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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,1 (1988) 

ON THE DECOMPOSITION OF CONTINUOUS FLOWS 

ON THE POLISH SPACE 

Miroslav KRUTINA 

Abstract; The purpose of this paper is to prove the Borel measurabili-
ty of the set of regular points of a continuous flow on the Polish space u-t 
sing the methods of J .C. Oxtoby C4] and S. Fomin [2]. The including into a 
compact dynamical system in discrete time is replaced by that into the shift-
flow on the Polish space of Hilbert cube-valued continuous functions. It is 
shown that the set of regular points is l-Vfe.^ . 

Key words: Polish space, continuous flow, regular points, invariant me­
asure. 

Classification; 28015, 6ÛB10 

1. Definitions and the ergodic theorem. The set of all natural numbers 

{l,2,../i will be denoted by N. 

Let G be a locally compact Abelian group with the second axiom of sepa­

rability (in such a case G is a ff-compact Polish space); it will represent 

the time. A Haar measure on the class &-> of Borel sets in 6 will be denoted 

by A , the unit element and the group operation of G by e and +, respective­

ly. 

At one with t6] we say that ^Tk^k»l is an (i)~seQ.uence if T|< is a me~ 
a(CnCk) 

asure on .#- of the form yk(C)= ^(r )—» C e 3 g , for every k€N, where 

iCj^_, is a nondecreasing sequence of Borel sets satisfying the following 

conditions (il)-(i4): 

( i l ) 0< f t (C k )<a> for any k€N, 

!fc(C. A(C.+t)) 

(12) lim JJcT = l f 0 r any t € G > 

( i3) for each k€N there is a nondecreasing sequence f C ^ y j = i ot comD~ 

act sets with the union Ck, 
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(14) SUP „,* K < OO . 
M, * ( Ck } 

In what follows, let "fyJu-l be a fixed (i)-sequence. 

By the flow (on a probability space (&,&,(*.)) we mean any group 

HJ t n of invertible measure preserving transformations of SI with respect 

to the composition which is measurable in the sense that *?(<«> ,t)=T, a> 
(o>cil,t€G) is an ^ K J 3 G -JB G measurable mapping. Such a flow will be den­

oted by ( . a , . r , r < 4 , { T t j U G ) . 
Hereafter in this section let us consider a flow ( H ,9f , f*»£Tj t t G ) . A 

set E c SI is called invariant ({L}.. p-invariant) if TtE=E for any teG. The 

tf-algebra of all invariant ^-measurable sets will be denoted by 3. The mea­

sure (U is called ergodic if there is no Ect7 with 0< <u(E)«-rl. Symbols 
L (̂ tt) and L (f-t) will designate all real ̂ -measurable functions f=f(o>) de­

fined on SI (U-a.e. such that f |f(«j)|d(*(o>)< oo , and 

J \f(o>)\ d^(a>)< oo , respectively. The usual pseudonorms will be denot­

ed by R H x and II H2. 

Let f be a real ^-measurable function defined on Si ^u-a.e. For any 

kcN, coeil let M(f,cc>,k)=f(k)(cJ)=J^f(Tt£i>)d^k(t) provided 

Tk({tcG":Tto>4 Df|)=0 (Df is the domain of f), and further, M(f,a>)=f*(a>)= 

=lim M(f,o>,k) provided the limit exists. 

Any point co € XI and any k*N also defines a probability measure m ^ on 

(il,f) by mk(E)= j^,^E(Tt(j)drk(t), E 6 .T . Obviously, / f(z)dmk(z)=f(k)(<*>) 
for every real &-measurable function f on SI . 

Proposition 1 (Ergodic theorem). For any fcLp((Ct) (pfe £1,2.1) there is 

an 3-measurable function f*e Lp(<u) such that lim f( \u))=f*(<o) ju-a.e. 

and lim Hf(k)-f*lL=0. besides f f*(o>)d^t(o>)= f f(o>)d(u.(a>), whenever E e X 

Proof. The assertion is a special case of Theorems 6.1, 6.2 and 6.4 in 
[63. 

Lama l. Let f€L2(<u). Then the function yk(cj)^((t^-1*)2
9€j) is 

well defined (QA, -a.e.) for any kcN, and lim J ykdft=0. 

Proof. By Proposition 1, for any keN it holds that f(k^-f** L2((a), 

i.e. (f -f*) 6 L ((u,). Hence y k s are well defined (^-a.e.), and (again 

by Proposition 1) lim £i|rkd<*=0. 
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2. Probability measures on metric spaces. Let V=(V, ©y) be a metric 

space. As usually, spherical neighbourhoods will be denoted by U£(v) 

( Z > 0, vfeV). By ^t(V) we mean the set of all probability measures on 

5*>y (on the ^-algebra of Borel sets). 'tf(V) will be the space of all real 

bounded continuous functions on V equipped with the topology of uniform con­

vergence on compact sets (the base of which is formed by sets of the type 

U(f;B,e)= r> tge?(y):|f(t)-g(t)|< &} , fe<£(V), B €.X(VJ, t>0;X(V) de-
teB 

notes the class of all compact subsets of V). Let F(V)= l"^,,£f €*£(V): 
v e v 

:|f(v)Ul?. 

Further, let us recall the following probabilistic convention . A sequen­

ce (̂ii. i > , in M(y) weakly* converges to the measure *u e M(y) 

(p,, —-> ̂c , k —• oo) if lim f tdfi. = f fdfj, for each f £ if (V). A subset 

tfc M(y) is said to be relative compact if for every sequence i(u\}^--t *in 

*£ there is a measure û, 6 ^t(V) and a subsequence "-(^kCi^^l sucn *nat 

^ k C i ) — * ^ ' J -^ 0^ • Finally, a subset ̂ c J((V) is said to be tight if 

for any % > 0 there is K e.X(y) with the property that, for each (uu € Sf, 

(u(K)>l-& . By the Prochorov's theorem the conditions^ of relative compact­

ness and tightness are the same in the case of Polish space V. 

Proposition 2. Let V be a Polish space, (A. e M(\l)> and let LJif) = ffd(j, 

f eSf(V). Then Lp, constitutes a linear functional on ¥(V) which is continu­

ous on F(V). 

Proposition 3. There is a countably dense subset in ^f(V) if V is Pol­

ish. 

The "Proposition 2 follows from Prochorov's theorem, and for the proof of 

the last assertion see [33. Consequently, if V is Polish, there is a countab­

le dense subset in F(V), too. Let us fix it and denote by F (V). 
N 

By the Hilbert cube we mean the compact metric space J=<0,1> equipped 
00 1 i 

with the metric &-. defined as jO-,(x,y) = 51 -r \x(n)~y(nw x » v € 3 , 

x= ̂ X( 3a0_i» y= { y r ^ n=1*
 As -̂  *s w eH" k n o w nJ every Polish space is homeo-

morphic to a &V-subset of J (Urysohn). 

3. The space ^-jW- In this section we shall suppose that V=(V,£>y) 

oo 0 
is a locally compact Polish space. As it is well known, V= O . B„ (the union 

<n,« 1 n 
of interiors) where $B l*=, is a sequence of compact sets. The space of all 
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continuous mappings of V into the Hilbert cube with the topology of uniform 

convergence on compact sets will be denoted by *£j(V) (the base of this topo­

logy is formed by sets U(*;B, e >^nAy * <?j(V): jDj(x(t)/yXt)) < e*, 

^ s ^ V ) , BtJC(V), t> 0). 

Proposition 4. <t?j(V) is Polish. 

Proof. First we shall show that the above topology is metrizable. Let 

us set fn(x,y)=sup^j(x(t),y(t)):t£Bril, nc N, x,y£fj(V), and further 

<» pW^Apr-Pn^^' 
x,y c. *^j(V). Obviously, j> is a metric on ^(V), and for any neighbourhood 

Ue(x) (*>0, >Tc<ej(V)) there is nQe N such that U(x; ^ BR, e/2)c U
£(x). 

On the other hand, let us have a set U(x;B,e>) (x e<^J(V), B€3C(V), e>0). 

Since V = ^ Bfj, B C ^ B ^ c ^ U ^ for some nQcN. Consequently, U^xO c 

c U(x̂ ;B, tt>) for cT= e/(2 °), which together gives the metr izabi l i ty. 

Since the completeness in the metric J5 is easy to see, it remains to 

ver i fy the separability, i.e. to find a countable set which intersects any 

open set U(x;B,e). To this end let us define, for each n€ N, an auxiliary 

continuous mapping tp of 3 into itself by the rule 9;n(t)=(tQN ,t/«) > • • • 

. ..,t, N,0,0,...), t=(tQN,t(2w...)6 J. As it follows from the separability 

of the space of all real continuous functions on <0,1> (with the supreme 

norm), there is a countable subset A c ^ O ) with the property that for each 

z e ̂ (3) and e > 0 there exists ye A satisfying 

(2) fj(y(t),<yn(E(9>n(t))))<e/2 

for any teJ. Let us suppose that x c*itfj(V), B € ̂ C(V), and e > 0 . According 

to Urysohn's assertion, we may assume that V itself is a subset of 3. Further, 

there is a continuous mapping z of 3 into itself such that z=x on B (from the 

normality of 3). Since 3 is compact (and z is uniformly continuous), we can 

find n^N such that, for any t€ 3> 

(3) f j(^n(z(9n(t))),?(t))< e ft. 

Summarizing (2) and (3), f>j(7(t),x(t)) < €, for any t€B, i.e. y e UCx ;B,e ). 
OO 

The desired countaole set corresponds to JU A . 

Let us define the module of continuity (of? on B) for any £ e ^(V), 

B€.3C(V)and c^> 0 by w5.(B,*/)=sup ipj(x(s),x(t)):s,teB,<pv(s,t)<: <f } . 
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Lemma 2. Let Ec* i f - . (V) . Its closure E is compact if and only if, for 
any n 6 N, 

(4) lim sup w~( U . B ,c/-)=0. 
<f-»0 x e£ x ^-n n 

Proof. Let "T be compact. Clearly, the functions wL.v(B,-r-) of x (k=l,2,...) 
are continuous and (in k) nonincreasing, for each Be-K(V), which implies the 

uniform convergence lim w~(B, rr) on E, and hence (4). Conversely, (4) allows 
J&- x K y 

us to construct, for any t> > 0, a finite e-net of E in the space 3 (with 

the metric defined also by (1)) making use of the step-3-valued functions va-

nishing outside a sufficiently large compact Q\ B . Thus the compactness of 

F follows from the fact that ¥-.(V) is c losed . 

Lemma 3. A sequence "-i^O^-i in «At(^-.(V)) is relative compact if a»d 
only if, for any n ,j, i e N , there is p€N such that, for every k£N, 

(5) ,« k(« 6^(V):w.( U°, BR, I) Z l D . f i i • 

Proof. If 4<u. Vf -, is relative compact, then, according to Prochorov, 

it is tight. Thus for any -6 € N there is KeX(f-(V)) such that, for every 

k £ N, (UL,(K)>1- j . As it follows from Lemma 2, for any n , j € N, there is 
*t_ » , 

p£N such that Kc-Cx • «£1(V):w~( U . B , ̂ )< 4?, which implies (5). 
j X ' * - - - » n p j 

Conversely, for any n ,j,£e N, let p=p(n ,j,.£)€N be such that, for e-

very k £N, ^ j . - - ^ ) * -" F' J5 ' 4 ~ > where Ej,nQ,r 

= « . ^ ( V ) : w . ( ^ B„ i)< i}. Setting E, = J J „ p „ E ^ ^ we obtain 

(following Lemma 2 again) a compact set E", : for any n c N 

lim sup W L?4 B_,<f) :*«£.!* lim sup* w«( ijf B . oT):x € A E. n fj=0. <f-»o x <»/sl n' * ff^Q r x /iv=̂  n' *$-*4 J>n
0>* 

Moreover, since <ct.(E1)>l- j for any k € N, we have proved the tightness, 
which is suf f ic ient . 

4. Continuous flow on a metric space. Let il be a metric space and 

T̂ji faQ a group of homeomorphisms of il•(with the composition as the group o-

peration) which is continuous as a mapping of ilxG into il with respect to 

the product topology. The triad (-^»-^jx>^V+£f)
 W ^ H De called a continuous 

flow (on a metric space). The set of all iT J . .- .- invariant probability measu-
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res on ( . f t , ^ ) will be denoted by M .(Si , { T . J t e G ) - Recall that for any 

(ui€:^st(Jl,'CTtl ̂ g ) it holds that ft©Tt= <u< , whenever t€G, i.e. 

( A »^A» ft»^Tt^ t6g) is a flow on a probability space. Thus we shall use the 

notions introduced in Section 1 in the case of a continuous flow, too (the 

©'-algebra # will be replaced by 33^). A set £ 6 33^ is said to have invari­

ant measure one if, for any <a e A s+(-^>^ttt G ) , ^(E)=l. Let us note 

that it may happen Ji .(SiJ^TJ^,,)-^ (see L53); the theory below is vacuous 

for such flows. 

Definition 1. Let (XI, %* .^T+^-fc-p) be a continuous flow on a metric 

space. A point CJ cil is called quasi-regular (o 6 Q=Q(Xl,iTtlt «)) if 

(ql) the limit M(f,«) exists for any f€F(il), 

(q2) the sequence 4 m ^ J ^ (in M(Sl)) is relative compac t . 

Lemma 4, For every o> € Q(Jl ,-CTJ . „) there is the unique measure 

m w € .A(st(il,-CTt^tcG) such that m Q-*in Q, k — • o o . 

Proof. By (q2), m ^ — • ^ > 3—t*00 > f°r some (tt e M,(Sl) and some 

increasing sequence -I k(j ))*?,. By (ql) we have, for any f€ F(il), / fd$t = 

=lim J^fdm^^lim M(f,o>,k(j))=M(f,o)=ljm J^fdrn^ ; hence m^ —» <u., 

k —*» co . As such a measure (tt is unique, let us write <u =mC4>. Further, sin­

ce for any f €<£(ft), k€N, stG, | /f(z)dm^(z)- / f(Tsz)dn£(z)| = 

= ~ W ' V ( T^ ) d A ( t )"c^ «Tt«WA(t)UjJ^.2A (CkA(Ck+s)) 

(llfll=sup | f ( t ) | , A means the symmetrical difference), i t follows that 

^ • ^ t U . C ^ b y (12). 

Lemna 5. Let XL be a Polish space. Then o>6 Q(il ,-CTj . «) if and only 

if o> satisfies the conditions (ql) and (q2), where (ql') means that the 

limit M(f,o>) exists for any f*Fo(il). 

Proof. Let c*>cXI satisfy (q2), i.e. the sequence fm }??. is tight. Hen-

ce for any g€F(Xl) and e > 0 there is fcF (Si) such that, for every k&N, 

|M(f,c*>,k)-M(g,o>,k)|< e/3 (we find B€3C(X1) with the property m£(B)>l -

- t/12 for every k 6 N and feFQ(SL) such that | f(z)-g(z) |-c e/6 whenever 

z € B ) . Since by ( q O |M(f,o>,k)-M(f,6>,k')|-c e/3 for sufficiently large k, 

k'eN, the limit M(g,c»>) exists. 
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5. The shift-flow on £ , (G ) . We can write G= UA B° ( f o r each n€ N let J *i* i n 

BR e 3C(G)). According to Proposition 4, <if-j(G) is a Polish space (with the 

metr ic JB defined by ( 1 ) ) . Let us w r i te in short -B<p = iL./pv. For any 

x e < i f j ( G ) and s,tc G let (S t^)(s)=^c(s+t) . Evidently, St is a 1:1 mapping of 

^ ( G ) onto itself fo r any teG. 

Proposition 5. (Sf-•«?), ^>^+}t€G^ *s a cor,tinuous flow on the Polish 
space. 

Proof. We have to prove that (SJ . « is a continuous group of homeo-

morphisms of ^ - . (G ) . Let t'x'.Ĵ 0 , (lim x . ^ ) and -Ct.V , (lim t . = s ) be conver 
J 3 J=-t ^ J J J--* ir J 

gent sequences in x-.(G) and G, respectively. We have to show that lim St x.= 

=S ,x. As c lea r l y S © S. =S . for any s,teG, we may assume that s'=e. Let 

Be JC(G) and £,>$. We ask whether it holds, for any sufficiently large j 

and any te B, that f j((St x . ) ( t ) , x ' ( t ) ) < t> . Let U be a neighbourhood of e 

with the compact closure "OP Since B'= ,U~ (B+t) is compact, there is cT> 0 

such that jO-.(x(s),x(t))-<: e/2 whenever s,tcB' with pG(s,t)-< cf . Further, 

from the continuity of the group operation there is A > 0 such that 

p G ( t , s + t ) < cf whenever t€B and p G (e ,s )< t 6 . Finally, for all sufficient­

ly large j and teB, it follows tf>-1(x'.(t.+t),'x(t.+t))--- e/2 from the conver-
^ J J J r* 

gence lim x.=x, and «->-|(x(t.+t),$c(t))-c e/2 from the uniform continuity of x 
£ J J J 

on B'. 

Lenina 6. Q( ^ ( G ) , ^ UQ) is G ^ . . 

Proof. Let us w r i te in short FQ for F (£.-(G)) and Q for Q(S?-j(G), 

$S J t G ) . According to Lemma 5, Q=Q-,nQ2, where 

Qx= IO {* e <e ](G):liminf M(f ,x,k)=limsup M(f,x.,k)}, 

Q„= Kx •^ j (G): lnul k . ! .1 is relative compact}. 

Since for any f e <£( ^ - . (G ) ) and keN also the function M(f,x,k) belongs in 

<€(<€-}&)) (lim 4 f ( S t 5 ? n ) d x k ( t ) = 4 f ( S t x ) d r k ( t ) whenever lim xn=x), the 

set Q, is Fff<̂  (£31, p. .274). Further, making use of Lemma 3, 

Considering the continuity of the function (of J) w~( J^A
 Bn'D^ the sei: 
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< n ° 1 1 
i$ C^f-COrWyC^V, B n ' p ^ j l i s closed, hence the function (of x) 

m~(*y £ ^ j (G):w^(mU^ Bn,^) > -U) is of the f i r s t Baire class. Thus Q2 (and 

also Q) is Gfftfif * 

Lemma 7- Q( ̂ ( G ) , ^ } . «) has invariant measure one. 

Proof. We shall show that both sets Qx and Q2 (cf. the proof of Lemma 6) 

have invariant measure one. For Q this assertion follows immediately from 

Proposition 1. Concerning Q2, it holds by Prochorov's theorem that Q?= 

= £\ K V X Q I ^fe^-j(G):m^(K)>l-i}, where # = 3T(<£j(G)). Let 

(«.6 Jt» tCCjWtiSjk ^ Q ) and let i^n^=i be a sequence of positive real num­

bers which tend to 0. There is a sequence {K 5 =̂i in 'X such that, for any 

neN, <ti(Kn)>l- e n and, consequently, by Proposition 1, ft*,(A )>l-e n whe­

re An= -[x c^j(G): %* ( x ) > l - e n l . Together, ^ ( ^ Q ^ ^ ^ A )=1. For any 

fixed jeN and y e 7 V D A^ there is neN such that ** (y*)> 1- i. The-
%s^ ^ . i ^ 0 n

 v Kn j 

refore nikl7)> 1- i for all sufficiently large ke N, and hence nvi(K)= 
n oo 

= t£ k\y)>l- T ̂ r all k€N for some Ke3C. Thus ̂ P * i ^ A R c Q ? . 

Lemma 8. For any Borel measurable real function f on fcJG),/fdnw is 
a Borel measurable function of *x on Q=Q(^?j(G),{Sj. g), and 

(6) /fd(u = / (/fdm^d^x) 

for every <*6 4ist(<j(G),tS£ ^ g ) . 

Proof. According to Definition 1 and Lemma 4, / fdn^=f*0>O for any x€ Q 

and f €<^(^j(G)). Further, f f6 p= f f*d p.= f^P d p. for any (*e Jtst(<tf3(G), 

iSjf . «), i.e. such a function f fulfils (6). By the theorem on monotonous 

convergence, (6) is true also for characteristic functions of closed sets, 
which enables us to deduce the desired assertion for all characteristic 
functions of Borel sets, and hence for all Borel measurable funct ions . 

6. About the relation /fdm<Si>=M(f,<o) more generally. In this section 

let (il,lB^,{Tj tfer^
De a continuous flow on a Polish space. For any co 6 -ft. 

let 0+(ca)=4O1 iTto>:tcCkl (cf. § 1). 
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Lemma 9. Let K Q € X ( . a ) and 6)6 ̂ ' ^ t ^ ) . Tnen there is 

K«3C(Jtl) such that K Q C Kc KQuO
+(o>) and 

(7) liminf M(vK, a>,k)> m, (K ), 

Proof. For any nfcN let us define Up= |z6jQ.:dist(z,K )< i$, and take 

fnfi V(il) such that J(,K -6f n^lu • As lim M(fn,o>)=m^(K0), for an increas­

ing sequence 4k 5 , it holds that, for any n and k>k , M(f ,o,k)>mi.(K )-

- —. For the sake of simplicity let us suppose that all the sets C. are com­

pact (the general case will be considered below). Using a continuous mapping 

%>("-)=Ttt->, t&G, of G into IL , let us set 

(8) K = Ko»,5 1
( l rn r t«» Ck r H l

)-

Every open cover iV^ of K allows us to find sets V^ ,...,V^ such that, for 

some neN, U c -Q-i V*; • Taking into account that K\UR= vV-l^i
A%) Ck n 

r\Uc) and the sets qpL>C. being compact, we can see that K\U is compact, 
j+1 

too. Hence there is a finite subcover -tV ,...,\L >V, »"-»V ^ of K, i.e. 
^1 °S i+1 P 

K is compact. It follows from (8) that, for any n, n'l>n and k e\kRl,kn,+l,... 

•••>kn'+]>
 m « ( V - H 6 m« ( Ko>- H'< M ( f r f ^ , k ) * - - f j - - ) ^ t K ( T t « ) d . ? k < t ) . So 

m^(K0)- •n-<M(^K, <«>,k) for each k > kR ,which implies (7).In general case we 

shall take (according to (i3)) some compact set Ck ̂ k^ (k€ N) satisfying 

* ( C k X C k i(k)} 

\ ( C 3 <1/k> instead of ck-

Leuma 10. Let f be Borel measurable bounded real function on H and 

o) € Q(il,iTt>. G ) . If for each * > 0 there is a set E^s 53^ such that the 

contraction of f to E e is continuous, 0+(<w)c Eft and m0(Ee)> 1-e , then 

/fdm0=M(f,a>). 

Proof. Let sup |f(z)|=o6 and let £ > 0. From the regularity of the 
zesi 

measure it results that there is a compact set K c E # such that m,.(K )>l-s. 
o •* *•' o 

According to Lemma 9 we can take a compact set K, K c K c K u O (o>), for 

which (7) holds. Since the contraction of f to K is continuous, there is 

g 6 ^ ( 1 1 ) such that sup |g(z)| = o6 and f=g on K. Now, for every kcN we have 

X4i-* 

|/fcta»tt4i(f,c*,k)|^ 
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.i-^m0(Jl\K)^|M(g,e^)~M(g,<o,k)|+2oc(l--M(^k,a>,k)), thus 

limsup |/fo 0̂--M(f,4>,k)|<4oce-

Lemna 11. Let f be Borel measurable bounded real function on SL and 

6>€Q(H»«iTtt t 6 J J ) . If there is a 4Ttl t .-.-invariant set E s tBA containing 

CO such that the contraction of f to E is continuous and m (E)=l, then 

/fdmtt=M(f,Q). 

Proof. This lemma is a consequence of the previous assertion. 

7. Relations between flows. Two continuous flows ( H , ^ Î-̂ tfeĜ  and 

(.0.* ,1%., >"-T+}+€R) on metric spaces are called homeomorphic if there is a 
homeomorphism § of SL onto il* such that Tt= $ Tt$ for each teG. 

Lamta 12. The sets Q=Q(A,tTt\UG) and Q'=Q(Xl',<Ttit%6) of quasi-regu­

lar points of two homeomorphic (under $ : SL-+SH ) continuous flows satisfy 

the relation Q= $ ~ Q'. 

Proof. Clearly, nQj'^mJL^ for any o> * Si , kcN. Since $ is continu­

ous, the weak* convergence of an arbitrary sequence i(*>$™=l in M(Sl) imp­

lies the weak* convergence of i^k§'l^i in •̂ ("C-*"), hence $ Q c Q \ The 

converse follows from the symmetry. 

We can see that a continuous flow (S, ̂ fp^t^tiG^ ^on a metric sPace) 

induces a new one on every nonempty $T+f ttG~invariant Borel subset -fi c 21 . 

This flow (H, % ,*Tt}tiG) ( # A = i l n % i V ^ t ^ ' t 6 G ) wil1 be called 

a subsystem of (£,ft~ »^t^t€G^* 

Leans 13. Let (̂ > #n >*TJt G) be a subsystem of a continuous flow 

(lt,#£,<T£UG), Then Q ( . n , l T ^ t e G ) = i l A ^ 6 Q(S,4Tt>tcG):mJil)=l>. 

Proof. Let us write (i instead of (i* whenever <u. c Jt(SL), and let Q= 

=Q(«a,iTt1tfG), tf=Q(A,lTtltcG). If o C Q then the limit M(f,*>) exists for 

any f € F(ft) because f/*J1 * F(il). Further, the convergence in Ji(Sl) 

m^-^m^ , k—*oo , implies that (m^—* 8 W , k—•* CD (in ^C(Jl)), where 

we set (mJ<)'v(E)=ri£(llr.E) and m (E)=m OlnE) for k€N, E« 3^. Thus 

co e Si A * and f?£(Jt)=l. 

On the other hand, let us suppose that 6>e it A If and tfi Xil )=1. If 

ft F(il), let us define a real function g o n l in such a way that g=f on SL 
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and g=0 on i l \ I I . According to Lemma 11, f gdn6>=M(g,<i>)=M(f ieo)i i .e . the 

rk 

we conclude that 0 1 Q, 

limit M(f,<a) exists. As m^—> <u, , k —• 00 (in JH(il)), where (i = % ^ & J I » 

Lemma 14. Every continuous flow Cfl.,33^ »^Tt^tfeG^ on a Polisn sP a c e is 

homeomorphic to a subsystem of the shift-flow ( ̂ j(G),iS^ ,-jSj. « ). 

Proof. By Urysohn's theorem there is a homeomorphism "HT of Si onto a 

G^-subset Til of the Hilbert cube 3. Let us define ($c->)(t)= 1f(Tta>) for 

anytcG, 6>6ilj $ is a 1:1 mapping of H into *&j(G). Obviously, its ran­

ge $il is " f S ^ ^-invariant and T.= fj~ Ŝ .§ for any t€ G. We have to show 

that $ is bicontinuous. 

In order to prove the continuity of $ let us suppose that a) € H . 

Be3C(G) and e > 0 ; we have to find <f> 0 such that $(l/(«>)) c 

c U(<$G) ;B, e ) . To this end let us define a real function A on G as follows: 

A(t)=sup i<f>0:Vt'6G VzeXL(pG(t',e)-c<T&fJl(Ttco,z)<<r ) «-* 

« > cpA(Tt<j,Tt,z)«<:s/2i. 

According to the definition of a flow, A is continuous and positive on G and 

has a minimum d > 0 OR B. Making use of the group operation continuity, we 

find a finite set tt-,...,t.ic B such that B c - ^ a.(U (e)), where we set 

a.(t)=t+t., teG. Further, U<r(e*>)c mP\ T . (Ud(T. o>)) for some <T> 0. If 
1 1 % m 1 -X • X • 

now t£B, then t c a ^ U (e)) for some i and, as prescribed by A , 

PiL(Tt.A;,Ttz)=Pil(Tt.c*>,Tt-t.(Tt.z^< e / 2 for each z * 1 ^ * * ) - Thus 

f&^t**'1^* ft^V^t.^^fti^t.^'V^ e » i,e* *(u<r(ft>))c 

cU(<P<*> ;B, e ) . Let us note that <$Jl€3^ since it is a 1:1 continuous image 

of a Polish space (see C 33, p. 397). 

To show that the mapping $ is continuous, too, it suffices to appre­

hend that every set $(U*(o>))= $-0. A it « tf.(G):?(e)c Y(Ug(a>))J ( e > 0 , 

4) til) is open relative to <Jil. 

8. The Borel measurability 

TheoreM 1. Let (!_.,$* »^^tfG^ ^e a continuous flow on a Polish space. 

Then the set of quasi-regular points is Borel G^,- of invariant measure one. 

Proof. Following Lemma 14, (H, JBA,CTtl^g) is homeomorphic to a sub­

system of (S_\(G),ft^»tsJ . «), the corresponding homeomorphism being denoted 
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by j> ( $ : .&-* 5fj(6)). As it is known, $ & is G^ (13), p. 337). Let us 

write Q = Q C a , { T t * t ^ G ) and Q^ =Q(<f3(G),<S1J t g ) . According to Lemma 12 and 

Lemma 13, Q= $--* ( # - Q . A t xc q ^ m ^ J l M l ) . The Borel measurability of Q 

has already been a consequence of Lemma 8. But, in another way, the function 

m*J(E) is of the 3 r d Baire class for any Borel Gg subset E c 1f-,(G). Hence 

$ i l n 4 xcQ>:mty($H )=1$ is $&## relative to $JX n Q^ , and so it is ^fV(f 

by Lemma 6. Making use of the continuity of $ ~ we show that Q is G^j. , 

too. 

Provided ft, c «Ats+(-k»iTj . «), we apply Lemma 7 to <a$ to conclude 

that Q has invariant measure one. 

We always assume (Jl, $ ,(TJ . «) to be a continuous flow on a Polish 

space in the remaining part. 

Lemma 15. / ^drn«(> *
s Borel measurable function of o> on 

Q=Q(Jl .^Tjx-g) *or anv rea-- Borel measurable function f on Jl , and /fd(tt = 

Jfl>
(Jfdm«)d^(w) for aRy <*€ ^ s t ( J 1 ' { T t W -

Proof is the same as in Lemma 8. 

Definition 2. A quasi-regular point &>6il is called a point of density 

( w * Qn=Qn(Jl»iTjtfeG)) if m^(U)>0 for every open set U containing o> . A 

quasi-regular point <o is called transitive (o> c Qr^T^^t^tfcG^ **• fn**> *s 

an ergodic measure. A point <o is called regular if o>e R=R(Jl,iTj . „)= 

Lemma 16. All the sets Qn, QT and R are Borel G - _, of invariant measure 

one. 

Proof. These facts follow in the same way as in 143. We show that con­

cerning QT only. A measure in^cotQ) is ergodic iff mi ({z t Jl :M(f ,z)= 

= Jfd»al)=l for any f«FQ(Jl), i.e. QT= Q^S** * Q:gf(*>)=0f, where we 

set g f(w) =J(f*(z)-/fdmto)
2dm&>(z), f«F(Jl). It holds that, for any fcFCQ), 

gftoMjj. fk(f
(k)(z)-f*(u>))2dmjz)=l^m lim Jft(f

(k)(z)-f*(o>))2dmJ(z)= 

=lim l|m^(f(k\Tt^)-^(w))
2dy.(t)=l^. lip lim J&(f

(k)(Tt«)-f
(i)(<i)))2drj(t)> 

so that the function g.*(ci>) is of the 3r Baire class. Hence, applying Theorem 

1, QT is Sftf* • Moreover, it has invariant measure one because 
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gf(co)=Um lim f (f
(k)(T.a>)-f*(T.o))2dr.(t)=lim lim M((f(k)-f*)2, ft>,j)=0<4-1 * ^ O L l J 4» 4* 

-a.e. for any (u ft ̂ st
(-nL»^Tt^t*G) Dy Lemma lj whenever f« F(Jd). 

Theorem 2. Let (.0. »^xi>^4t«G ) De a c o n"kl n u o u s *l°w on a Polish spa­
ce . Then the set R of regular points is Borel G^^- of invariant measure one. 
Further, ^(E) *s Borel measurable function of <*> on R for any set EC .B& , 
and 

(^(E)=/RnW(E)dfc(a>) 

for any ̂ 6 A g t(-a,iT^ U G ) . 

Proof. The assertion is a consequence of Lemma 15 and Lemma 16. 
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