is a tj-map we can affirm only that (t-
Lim f(S)) \ f(S) * 0 . This remark helps us to construct the following 
example. 

3.11. Example. There exists a qti-map f : X ~» Y, where X is an orderable 
space and Y is almost radial, which is not a qt2-map. 

Proof. Let R* denote a copy of the real line R, disjoint from it and let Y = 
R u R* u {p}, p being not a point of R u R*. Let the topology on Y be the 
following: the topology on R is the natural topology; if % : R*-> R is the 
"identity" map then the basic open neighborhoods in Y of a point x € R* are 
of the form {x} u ( O(rcx) \ {nx} ), where O(TCX) is some open neighborhood of 
the point n(x) in R. Let us fix some minimal well-ordering on R* , i.e. R* = 
(* aJ a< » t n e n m e basic open neighborhoods of the point p in Y are as 
follows: let M be some countable closed (in R) subset of R and let ay[ be an 
ordinal number such that x a M > x a for every x a e n "-(M). Since N0 < 
cf(2Ko) (see for example [AP]), such ayi exists. Then put 

\jM (p) = (R\M) u {p} u { x a € R* : a > a i} , where a\ > aM-
Let us prove now that Y is a Ti almost radial space. Obviously Y is a Ti 

topological space. Since the subspace Y \ {p} is first-countable, then, in 
order to prove that Y is almost radial, it is enough to consider subsets A of 
Y \ {p}, such that {p} = A~Y \ A. If A n R = 0 , then A must be a cofinal 
subset of the well-ordered set R* and it is clear that p € t-Lim A. 

Let now A n R # 0 . I f l A n R I = K0, then M = A n R is a countable 
closed subset of R and hence p * M. Y So, in this case, p e A n R* and we 
can argue as in the previous case. Finally let I A n R I > K0. Since A n R is 
a closed subset of the real line with its natural topology, then I A n R I = 
2 N o and there are no more than K 0 isolated points in the subspace A n R 
(see for example [E] ). So there are 2**o accumulation points in A n R. If x is 
an accumulation point of A n R , then nAx e A n R Y n R*. Hence IA n 
R*l = 2**o and so A n R* is cofinal in R*. Now we can argue as in the first 
ease. 

- 763 



Hence Y is an almost radial and, consequently, a pseudo-radial space. 
Let X be the Herrlich's space, which corresponds to Y; i. e. X is the 
topological sum of all convergent X-sequences, topologized as in the proof 
of 3.7 (see [H]). Let f : X —> Y be the natural map (see [H] or the proof of 
3.7). Then, as it is proved in [H], f is a quotient map and, since X is an 
orderable space, and so almost radial, we obtain from 3.4 that f is a qti-

map. 
Let us prove that f is not a qt2~map. Let us take some subset S of R 

with cardinality K \ and fix some minimal well-ordering on it. Then 
obviously the coi-sequence S = { x a } a < w is convergent to p. So S u {p} is an 

element of the topological sum X of all convergent ^-sequences in Y. Let us 
denote the set S and its points { x a : a < coi} when they are regarded as 
subsets of X by S' and {x'a : a< coj } and the point p of Y regarded as a point 
of X by p \ Since the topology on S' u {p'} is as follows: points of S' are 
isolated, while the basic neighborhoods of p' are of the form {p'} u {x'a : a > 
P), for p < ©i , we can immediately see that (S',p') is a t ooi-sequence in X. We 
have that f(S') = S and f(p') = p. Since every m j -sequence in the set S 
converging to p cannot be a to) i-sequence and since no sequence in the set S 
converges to p, we have that f is not a t2-map. 

3.12. Theorem. A topological space X is almost radial if and only if there 
exist an ordered space X and a qt2-map f : X -> X. 
Proof. If such a map f : 2L -» X exists, then from 3.6 b) and 3.4 we obtain 
that X is almost radial. Let now X be almost radial. Then the space X and the 
onto map f : X. -> X are constructed as in the proof of Theorem 3.7. It only 
remains to prove that f is a qt2-raap. We know from 3.7 that f is a quotient 
map and so we need to show that f is t2- Let (S,x) be a tX-sequence in 2L- If 2L 
is an isolated point in 2L» then S is the one-point sequence and all is clear. 
Suppose now that x is not an isolated f' ;> *n 2L Then x = (x a , a) for some 
a e 8 . Let S' = S n 2La. Then, obvious yl (S\ xj is again a tX-sequence in X. 
Since f(2La) = (S a ,x«), then f( (S',x) ) is a Jt-subsequence of (S«,x«) and 
hence, (f(S'), x a ) is a tX -sequence in X. Since f(S )c f(S), it follows from 
2.30, that f is a t2-map. 

3.13. Proposition. The following hold: 
a) The composition of twd t2~maps is a t2-map; the same holds for qt2~ 

maps. 
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b) If f : X -> Y is a qt2~map and X is almost radial, then Y is almost 

radial. 
c) Every t3-map is a 12-map; hence every qt2-map is a qt2-map. 

Proof, a) follows easily from 2.30, for example, b) follows from 3.6 b) and 
3.4. c) is obvious from 2.30. 

3.14. Lemma. Let f : X -> Y be a map, S = (x a ) a < x be a X-sequence in X 
and X be a regular cardinal number. Then there exists a cofinal X-
subsequence S' of S, such that the map flS* : S' —> f(S') is either one-to-one 
or constant. 

Proof. Let us suppose that there is no cofinal X-subsequence of S on which 
f is constant. Then for every a<X we shall have l{ xp e S : f{x a ) = f(xp))l 

< X. Using this fact and the regularity of X, we can define by transfinite 

induction a cofinal X-subsequence of S on which f is a one-to-one mapping,* 

as fol* >ws. Let z\ = xj and let us put a j = 1. Hence, zj= x a i . Let P be less 

than X and let us suppose that the points { x a § : 8 < p) be already defined. 

Then we put ap = min { a < X : for every a* £ a, f(x a«) * f(x a g ), for every 

5 < (3) and zp = x a g . In such a way we define a X-subsequence S' = (zp)p<x 

of S and, obviously, f IS' : S' -> f(^ is one-to-one. 

3.15. Proposition. The following are true: 
a) If Y is a radial space and f : X -> Y is a continuous map, then f is a 

t2-map. 
b) If X is a Frechet space and f : X —> Y is a continuous map, then f is a 

t2-map. 

Proof. 
a) Let S = (x a ) a < x and (S,x) be a tX-sequence in X. If there exists a cofinal 
X-subsequence of S on which f is constant, then all is clear. If not, then, by 
Lemma 3A4, there exists a cofinal X-subsequence S' of S on which f is 
one-to-one. If (f(S'),fx) is not a tX-sequence in Y , then there exists a p < 
X , such that f(x) e { f ( x a ) : a < p ). Since Y is radial, we have that f(x) 
e t-Lim ({f(x a ) : a < p}). Hence f is a t2~map. 

b) Let A c X and x € X be such that x(tar)A and IA I is regular. Then x e 
A and there exists a sequence (x n ) n < m in A converging to x. Obviously 
(f(*n))n < 00 converges to f(x) and f(x) (tar) (f(xn) ) n < m. Hence f is a t2-map. 

3.16. Example. There exists a qt2-map f : X ~> Y, where X is orderable 
and Y is Hausdorff radial, which is not a qt3-map. 
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Proof. Let Y be a set of cardinality Kj. The topology on Y will be the 
following: all points of Y except one, say p, are isolated; the basic open 
neighborhoods in Y at p are the complements in Y of finite sets ( which, of 
course, do not contain the point p). Obviously, Y is a Fr6chet and, hence, a 
radial space. Let X be the space constructed in the proof of Theorem 1 of 
[H], starting with the space Y (see also the proof of 3.11). Then the "natural 
map" f : X -> Y, also constructed in [H], is a pseudo-open map and hence a 
quotient map. Now from-3.15 a) we obtain that f is a qt2-map. Let us prove 
now that f is not a qt3-map. If we fix some minimal well-ordering on Y \ 
{p}, i.e. Y \ {p} = ( y a ) a < coj = S, then the coi-sequence S is convergent to p 
and hence it is contained in the topological sum X of all convergent X-
sequences in Y. But S u {p} has a different topology as a subspace of X, 
namely, the points of S are isolated and the basic open neighborhoods at p 
in X are of the form {p} u { ya }j$ < a < ^ , for every P < coj . Hence (S,p) is a 

t ©i-sequence in X. Since f(S) = S and since every cofinal X-subsequence in S 
is of cardinality K 1, and since p belongs to the closure in Y of every 
countable subset of Y, we obtain that f is not a qt3~map. 

3.17. Theorem. A topological space X is almost radial if and only if there 
exist an orderable space 2L and a qt3-map f : 2L -» X. 
Proof. If such a map exists, then from 3.13 c) and 3.12 we obtain that X is 
almost radial. Let now X be almost radial. Then we construct the orderable 
space 2L and the onto map f : X. -» X as in the proof of 3 A 2. In order to see 
that f is a qt3-map it is enough to add to the proof of 3A2 the remark, that 
in the case when (S,x) is a tX-sequence in 2L and x is not an isolated point in 
2L » the set S' (in the notations of the proof of 3 A 2) is cofinal in X a and hence 
f(S') is cofinal in f(S). Consequently, f is a qt3-map. 

3.18. Proposition. The following hold: 
a) The composition of two t3-maps is a t3-map; the same is true for 
qt3-maps. 
b) If f : X -» Y is a qt3-map and X is an almost radial space, then Y is 
almost radial too. 

Proof, a) It is obvious. 
b) It follows, for example, from 3A3 c) and 3A3 b). 

3.19. Proposition. If X is radial and f : X -> Y is a t3-map, then f is a t-
map. 
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Proof. Let A C Y and x € f--A \ f--A. Then, since X is radial, there exists 
a tX-sequence (S,x) in f-*A. Hence, there exists a tX-sequence (Sf, f(x)) in A, 
since f is a 13-map and since we can use the Lemma 3.14. If we put B = S\ 
then we obtain that f(x) e ~B, B C A, f-1 f(x) n F u T * 0 and I B I = pt(f(x),B) 
( since (S\f(x)) is a tX-sequence ). Consequently, f is a t-map. 

3.20. Proposition. If X is a radial space and f : X -» Y is a t-map,then f is 
a t2-map. 
Proof. Let A C X and x e X be such that x (tar) A and I A I is regular. Let 
A = f(A). Then x e A c f--f(A) = FHv If x e f--A\ then f(x) e f(A) and 
all is clear. Let x g FA ' . Since f is a t-map, then there exists a set B c A\ 
such that f(x) € 1 , f-1 f(x) n FVB~* 0 and I B I = pt(f(x),B). 

Let xi e f-i f(x) n f--B . If xi e f^B then f(xi) = f(x) € B, which is 
impossible (see 2.19). Hence xi e f--B \ f-1B. Since X is radial, then there 
exists a tX-sequence (S, xi), where S c f-*B. From 3.14 we obtain that there 
exists a cofinal X-sequence Sf of S on which f is one-to-one. Then f(Sf) is a 
X-sequence in Y which converges to f(x) and f(S') C B. Let us put Bi = f(Sf). 
Then we have that: 
a) I B1I is regular (since I B[l = I S' I = I S I = X and X is regular); 
b) Bi C f(A) (since A = f(A)) and 
c) f(x) (tar) Bi (indeed, if C c Bi and ICI = IB1I = X , then, since X 
is regular, it follows that C is cofinal in f(Sf) and hence f(x) € C; if D C Bi 
and f(x) e "D, then, since I B I = pt(f(x),B), we have that I Bi I = I B I and I 
D I = I Bi I ). Hence f is a t2-map. 

3.21.Theorem. A topological space X is almost-radial if and only if there 
exist an orderable space X and a qt-map f : X -> X . 
Proof. If there exist an orderable space X and a qt-map f : X. -> X, then, 
by 3.20, f is a qt2-map and from 3T2 X is almost radial. 

Let now X be. almost radial. Then from 3.17 and 3.19 it follows that 
there exist an orderable space X and a qt-map f : X -> X. 

3.22. Fact. Every pseudo-open map is a qt-map. 
Proof. It is well known (see, for example, [AP]), that f : X -> Y is pseudo-
open if and only if for every subset A of Y and every y e A, f_1(y) n f - 1 A 
* 0 holds. Let now A c Y and x e f-1 A \ F A . Then f(x) € A and there 
exists B c A, such that f(x) e B and I B I = pt(f(x),B). Since f is pseudo-open 
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and f(x) < 1 , we obtain that f-*f(x) n f-1 6 *- 0 . So f is a t-map. Since every 

pseudo-open map is a quotient map, then f is a qt-map. 

3.2$. We are going now to construct an example of an open mapping which 
does not preserve almost radiality. For doing this we shall use the example of 
P. Simon and 0. Tironi from [ST], which was described in 2.34 here. 

We shall present our construction in the following abstract form (let us 
remark that ail the hypothesis of the proposition stated below are fulfilled in 
many examples of pseudo-radial non-sequential spaces with countable 
tightness (see examples 1 and 2 from [JMSW] and the example from [JW])): 

Proposition. Let t be an infinite cardinal, Y « Z u {p}, where I Z I s t + , Z is 
a Hausdorff, almost radial space and the neighbourhood base in Y at p 
consists of ail sets of the form {p} u (Z \ A), where A is a closed subset of Z 
and I A I s t . Then there exist a Hausdorff almost radial space X and an 
open onto mapping f : X —> Y. Moreover, if there exists a subset B of Z such 
that IBI S t and l l z U t + then X is not radial. (Obviously, X is not 
radial also in the case that Y is not radial.) 
Proof. Let Z a be a copy of Z and let « a : Z a -> Z be the "identity" map for 
every a < t + . Let 71 be the topological sum of all spaces Z a for a < t + and 
let us put X * Z'u (q), where q * Z\ Let the open neighbourhood base in X 
at the point q consists of all sets of the form {q} u u { Z a \ M a : p < a < t + ) , 
where (3 < t + , Ma is a closed subset of Z a for every p < a < t + and 
IU {fta(Ma): p < a < t + }l S t . Let, finally, every open subset of T be open 
also in X. 

In such a way we defined a topology on the set X, which is obviously 
Hausdorff. We shall show that X is almost radial. Indeed, let A c X. Since 
every Z a is almost radial, it is sufficient to consider the case when (q) = A x 

\ A, Hence A is closed subset of Z. Then A a « A n Za is a closed subset of Za 

for every a < t +. Since q • A x , we have that IU { na( M a ) : p < a < t+ }l * t • 
for every p < t + . Using this fact, one can easily construct by transfinite 
Induction a t ^-sequence S in A such that ISnAal £ 1 for every a < t +, 
Jta(SnAa)r.ftp (SnAp) « 0 for a # p , a , p < t + and i fx^e Aai * x P2 
t A a 2 fcnd ai < a a , then Pi < pa (for a*, p| < t + , i « 1, 2). Then, 
since t * is a regular cardinal, (S, q) is a tt •-sequence, Hence q e *-Lim A-
Consequently, X is almost radial space. 

Let us define now the map f : X -* Y by the rule f(q) =- p and fl Za ~ *a 
for every a < t +. Then, obviously, f is a continuous onto map. Since the 
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image of every basic open neighbourhood of every point of X is an open set 
in Y, the map f is open. 

Let now B be a subset of Z with IB I £ t and I I z I *> t + . We shall 
show that in this case X is not radial. Indeed, let A = f^B. Then, obviously, q 
e A X \ A. Let us suppose that there exists a t X-sequence (S,q) in A (see 
2.18). Since t + is a regular cardinal, we have that X *> t +. On the other hand, 
since I S I *; I A I (see 2.10) and I A I <; t . t + = t + , i t follows that X 
= ISI £ t + . Hence, X = t + . 
Since I B I £ t , there exists b e B such that I S n H ( b ) I = t + Then S* = S 
n f*l(b) is a cofinal subsequence of S. Hence S' converges to q. Since there 
exists a neighbourhood of q disjoint from S\ we obtain a contradiction. Hence 
X is not radial. 

3.24. Example. There exist a Hausdorff almost radial space X, a Hausdorff 
normal space Y and an open onto map f : X -> Y, such that Y is not almost 
radial; hence f is a qt-map but not a t\ -map (and, consequently, neither t2 
nor t3). 
Proof. Let Y be the space described in 2.34. Hence Y is Hausdorff and 
normal. Obviously, the space Y satisfies all the hypothesis of Proposition 3.23 
for t = K 0 . Hence, there exist an almost radial Hausdorff space X and an 
open onto mapping f : X ~> Y. Since Y is not sequential, but t(Y) = K0 , we 
obtain from 2.14 that Y is not almost radial. 

3.25.Example. The composition of two qt-maps is not, in general, a qt-map. 
Proof. Let f : X -> Y be as in 3.24. Since X is almost radial, then there exist 
an orderable space 2L and a qt-map £ : JL -> X (see 3.21). Since every open 
map is a qt-map (see 3.22), £ , f and their composition f ° £ give the required 
example. If f ° £ was a qt-map, then the image Y had to be almost-radial (see 
3.21). 

3.26. Example. There exists a perfect onto qt2-map f : X -> Y, such that Y is 
orderable and X is a compact Hausdorff but not pseudo-radial space. Hence 
the preimage of an orderable space under a qt2~map or a qt-map is not, in 
general, a pseudo-radial space. 
Proof. The continuous onto map f : P N \ N - * W ( ( o i + l ) constructed in [FR) 
has all the properties which we need (it follows from 3.15 a) that f is a t2~ 
map). 

3.27. Example. There exist an orderable space X with t(X) = K2, a Hausdorff 
radial space Y and a qt2-map g : X -> Y, such that g is not a t-map. 
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Proof. Let Y0 = [0, K 2 ] , i. e. Y0 is the ordered set of all ordinal numbers not 
greater than K 2 . Let Y" be the set of all non-isolated points of Y0 with 
countable character in the usual order-topology T on Y0 . We shall denote 
the closure of a subset M of Y0 in the space (Y0, T ) by cl(M). Let Y' be a copy 
of Y" disjoint from it and let K : Y —> Y0 be the "identity" embedding of Y' in 
Y0. Hence, it(Yf) = Y". 

Let now Y be the disjoint sum of the sets Y0 and Y'. We shall define a 

topology on Y as follows: 
a) All points of the set Y0 \ { ©2 } will be isolated in Y; 
b) If y e Y' then the open neighbourhood basis in Y at y will consist of all 
sets of the form Us(y) = {y} u { a e Y0 : 8 < a < rc(y) }, for 5 < rc(y), ( 8 € Y0); 

c) The open neighbourhood basis in Y at ©2 will consist of all sets of the 

form Ufi( ©2 ) = (Y0 \ B ) u K"l( Y0 \ cl(B) ), where B is a countable subset of 

Y0. 
Let us remark that cl(B) is also a countable set. 
Obviously in such a way we defined a topology on the set Y. It is easy 

to see that the space Y is Hausdorff and radial. Let now % be the family of all 
ordered subsets of order-type ©1 of Y 0 \ { ©2 }. For every A € %y let Y(A) = 
n-Kcl(A)). 

We are going now to construct the space X. 
Let X0 be a copy of Y0. Let A e # , y e Y(A) and (yn)n < © be a sequence 

in A converging to Jt(y) such that 7t(y) = sup{ yn : n < © }. Then we put 
xA,(y,(yn)) = M ^ {yn : n < © }. 

Let us put, for every A € .3 , XA = Y(A) u { ©2 }. From now on we shall 
A 

denote the point ©2 of X A with © 2 in order to be explicit that, it is 

regarded as a point of X A -
Let X be the disjoint sum of X0 and all sets of the form X A , (y,(yn)) a n d XA» 

which we just described above. We shall define a topology on the set X as 
follows: 
1) All points of X0 \ { ©2 } are isolated and the open base in X at ©2 consists 
of the sets of the form Up = { a € X0: a > p }, for (3 e X0 \ { ©2 }; 
2) All points of X A , (y,(yn)) \ {y} are isolated and the open base in X at y 
consists of the sets of the form Un = {yn : n > n 0 }, for n0 e ©; 

A A 
3) All points of X A \ {©2} are isolated and the open base of © 2 «= XA in X 

A 
consists of the sets of the form U^ = {ye Y(A) : K(y) > 5) u {©2'» w n e r e 5 e Yo 

770 -



and £ < sup A. It follows from the Hen-lien's lemma that X is an orderable 
space and hence a Hausdorff radial space. 

For convenience, points of X will be denoted with a bar above, from 
now on. 

Let f : X -> Y, be the natural "identity" map, i. e. f(X0) = Y0 and f( a ) 
= a , for every a in X0. Furthermore, for every X A , (y,(yn))» f(y) = ye Y(A) 

— — A — 
and f(yn) = yne A; for every X A , f(co ^ ) == ®2e Y 0 and f(y) = y € Y(A). 

We shall show that f is a quotient map. Obviously, f is a continuous 
onto map. Let Cc Y and let H C be closed. Let C0 = C n Y 0 and Ci = C nY\ If 
I C0 I £ K 0 , then C0 is closed in Y0. Hence if y € CQY \ C0, then there exists a 
sequence S = {yn € C0 : n < © }, such that 7t(y) = sup S. Obviously, we can 
define a subset Ay of Y0 , such that S C Ay and Ay e %. Then we shall have 
that X A , (y,(yn)) \ (y) c -^C but, since f-*C is closed in X, it follows that y 
e f-lC. Hence y € C. So, in this case, C 0 c C. If I C0 I = K j , then, as in the 
previous case, we can show that if y e C 0 n Y ' then y is in C. Hence we need 
only to prove that ©2 e C, since, obviously, ©2 e C0. 

Since I C0 I = K x, we can find some A € %> such that A C C0. From the 
A 

previous remark, it follows that Y(A) C C. But then X A M © ^ } C f"!C and, 
— A 

since f-JC is closed in X, it follows that © 2
 € f"*C . Hence ©2 e C and, again, 

CQC C. 
Let now I C0 I = K2. Then C0 is cofinal in Y0 and hence f'lC r\ X0 is 

cofinal in X0. Since f~*C is closed in X, it follows that ©2 € f'^C. Hence, ©2 € 
C. If y € C 0 n Y\ then, arguing as above, we obtain that y e C. So C0 c C. 

If ©2 e Cj, then there exists A e A, such that ©2 e Y ( A ) n C. Then 
X A n f_1C will be cofinal in X A and from the closedness of f-1C we obtain that 
— A 
© 2 € f-iC. Hence ©2 e C. 

Since, obviously, Ci c Ci u { ©2 }, we proved that C?i c C. But C = C0 

u Cp Hence C c C; i. e. C is closed. 
Now from 3.15 a) we obtain, since Y is radial, that f is a qt2-map. We 

shall prove now that f is not a t-map. 
Let C = Y0 \ { ©2}. Then X0 \ {"©2} c f-iC and so "©2 e F K T X. We 

shall show that for any subset D of C, one of the following three conditions is 
not fulfilled: 
(1) ©2€ DY, 
(2) pt(©2,D) = ID I, 
(3) f - i (©2 )n H D * 0 . 
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Indeed, let D c C. If I D I * K 0 , then ©2 * D, and hence 
condition (1) is not fulfilled. If I D I =- R 2, then «2 « D , but, since 
every subset of D having cardinality K x has G>2 in its closure, we 
obtain that pt( a>2#D) -= K \ # I D I and so the condition (2) is not 
fulfilled. If I D I = K!, then 002 € "5 and pt( 0)2, D) = I D I , but we 
shall show that H( ©2 ) n f !D =- 0 and hence the condition (3) will 
not be satisfied. s 

Since I D I -= K lt, D is not a cofinal subset of Y0 and hence flD n 
X0 is not cofinal in X0 , which means that tl( G>2 ) ̂  X0 n f1 D = 0 . 
Since D c Y 0 \ { <»2 }, we have that HD n XA « 0 , for every A 6 
#. Hence f--( ©2 ) n H D H X A » 0. 
Obviously, F ( ©2 ) n f*1 D ^^A,(y,(yn)) * 0» for every component 
of the space X of the form XA,(y,(yn))* 

Since FD =- X0 n f1 D u U{ f1 D nXA : A e % } u 

U t H D n X A ^ y ^ i A e ^ y e Y(A), (ya)n<to C A, jt(y)-= 
sup{yft : ne <»}}, we obtain that f"l( G>2 ) n f*1 D ~ 0 -

Consequently, f is not a t-map, since H( G>2 ) - i**1 **( o>2 )• 

3.28. Theorem. Let X be a radial space and f : X ~» Y be a 
continuous function. Then the following conditions are equivalent: 
a) f is a t-map; 
b) for every A c Y and for every x e f1 A \fAA, there exists B C 
A, such that pt(f(x),B) * pt( Hf(x), HA) ( « IB I ). 
Proof, a) implies b): Let A c Y and x 6 f:- A \ f^A. Let us put tx = 
p^f^xKHA). Then there exists a point X€ f-1f(x)nf*^A , such 
that pt(x, f-1A) = tx. So there is a set C c ffclA, such that x € C and 
iCI as tx. IfAi* RC), then I Ail £ tx , At C A and x € f:- A\ . 

Since f is a t-map, then there exists a set B c Aj such that f(x) 
€ B, IBI -= pt(f(x),B) and Ff(x) n FIT # 0. Obviously I B I £ tx . 
We shall prove that IBI * tx. Let x* e f-if(x) n f*1 B . Then, using 
3.14 and the fact that X is radial, we can obtain a tX-sequence (F,x*) 
in HB such that fIF is a one-to-one mapping. Since x' « f-1f(x)nF1T, 
we have that IFI a tx « pt( fdf(x), f-*A). Then, from f(F) c B we 
have I B I z tx and, finally, IBI * tx. So IBI « pt(f(x),B) * pKHfW^A). 

b) implies a): Let us first remark that the following simple result 
holds 
Claim. Let Z be a topological space; let H, D and E be subsets of Z such 
that D c E and H n D = 0. Then pt(H,E) £ pt(H,D). 
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Let now A c Y and x e FVA* \ f 1 A . Since X is radial, using 3.14, we 
can find a set C c f-*A such that I C I » pt( Hf(x), H A ), flC is one-to-one 
and x (tar) C for some x e Hf(x) r. FVA*. Let Ai * f(C). Then x m f-i'A'i 
and f(x) = f(x). If x « H A l t then f(x) € f(C) C A, i. e. x e HA, which is 
not true. Hence x e f*1 A j \ H ( A j ) and we can use b). Consequently, 
there exists B t c Aj, such that f(x) m Bj and pt(f(x), Bj ) « pt(Hf(x),HAi). 

Let us put t x = pt(Hf(x),HAi). Then there exists B c Bj such that 
f(x) € B and IB I = pt(f(x), Bj). Then xx = I B I = pt(f(x)<B) , We shall 
prove now that Hf(x) n f-i B # 0 . Since *' c B jC A! s f(C) and flC is 
one-to-one, then there is Cj C C such that f( Ci) = B and I Cj I = t x . Since Aj 
c A and x € Hf(x) n f - ' A j , it follows from the "claim"*above that t x = I C\\ 
< ICi = pt( f--f(x), H A ) £ pt(Hf(x),HAO = t x . 
Hence f Cj i = I C I and, since x (tar) C, it follows that x € Cj c f x B . 
So Hf(x) n f-- B # 0 , which implies that f is a t-map. 

3.29.^ Example. There exist an almost iadial Hausdorff space X, a pseudo-
radial Hausdorff, normal space Y and an open onto mapping f : X -» Y such 
that there exist A c Y and x e f-TA* \ H A for which pt(f(x),B) # 
pt(Hf(x),HA), for every subset B of A, which contains f(x) in its closure. 

(This example shows that the hypothesis of the radiality of the space X 
in Theorem 3.28 cannot be omitted.) 
Proof. Let X, Y and f : X -* Y be as in 3.24. Let us put A = Z c Y and x = q 
e X. Then x e FVA \ HA, f»f(x) = {x}, f(x) = p and pt( Hf(x), f--A) -
pt(x,HA) =- K,. But for every B c A, such that f(x) € B, we have pt(f(x),B) ~ 
pt(q,B) = K0 * pt(Hf(x), f-iA). 

3.30. Theorem. If X is a radial space and f : X -> Y is a continuous map, 
then the following conditions are equivalent: 
a) f is a t-map; 
b) For every A C Y and every x € f-- A \ H A , there exists B c A, such that 
pt(f(x),B) = pt( Hf(x), HB) = pt( Hf(x), f-iA) ( = I B I). 
Proof, a) implies b). 

Let A C Y and x e FVA" \ H A . Since f is a t-map, 3.28 b) is fulfilled. 
Then, as in the proof of the part "b) implies a)" of 3.28, we can find a set B 
c A , such that I B ! = pt(f(x),B) = ptf Hf(x), HA) and Hf(x) n FVB" # 0. 
From the claim in 3.28 we obtain that 

pt( Hf(x), HA) < pt( Hf(x), HB) . 
Let x' € Hf(x) n f T f . Tlien B e Y, x € f--'B \ H B and since f is a t-

map, from 3.28 it follows that there exists a set B2 c B, such that I B2 I = 
pt(f(x), B2) = pt( Hf(x), HB). Since B2 c B, we have: 
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pt( f-if(x), f--B) = I B2 I -- I B I = pt( f--f(x), f-!A). 
Hence, I B I = pt(f(x),B) = pt( f-*f(x), NB) = pt( f-if(x), f-*A). 

b) implies a) follows from 3.28. 

3.31. Remark. Example 3.29 shows that the hypothesis of radiality of the 
domain space X in 3.30 cannot be omitted. 

3.32. Corollaries. Let X be a radial space and f : X -> Y a qt-map. Then: 
a) If x € X is such that f(x) is not isolated in Y, then there exists a set B c Y 
\ {f(x)}, such that pt(f(x),B) = pt( f-if(x), HB) = I B I ; 
b) If x € X is such that f_1f(x) = {x} and f(x) is not isolated in Y, then there 
exists B c Y \ {f(x)J, such that pt(f(x),B) = pt(x, f-iB) = I B I ; 
c) If x e X is such that f--f(x) = {x} and x is not isolated in X, then there 
exists B C Y \ {f(x)J, such that pt(f(x),B) = pt(x, f-ifi) = IB I; 
d) If x e X is such that f-Jf(x) = {x} and x e C \ f--f(Q for some C C X, 
then there exists B C f(Q, such that I B I = pt(f(x),B) = ptfof^B) = 
pt(x,f-if(C)); 
e) If x e X is such that f_1f(x) = {x} and x is not isolated in X, then there 
exists B C Y \ {f(x)}, such that pt(f(x),B) = ptfx.f-iB) = I B I = pt(x,X\ {x}). 

3.33. Proposition. Let f : X-> Y be a pseudo-open onto map, g : Y -> Z be 
a map and h = g ° f. Then h is a t-map (a qt-map) if and only if g is a t-
map (a qt-map). 

3.34. Proposition. Let X be a radial space, f : X -» Y be a pseudo-open 
onto map, g : Y -> Z b e a map and h = g ° f. Then h is a t2-map (a qt2-
map) if and only if g is a t2-map (a qt2-map). 
Proof. Let g be a t2-map. Then it follows from 3.22, 3.20 and 3.13 that h is 
a t2-map. If h is a t2*map, then it is not difficult to see that g is also a t2-
map. 

3.35. Proposition. Let f : X —> Y and g : Y -> Z be continuous maps and h 
= g o f be a t3-map. Then f is a t3-map. 

3.36. Given a pseudo-radial space X let us recall that on the disjoint sum X 
of all convergent X-sequences in X, the Herrlich's topology is defined as 
follows: if S = (x a ) a < v is a convergent A,-sequence in X and x e lim S, 
then we take the set Su{x} and introduce a topology on it taking all points 
of S as isolated, while basic neighborhoods of x are of the form {x a : a > p } 

- 774 -



u {x}, for every p < X ; if x\ # x and xj € lim S the set S u {xj} is also 
considered. 2L is the topological sum of all these spaces. 

Proposition. Let X be a pseudo-radial space, 2L be as above and p : 2L -> X 
be the natural "identity" map. Let f : X -> Y be a continuous map and let X 
and q : X -» Y be the analogous to 2L and p. Since the image of a convergent 
X-sequence in X is a convergent X-sequence in Y, we can define in a natural 
way a map £ : 2L ~» X- Let us denote by fl. the restriction of q to £(2L) Then 
we have: 

a) £ is an open map; 
b) The following diagram is commutative; 

c) f is pseudo-open (quotient) if and only if q. is pseudo-open (quotient). 
If X is supposed to be radial, then from [H] it follows that p is pseudo-open. 
Moreover we have that: 
d) f is a t-map (a qt-map) if and only if q, is a t-map (a qt-map). 
e) f is a -2~map (a qt2-map) if and only if & is a t2-map (a qt2-map). 

Proof. The proof is obvious from 3.33 and 3.34. 

3.37. Definition. Let f : X —> Y be a continuous map and let A c Y. We 
use the following notations: 
a) f-Lim A = {y e Y : there exists a X-sequence F in A converging to y, 
which is the image of a converging X'-sequence in X}; 
b) ft-Lim A = {y e Y : there exists a t X-sequence (F,y) in A which is the 
image of a t X'-sequence in X}. 

3.38. Proposition. Let X be a pseudo-radial space and f : X -
continuous onto map. Then the following conditions are equivalent: 
a) f is a quotient map; 
b) f-Lim A C A implies Lim A c A, for every subset A of Y. 

Proof. The proof is obvious from 3.36. 
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3.39. Theorem. Let X be a radial space and f : X —> Y be a continuous map. 
The following conditions are equivalent: 
a) f is a t-map (a qt-map); 
b) f( f-1A ) c ft-Lim A, for every A c Y ( f is onto and A f( f-iA ) c ft-
Lim A, for every non closed subset A of Y). 
Proof, The proof is obvious from 3.36. 

3.40. Definition. Let f : X -> Y be a map and P be a topological property of 
f (we will write that f is a P-map). f is said to be globally hereditarily P-map 
(hereditarily P-map) if flA : A ~~» f(A) is a P map for every A c X (such that 
A = f-*f(A) ). 

3.41. Remark. It is easy to show for a map f : X -> Y that if it is a t2 map, 
then it is globally hereditarily t2-map, and if it is a t-map, then it is 
hereditarily such. 

3.42. Proposition. Let f : X -> Y be an onto map. Then: * 
a) f is hereditarily qt-map if and only if it is a pseudo-open map; 
b) f is hereditarily qt2~map if and only if it is a pseudo-open t2-map; 
c) if X or Y are radial, then f is hereditarily qt2~map if and only if f is 

pseudo-open. 
Proof. The proof follows from 3.41. 

3.43. Theorem. Let X and Y be radial spaces, Y be Hausdorff, t(X) < K ] and 
f : X -~» Y be a quotient map. Then f is a t-map. 
Proof. Let A C Y and x e f-1 A \ f*A . Since t(X) < K x and since X is 
radial, there exists a tX-sequence (F,x) in f--A with co0 £ X < coj. Since f(x) 
€ A, using 3.14, we can think that F is chosen in such a way that flF is one-
to-one. Then, if B .= f(F), we obtain that I B i = X < wx,lf pt(f(x),B) = X, 
then all is proved. Since pt(f(x),B) < 1 B I = X> we must consider now only 
the case X = coj and pt(f(x),B) = K0. Since Y is radial, there exists a sequence 
(yn : n < co0) in B converging to f(x). Then C = (yn : n < co0} u {f(x)J is a 

compact subset of Y and hence, since Y is Hausdorff, C is closed in Y. Since f is 
quotient, the set D = f'Kfyn : n < co0}) is not closed in X. Let x' € D \ D, Then 
there exists a tX'-sequence (S,x') in D on which f is one-to-one (by 3J4). 
Since f(S) C [yn : n < CD0}, we obtain that X' = co0. If we put now B' = f(S) we 

have: 
1) B e B c A, 
2) IB* I * K0, 
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3) f(x) e W and hence I B ' ! * pt(f(x),B'), 
We shall prove now that f-*f(x) n F T F # 0 . Indeed, since S converges to *' 
and f is continuous, f(S) = B* converges to f(x') <g W . But I 7 * B4 v {f{x)j and 
hence f(x') = f(x), i. e. x* e f'*f(x). Consequently, x* € f-*f(x) n f'-"-' W . H i s 
shows that f is a t-map. 

3.44. Examp le. There exists an orderable space X with t(X) * K ^ a 

Hausdorff radial space Y with t(Y) * K t and a quotient map f : X --* Y, which 
is not a t-map. Hence, the hypothesis "t(X) < K i" in Theorem 3 A3 cannot be 
omitted. 
Proof. The spaces X and Y and the map f : X -> Y from 3.27 are exactly what 
we need here. 

3.45. Example. There exist an orderable space X with t(X) < * *• an 
orderable compact space Y and a qt-map f : X -* Y, such mat f is act psewio-
open. Hence, the conclusion in 3A3 cannot be strengthened to *'f is pse*udo-
open". 
Proof, Let Y be the space of all ordinal numbers not greater afian mi witfe the 
natural topology, induced by the order. Let us denote by X& itfee subset of Y 
consisting of all ordinal numbers less then or equal to m , wtere <x € Y m4 
X' be the subset of Y consisting of all limit ordinal ©umbers m Y. 
Let X B © { X a : a € X' \ {coj | } 0 X* with the foMowiag topology; all poiats 
of X a \ { a ) and X' \ { CDJ } are isolated in X; the ope® teste «eigfhborlioo4s of 
a € X a in X are of the form Up * It* X& : y > I J, wfiere $ < « and 
a e X' \ { coj } ; the open basic neighborhoods of m\ m X are 0f <fee form Vp 
« { y € X' : y > P }, for (J < <»j . It will lie convonbrnt to 4emote tbe points 
of X with a bar below. Now we cm define a natural ooto map f : X -» Y by 
f(ft) * P . Obviously Y is a compact orderable space, X is *• ortoafeie space 
(see [H]), t(X) « K x and f is a continuous map. We shall sbow mm t t o f is a 
quotient map (and hence, by 3.43, f wiil be a *H~fnap) *»$ itat f m not a 
pseudo-open map. Let A c Y and f**A fee closed m X, In order to s£*ow 1&M A 
is closed in Y it is enough to prove that Lim A C A. Let <ya : m < X) be a X-
sequence in A convergent to some point y. We shall stoow tfeat y m A. tmk&i* 
if y is an isolated point of Y, then y# * y for aJl o; > o: ® . for #onae o: $ < &. 
Hence y € A. Let y be a limit ordinal, if y * &>%, iite» y m Xy. Since Hie V 
sequence (y a : a < X) can be cons«Iemf as lyiag in %y am*t, since { j ^ : m < 
X } c f--A, from the ciosedness of f-*A we obtain tiwt % * f J A as*d beace y 
€ A. Let now y m ®x. If (y a : a < X) m some cofinjl s«bse«pe®oe of it is m 
X\ then arguing as before, we shall obtatii Ibuf y m A, lo tfce opposite £t$e 
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we can regard (y a : a < X) as contained in Y \ X*. Since Y \ { co i} is a 
countably compact space we can obtain a new sequence (y'a : a < X =a>i) 

converging to coj and consisting of points y ' a of Y which are limit points of 
sequences in {ya : a < X}. Since, arguing as in previous cases,we can obtain 
that all these points y ' a belong to A, we come to the case already 
considered ( { y a : a < X} c X' ) and hence we conclude again that y € A. 
Consequently, f is a quotient mapping. 

In order to show that f is not pseudo-open map, we shall show that f is 
not hereditary quotient map. Indeed, let A be the subset of Y consisting of 
the set B of all isolated points of Y and of the point { coi), i. e. A = B u {©iV 

Since HA = { c^} 0 © { X a : a e X ' \ { coj }}, where X a = { fi. e X a : p is 

isolated in Y}, and since f-JB = © { X : a e X' \ { coj }}, we have that f-!B is 

closed in HA. But, obviously, B is not closed in A. Hence flf-iA : f_1A —> A is 
not a quotient map. Consequently, f is not a pseudo-open map. 

3.46. Proposition. The following hold: 
a) Every Hausdorff Fr6chet space is a gF-space. 
b) Every Hausdorff sequential space is a gs-space. 
c) If X = Y u {p} and all points of Y are isolated in X, then X is a gF-space. 
d) The topological sum of gF-spaces is a gF-space. 
e) Every subspace of a gF-space is a gF-space. 

3.47. Proposition. The image of a gF-space under a closed mapping is a gF-
space. 

3.48. Theorem. If Y is a gF-space and f : X -> Y is a quotient map, then f is 
a pseudo-open map. 
Proof. Let A C Y and y e A \ A. Since Y is a gF-space, there exists a set C C 
A such that {y} = C \ C. Since f is quotient, H C is not closed in X. Let z e 
f-1 C \ f 1 C . Then there exists a net ( z a : a e D) in f ! C which converges to z. 
Then ( f(za) ) a € D -s a n e t m C convergent to f(z). Since f(z) g C, it follows 
that f(z) = y. Hence z € f"Hy). Consequently, f*Ky) n f- 'A * 0 , i. e. f is a 
pseudo-open map. 

3.49. Example. There exists a gF-space X which is not pseudo-radial. 
Proof. X = N u {p}, where p € pN \ N , with the subspace topology from pN 
is the required example. 
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3.50. Example. There exists a compact Hausdorff orderable space X, which 
is not a gF-space. 
Proof. The space X of all ordinal numbers not greater then coj with the order 

topology is such an example. Indeed, let Z be the subset of X consisting of all 
isolated points in X. Then coj € Z, but it is impossible (from the countably 
compactness of [0, o^) ) to find a subset B of Z such that B \ B = { coj }. Hence 
X is not a gF-space. 

3.51. Remark. Let {Xa : a e A} be gF-spaces and let X = © {Xa : a € A}. 
Let p be a point not belonging to X and let Y = X u {p}. We shall introduce 
now a topology on Y as follows: let us fix some well-ordering on A; the basic 
open neighborhoods of the point p in Y will be of the form Up = (p) u U 
{X a : a > p} ; the points of X will have the same basic neighborhoods in Y as 
in X. It easy to see that Y is a gF-space. 

Using this construction we can obtain some non-trivial examples of gF-
spaces. 

3.52. Proposition. Let f : X ~>Y be a closed map, S = (x a : a < X) and (S,x) 

be a tX-sequence in X. Then the following conditions are equivalent: 
a) (f(S),f(x)) is a tX-sequence in Y; 
b) {x a : a < a 0 } n fml(f(x)) = 0 , for every a 0 < X . 

3.53. Corollary. Let f : X —> Y be a closed map, (S,x) be a tX-sequence in 
X and f"Kf(x)) = {x}. Then (f(S),f(x)) is a tX-sequence in Y. 

3.54. Definition. Let f : X ~> Y be a map. Let S = (x a : a < X) be a X-
sequence in X converging to a point x of X. The pair (S,x) will be called IfJL-
sequence. if X is an initial regular ordinal and {x a : a < a 0 } n f"Kf(x)) = 0 , 
for every a 0 < X . 

3.55. Proposition. Let f : X -> Y be a closed map. Then f is a t3-map if and 
only if every tX-sequence in X contains a cofinal tfX-sequence. 

3.56. Example. There exist compact Hausdorff radial spaces X and Y with 
t(X) = K!, and a continuous (hence closed, perfect) map f : X -> Y, which is 
not a t3-map. 
Proof. Let X be the space [0, a*i] of all ordinals not greater then ©! with the 
order topology. Let Z be the subset of X consisting of all limit ordinals and Y 
= X/Z, i. e. Y is the quotient space of X corresponding to the decomposition of 
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X into the set Z and one-point sets {x}, when x «. Z. Let f: X -> Y be the natural 
quotient map. Let S = (a : a < ©j , a € Z). Then (S, coj) is a torsequence in 
X. Obviously, every cofinal <or subsequence of this <»rsequence is not a tf cor 

sequence. 
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