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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
29,1 (1988)

ON THE DECOMPOSITION OF CONTINUOUS FLOWS
ON THE POLISH SPACE

Miroslav KRUTINA

Abstract: The purpose of this paper is to prove the Borel measurabili-
ty of the set of regular points of a continuous flow on the Polish space u-,
sing the methods of J.C. Oxtoby [4) and S. Fomin [2]. The including into a
compact dynamical system in discrete time is replaced by that into the shift-
flow on the Polish space of Hilbert cube-valued continuous functions. It is
shown that the set of regular points is Gd"e"cr .

Key words: Polish space, continuous flow, regular points, invariant me-
asure.

Classification: 28015, 60B10

1. Definitions and the ergodic theorem. The set of all natural numbers
{1,2,...% will be denoted by N.

Let G be a locally compact Abelian group with the second axiom of sepa-
rability (in such a case G is a 6-compact Polish space); it will represent
the time. A Haar measure on the class .'BG of Borel sets in G will be denoted
by A , the unit element and the group operation of G by e and +, respective-
ly.

At one with [6) we say that {7k§7<°=1 is an (i)-sequence if 4, is a me-

A(CAC)
asure on ﬁG of the form yk(C)= _J_K@_k_’ Ce:BG, for every k €N, where

{Ck'ﬂ:’=1 is a nondecreasing sequence of Borel sets satisfying the following
conditions (il1)-(i4):
(i1) 0<.’/\(Ck)<w for any keN,

(12) A€ A (€ +1))
i2 1'm——5\—-(-T-— = 1 for any teG,
x T
w
(i3) for each ke N there is a nondecreasing sequence {Cy, j} 3=1 of comp-

act sets with the union Ck,
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‘ A6
(14) S;f) —a@— < 00 .

In what follows, let {Tk}itl be a fixed (i)-sequence.

By the flow (on a probability space (Q,% ,a&)) we mean any group
{Tt} G of invertible measure preserving transformations of {1 with respect
to the composition which is measurable in the sense that q(m,t):Ttw
(wef,teG) is an F'x :BG -36 measurable mapping. Such a flow will be den-
oted by (N, %, l“’{Tt}teG)'

Hereafter in this section let us consider a flow (2,9, {u,{Tti teG)' A
set Ec 2 is called invariant ({Tt}teﬁ—invariant) if TtE=E for any teG. The
6-algebra of all invariant &-measurable sets will be denoted by J. The mea-
sure @ is called ergodic if there is no E€¢ J with 0< @(E)<1. Symbols
L1(¢u) and Lz(y) will designate all real ¥ -measurable functions f=f(e) de-
fined on f1 w-a.e. such that ,[nlf(w)]d(a.(w)< oo , and

J;llf(w)lzd @(w) =< oo , respectively. The usual pseudonorms will be denot-
ed by I “1 and I l|2.
Let f be a real %-measurable function defined on fl w@-a.e. For any
keN, e let M(f, k)= (w)= [ (T @)dqy, (1) provided
7, ({te G':Ttw¢ D;%)=0 (D is the domain of f), and further, M(f,@)=t*(w)=
=1im M(f,w ,k) provided the limit exists.
Any point @ € £l and any k ¢ N also defines a probability measure mﬁ, on
K . K k
(0, %) by 0= [ % (T,)dg (1), E e F . Obviously, [ t(@an(2)=1* (@)

for every real % -measurable function f on £2 .

Proposition 1 (Ergodic theorem). For any fe Lp(‘«.) (pe 11,2}) there is
an J-measurable function f*e LP(w) such that Lim £ (w)=t*(w) [-a.e.

and l}:n “f<k)-f"lp=0. Besides fE f"(w)d@(w):fsf(w)d@(w), whenever EeJ.

Proof. The assertion is a special case of Theorems 6.1, 6.2 and 6.4 in
[6].

(k)_f-x)Z

Lemna 1. Let f&L%(w). Then the function v, (w)=M((f ,@) is

well defined (g -a.e.) for any k€N, and lim S ¥y du=o.

Proof. By Proposition 1, for any ke N it holds that £()-f*¢ 12( @),
i.e. (f(k)_fx)ze Ll((‘,). Hence Vk's are well defined (u -a.e.), and (again
by Proposition 1) 1im [lwkdf;.:o.
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2. Probability measures on metric spaces. Let V=(V, PV) be a metric
space. As usually, spherical neighbourhoods will be denoted by U&(v)
(€>0, veV). By M(V) we mean the set of all probability measures on
35\/ (on the 6€™-algebra of Borel sets). ¥(V) will be the space of all real
bounded continuous functions on V equipped with the topology of uniform con-
vergence on compact sets (the base of which is formed by sets of the type
U(E;B, €)= M 49 eCW):[f(t)-gt)|< eF, fe€(V), BeH(V), >0; X(V) de-

notes the class of all compact subsets of V). Let F(V)=va{f e€(V):

([ £(v)]£13.

Further, let us recall the following probabilistic convention. A sequen-
ce {““’k}trl in  M(V) weakly* converges to the measure w e M(V)
(@— @, k—>oo) if ljm Jtdu, = [fdu for each f e €(V). A subset

Pc M(V) is said to be relative compact if for every sequence -f,uk'ia:zl in
¥ there is a measure w & M(V) and a subsequence {\“k(j)}‘;l such that
M5y~ &+, J—>e . Finally, a subset Yec M(V) is said to be tight if
for any & > 0 there is K e ¥ (V) with the property that, for each w € &f,
@m(K)>1-¢& . By the Prochorov’s theorem the conditions of relative compact-
ness and tightness are the same i1n the case of Polish space V.

Proposition 2. Let V be a Polish space, w € M(V), and let L(,_(f)=fv fde,

f € €(V). Then La constitutes a linear functional on € (V) which is continu-
ous on F(V).

Proposition 3. There is a countably dense subset in €(V) if V is Pol-
ish.

The Proposition 2 follows from Prochorov s theorem, and for the proof of
the last assertion see [3]. Consequently, if V is Polish, there is a countab-
le dense subset in F(V), too. Let us fix it and denote by FD(V).

By the Hilbert cube we mean the compact metric space J= (O,l)N equipped

@
with the metric ©3 defined as “o‘](x,y)=”‘l2’1 l_n lx(n)—y(n)l, X,y €3,
2

_ @ _ o0 iy s ~ . . _
X= {x(n)’s n=1® Y= {y(n)}ml' As it is well-known, every Polish space is homeo
morphic to a Gg-subset of J (Urysohn).

3. The space ‘(J(V). In this section we shall suppose that V=(V,gov)

o0
is a locally compact Polish space. As it is well known, V=M'L=J1 Bg (the union

oo

of interiors) where {B 37,

is a sequence of compact sets. The space of all
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continuous mappings of V into the Hilbert cube with the topology of uniform
convergence on compact sets will be denoted by ‘CJ(V) (the base of this topo-
logy is formed by sets U(X;B, ¢ )= f\ (y s‘f’J(V): e (X(1),¥(1)) < e},

e €,(V), BeX(V), e>0).

Proposition 4. <CJ(\I) is Polish.

Proof. First we shall show that the above topology is metrizable. Let
us set pn('f,’i):sup {QJ(Y(t),V(t)):te Bt, neN, %,Y € €5(V), and further

o~ ® 1 P
S, p (&Y= =, —;-Pn(Y,y),
%Y e (V) Obviously, @ is a metric on ‘f (Vv), and for any neighbourhood

VX)) (e>0, Re <€ (V)) there is n,€ N such that U(%; LtJ B, e/2)c UER).
On the other hand, let us have a set U(X;B,e) (X e<e3(v), Be X(V), e>0).

5i v- & o0 T o M oy
ince ~M'L=J4 By, B c”&ABn C,LL,Jan for some n_&N. Consequently, U ® e

n
c U(%;B, &) for d=g/(2 %), which together gives the metrizability.

Since the completeness in the metric Sb is easy to see, it remains to
verify the separability, i.e. to find a countable set which intersects any
open set U(X;B, € ). To this end let us define, for each n€ N, an auxiliary
continuous mapping ¢ of J into itself by the rule qn(t)=(t(l),t(2),...

.,t(n),0,0,...), t=(t(l>,t(2),...)63. As it follows from the separability

of the space of all real continuous functions on <0,1%" (with the supreme
norm), there is a countable subset An c ‘\?J(J) with the property that for each
7e ‘€J(J) and € >0 there exists Y€ An satisfying

@ P57, ¢, E(p (1)) < €/2

for any te J. Let us suppose that 7;‘63(v), Be ¥(v), and & > 0. According
to Urysohn’s assertion, we may assume that V itself is a subset of J. Further,
there is a continuous mapping 7 of J 1nto itself such that Z=X on B (from the
normality of J). Since J is compact (and Z is uniformly continuous), we can
find ne N such that, for any teJ,

3 GJ(?I]('Z'(q'n(t))),'i(t))< € /2.
Summarizing (2) and (3), fJ(V(t),')E'(t))< e for any teB, i.e. YeU(X ;B,& ).

«©
The desired countaple set corresponds to ”% An‘

Let us define the module of continuity (of ¥ on B) for any X e ?J(V),
BeX(V) and 7> 0 by we(B,d")=sup {95(X(s),X(1)):s,t€B,0(s,t)< I}
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Lemma 2. Let Ec‘fj(v). Its closure E is compact if and only if, for
any n e N,

(4) Jl_&g\ suep w%( LJ,1 n,d‘) 0.

Proof. Let E be compact. Clearly, the functions wg(B,%(-) of X (k=1,2,...)
are continuous and (in k) nonincreasing, for each B e X(V), which implies the
uniform convergence llm wg(,(B, k) on E, and hence (4). Conversely, (lt) allows
us to construct, for any € >0, a finite e€-net of £ in the space J (with
the metric defined also by (1)) making use of the step-J-valued functions va-

WO
nishing outside a sufficiently large compact mf._\q Bn. Thus the compactness of

E follows from the fact that ‘L’ (V) is closed.

Lemma 3. A sequence {y.k} =1 in .M(‘GJ(V)) is relative compact if awmd
only if, for any nD,J, LeN, there is pe N such that, for every ke N,

() 1, (K € EDing( Ly B, Dz 1h<

1
By b z

Proof. If {‘“k}‘:zl is relative compact, then, according to Prochorov,
it is tight. Thus for any £ e N there is KeJC(‘f'J(V)) such that, for every
k €N, (“'k(K)> 1- % As it follows from Lemma 2, for any Ny» j€ N, there is

m
PEN such that Ke{X & €(V)sug( Uy B, $)< 14 which implies (5).
Conversely, for any no,j,la N, let p:p(n ,3, £) €N be such that, for e-

1 1 1
very ke N, (“k(Ej,nD,l)> 1- F-EE-TO , where E n, £°
2

- {% el e l) 1 . . R
= {X e J(V):w).z( 1 Bn,-p—< -5}. Setting E, '»».Qq

A
3

(following Lemma 2 again) a compact set f : for any n,€ N

E.

we obtain
hPUISY 4

4

: “o ~ -
llm sup iw..( L)1 B, d):Xe Eﬁ!-.}in‘n) sup {w;( R B, d):Ne 3 =0.

oo
404 Ej,no,l
Moreover, since (uk(El)> 1- % for any k € N, we have proved the tightness,
which is sufficient.

A. Centinuous flow on a metric space. Let SL be a metric space and
{Tt’s teg @ group of homeomorphisms of fL-(with the composition as the group o-
peration) which is continuous as a mapping of SLx G into Ml with respect to
the product topology. The triad (ﬂ,ﬁn,{'ﬂt}tes) will be called a continuous
flow (on a metric space). The set of all {Tt} teg-invariant probability measu-
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res on (Q,B,) will be denoted by Mst(n ’{Tt}teG)' Recall that for any
e M (0,474 4o 0) it holds that @oTi= @ , whenever teG, i.e.

($,8,, y,{Tt1 teg) is a flow on a probability space. Thus we shall use the
notions introduced in Section 1 in the case of a continuous flow, too (the
6’-algebra % will be replaced by Ba). A set Ee 33, is said to have invari-
ant measure one if, for any € ""st(n’”t}tes)’ @ (E)=1. Let us note
that it may happen .Mst(.ﬂ,{Tt§ teG)=ﬂ (see [5]); the theory below is vacuous
for such flows.

‘ Definition 1. Let (1, % ’ut}ttG) be a continuous flow on a metric
space. A point w € ) is called guasi-regular (w & Q=Q(.Q,{Tt'f teG)) if
(gql) the limit M(f,®) exists for any fe F(L),
(g2) the sequence { m:j':l (in M@L)) is relative compact.

Lemma 4. For every cw € Q(QL ’”t" tsG) there is the unigue measure

K
m, € Mo (0,473 teg) Such that m, —»m,,, k—»co.

Proof. By (q2), ml;(j)-» & , j—>oco , for some we M(SL) and some
increasing sequence 4k(j)]°j°=l. By (ql) we have, for any fe F(Q), fnfdy.=

“Lin fnfdm';(j)d;m ME,@ K(3)=MCE, @)=1jm o 5 hence mf, — g,

k — €0 . As such a measure @ is unique, let us write @ =m.,. Further, sin-
ce for any f €<€(Q1), keN, seG, lff(z)dm:f)(z)- J f(Tsz)dmz(zH:

1 (B4
= (T, 0)dA (1)~ f(TowddA (1) |4 +2A (C, _A(C, +s))
—T(C—kﬂfé'u(tw) ) CA‘CA 1 ) AT, 1 8(Cy

(llfﬂ=§u |£(t)], & means the symmetrical difference), it follows that
€

p
G

m, € Mgy (0,473, o) by (i2).

teG

Lemma 5. Let fL be a Polish space. Then e Q(NL ,(Tt‘i teG) if and only
if w satisfies the conditions (ql”) and (q2), where (ql’) means that the
limit M(f,w) exists for any sto(ﬂ.).

Proof. Let w €l satisfy (q2), i.e. the sequence {'“cl:;;il is tight. Hen-
ce for any ge F(fL) and € > 0 there is feFD(.D.) such that, for every ke N,
IM(£, w,k)-M(g, w,k)|< & /3 (we find B € K (L) with the property m:f,(B)>1 -
- €/12 for every k&N and feFD(.Q.) such that |£(z)-g(z)|< € /6 whenever
z€ B). Since by (gl’) |M(f, w,k)-M(f,e ,k")|< € /3 for sufficiently large k,
k'e N, the limit M(g,w) exists.
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-
5. The shift-flow on %(G). We can write G= ML_J1 B: (for each ne N let

Bn e X(G)). According to Proposition 4, ‘EJ(G) is a Polish space (with the
metric @ defined by (1)). Let us write in short 53?= ﬁ‘e'(G)‘ For any
J

Re ‘€J(G) and s,te G let (St‘f()(s)='>’<'(s+t). Evidently, S, is a 1:1 mapping of
?J(G) onto itself for any teG.

Proposition 5. ('C’J(G), 53? ,{St'! teG) is a continuous flow on the Polish
space.

Proof. We have to prove that {Stl teG is a continuous group of homeo-

morphisms of ‘C (6). Let {X. }°° (1im % x) and (t 1 (lim t. -s') be conver
gent sequences in ‘f (G) and G, respectlvely We have to show that I%m St

—Ss,x. As clearly SS ° St’ss+t for any s,t€ G, we may assume that s =e. E_et
Be XK(G) and e > 0. We ask whether it holds, for any sufficiently large j
and any te B, that PJ((St %.)(t),X(t))< €& . Let U be a neighbourhood of e
with the compact closure UJ Slnce B’= ty" (B+t) is compact, there is >0

such that ‘oa(x(s),x(t))< € /2 whenever s,teB” with S"G(s’t)< d” . Further,
from the continuity of the group operation there is A >0 such that

;oG(t,s+t)<d' whenever te€B and ;DG(e,s)<A . Finally, for all sufficient-
ly large j and t€ B, it follows yJ(?j(tj+t),'>'<'(tj+t))‘ € /2 from the conver-
gence 1;m i'j:?(', and pJ('i(tj+t),'>'<'(t))< € /2 from the uniform continuity of X

on B .
Lemma 6. Q( ‘fJ(G),{St} teG) is Gygy *

Proof. Let us write in short F for F (23(8)) and Q for Q( ‘ea(G),

{s} )+ According to Lemma 5, Q= an Q,, where

‘t te
Q= f,f\ {%X e ‘? 6): 11m1nf M(£,%,k)= lnlsup M(f,X, k)2,

0,- Ye ?J(G):Img is relative compact}.

k=1

Since for any f € €( ‘e (G)) and k€N also the function M(f,X,k) belongs in
€ (6)) (1im Jg £(Sy n)drk(t) Jo £(53)d 1 (1) whenever lim % %), the
set Ql is de‘ ([3], p. 274). Further, making use of Lemma 3,

P

CRANA f}, wor L) KeGE) g ¢ €0 ug( L s Dzibetl.

-

i) , the set

m
Considering the continuity of the function (of ¥) wy( mk24 Bn’p
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Ue L, 1
W U =)z +1li i X
iYe ?J(G).wy(mﬂ Bn’p)" J}ls closed, hence the function (of %)

"o
mg({?’ 3 @J(G):wv( s Bn%) z %}) is of the first Baire class. Thus Q, (and

also Q) is Gy g o -

Lemma 7. QC ‘CJ(G)JSt} teg) has invariant measure one.

Proof. We shall show that both sets Q1 and QZ (cf. the proof of Lemma 6)
have invariant measure one. For Ql this assertion follows immediately from
Proposition 1 Concerning Qz, it holds by Prochorov’s theorem that Qz=

-3
= {\4 ngjx Q, K e 6): m~(K)> 1- —}, where X =X(€4(G)). Let
“e Mgy ‘CJ(G),{Stl teg) and let {ininzl be a sequence of positive real num-
bers which tend to 0. There is a sequence {Kn}‘::l in X such that, for any
neN, {u(K )>1‘E2 and, consequently, by Propositioﬂ 1, {u.(A )21- €, whe-
ﬂ

re A = {X € €5(6): xK () >1-¢ 1. Together, @ ( A.)=1. For any

My =4 m-m-

£ * 1
fixed JEN and § e 7\4 ML,JMA there is n &N such that Tk (V)> 1- 3 The-

refore 27)) 1— for all sufficiently large k€& N, and hence m«(K)—

oo <0
'{‘((‘O(y)?l- 3 for all kN for sone K& X . Thus , /), ALY

Lemma 8. For any Borel measurable real function f on 'd’ (G) ffd""" is
a Borel measurable function of X on Q=Q( 24(6), {St} th), and

(6 ffdég:fa(ffdmy)dp,(')'()
for every e Mst(f:,(c),{st} teG)'

Proof. According to Definition 1 and Lemma 4, ff‘dmff"‘(’)'() for any XeQ
. _ (kg
and f e‘f(‘fJ(G)). Further, ffd(u.—ff du= f&f*’dy. for any “e .M,St(GfJ(G),

{S# tGG), i.e. such a function f fulfils (6). By the theorem on monotonous

convergence, (6) is true also for characteristic functions of closed sets,
which enables us to deduce the desired assertion for all characteristic

functions of Borel sets, and hence for all Borel measurable functions.

6. About the relation ffdmw =M(f,w ) more generally. In this section
let (.ﬂ.,tﬂn,{Tt} teﬁ) be a continuous flow on a Polish space. For any w €
+ _ Q0 - .
let 0 (w)= kksj‘l {Ttw,teck’( (cf. § 1).
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Lemma 9. Let K e X(Q) and @ € Q(Q, Tl 4eg)- Then there is
KeX () such that K cKekK, v0*(w) and

%)) Limint MOy @, kZm, (K ).

Proof. For any neN let us define U = fze.Q:dist(z,Ko)< %}, and take
fn5 ¢ (n) such that Klkoé fnézun. As 1}\{“ M(fn, w)zmQ(Ko), for an increas-

ing sequence {kn}:il it holds that, for any n and kzkn, M(fn,co,k)}mw(Ko)-
- % For the sake of simplicity let us suppose that all the sets Ck are com-
pact (the general case will be considered below). Using a continuous mapping

?o(t)thw’ teG, of G into A, let us set

[~ o
(® keky v T, @ ng,C )
n+l
Every open cover {V} of K allows us to find sets Vd ye-esYg, Such that, for
1 b
some n €N, U c U1 ocJ' Taking into account that K\Un= 7}(21 (an%"cqun

nUn) and the sets go“,Ck_+1 being compact, we can see that K\ Url is compact,

too. Hence there is a finite subcover £V _ ,...,V. ,V ye--sV, Y of K, i.e.
I U TS

K is compact. It follows from (8) that, for any n, n =n and k&‘\kn“ o+l

Korapds MolKy)- & €m (K )- . M(fn,,co,k)é—(——)f{K(T @)dA(t). So
My (K- <M(%K,w k) for each kZk_,which implies (7).In general case we

shall take (according to (i3)) some compact set Ck 3(k) (ke N) satisfying
.‘A(Ck\ Ck '(k))

—a<fzk§__<1/k, instead of Ck.

Lemma 10. Let f be Borel measurable bounded real function on £ and
we A, {Tt} G) If for each ¢ > 0 there is a set Eg & I3, such that the
contraction of f to Eg is continuous, 0"(w)c Eg and m L (Eg)>1-¢€ , then
J fam M(f,@).

Proof. Let zsg;-aalf(z)hcc and let € > 0. From the regularity of the

measure it results that there is a compact set Koc E‘ such that mw(K0)> 1-8.
According to Lemma 9 we can take a compact set K, K cKeK v 0"(w), for

which (7) holds. Since the contraction of f to K is continuous, there is
g € €(N.) such that ggﬂxig(z)hm and f=g on K. Now, for every ke N we have

| [ tam ;M(f,@ )| & | [ £y [gam, | +] [ gong:M(g, @,k |+ |M(g, @ ,K)-M(E,@ k)| &
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€20, (DN K) +|M(g, ) Mg, @,K) [+2e¢ (1M g, , 2,k)), thus
Linsup | f fdn,-M(f,00,K)|< bec e«

Lemma 11. Let f be Borel measurable bounded real function on R and
we Q(n,{Tti ten.)‘ If there is a &Tt} teg-invariant set £ & By containing
o« such that the contraction of f to E is continuous and m w(E):l, then
Jtdm M(f,@).

Proof. This lemma is a consequence of the previous assertion.

7. Relations between flows. Two continuous flows (fL, B, ,{Tt} teG) and
a’ By, ’{T‘élteG) on metric spaces are called homeomorphic if there is a
homeomorphism § of A onto 0’ such that T,= § 7T, &  for each teG.

Lemma 12. The sets u=u(n,nt\t€6) and Q'=Q(.ﬂ',ﬂ,’c!t‘s) of guasi-regu-
lar points of two homeomorphic (under & :Q—>LQ') continuous flows satisfy
the relation Q= ¢ 1.

Proof. Clearly, m::@‘l:m;w for any @ € L, ke N. Since § is continu-
ous, the weak®* convergence of an arbitrary sequence {ﬂ.‘}::l in ML) imp-
lies the weak® convergence of {(«.kg'll‘l’::l in ML), hence $ QcQ’. The

converse follows from the symmetry.

We can see that a continuous flow (T, 551 ,{ﬂ} teG) (on a metric space)
induces a new one on every nonempty {'ft}tw—invariant Borel subset Q <.
This flow (Q, ﬁn ,«iTt}t.G) (.‘B_n_ =_Q_,,555 , Tt;ft M, teG) will be called

a subsysten of (&, By T3 o).

Lemma 13. Let (0, B »’Ut} teg) be @ subsystem of a continuous flow
A, By AT} o) Then QLTI =0 {we QT ATR, em (D=1

Proof. Let us write @ instead of w whenever w € M), and let q=
R AT, o)y TR AT Y o). 1T e 0 then the limit M(f,w) exists for
any fe F(f{) because £AN. & F(Q). Further, the convergence in M(Q)
m,~>m, , k—» co , implies that (m:’)"'—» R, k— @ (in ML), where

we set (ny~ (E)=nl§(ANE) and W (E)=m (LN E) for ke, Ea B Ths
w & Nl and R (N)=1.

On the other hand, let us suppose that we fLA T and ‘r‘n",(.ﬂ )=1. If
fe F(N), let us define a real function g on . in such a way that g=f on L
- 58 -



and g=0 on i\ Q. . According to Lemma 11, fgcﬁw =M(g, @ )=M(f,w ), i.e. the

limit M(f,w ) exists. As mﬁ-; @, k—> e (in M), where @ =F, By,
we conclude that @ € Q.

Lemma 14. Every continuous flow (1,8 ,{Tti teG) on a Polish space is
homeomorphic to a subsystem of the shift-flow ( ‘{J(G),CB‘C 15,3 teG ).

Proof. By Urysohn’'s theorem there is a homeomorphism ¥ of £l onto a
Gg-subset ¥ of the Hilbert cube J. Let us define (@ w)(t)= Y(Ttw) for
any t€0, wef; ¢ is a 1:1 mapping of N into ‘CJ(G). Obviously, its ran-
ge $0 is sy teG-1nvariant and T,= Q‘lst§> for any t€ G. We have to show
that ¢ is bicontinuous.

In order to prove the continuity of $ let us suppose that we L,
BeX(G) and ©>0; we have to find d" > 0 such that ¢ (W(w)) ¢
cU(dw;B,e). To this end let us define a real function A on G as follows:

O(t)=sup {d>0:Vt'e G Vzen (p (t',e)<d & Pp(Tiw,2)<d ) =>
= @ (T4w, T 2)<e /21
According to the definition of a flow, A is continuous and positive on G and

has a minimum d > 0 om B. Making use of the group operation continuity, we
find a finite set {tl,...,’cjic B such that B ¢ ;@1 ai(Ud(e)), where we set

ai(t)=t+ti, teG. Further, US(w) ¢ &64 Tt (Ud(Tt w)) for some d > 0. If
i i

now teB, then te ai(Ud(e)) for some i and, as prescribed by A ,
0Ty @,1.2)= 0 (Ty 0,7 (T4 2))< €/2 for each z6 (@), Thus
i i i i

9a(Tt“”TtZ) < 9&.(Tt"”Tti‘")+ ;on(Ttiw,th)< e ,ie ®W(w)e
cU(QPw;B,e). Let us note that N eM, since it is a 1:1 continuous image
of a Polish space (see [31, p. 397).
To show that the mapping é_l is continuous, too, it suffices to appre-
hend that every set @ (U8(w))= N {Xe €4(6):X(e) « Y (Usw )} (e>0,
wefl) is open relative to N..

8. The Borel measurability

Theorem 1. Let (N, B ,(Ttl t;B) be a continuous flow on a Polish space.
Then the set of quasi-regular points is Borel Gg,, 4 Of invariant measure one.

Proof. Following Lemma 14, (R,33, 7.3, ) is homeomorphic to a sub-
system of (‘!,'J(G), :B'¢ ,{Sti t:G)’ the corresponding homeomorphism being denoted
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by & ($: Q— ‘CJ(G)). As it is known, R is Gy (L3), p. 337). Let us
write Q=Q(Q ,{Tt}t‘s) and E,e =Q( ‘CJ(G),{St} teG)' According to Lemma 12 and
Lemna 13, Q= $-1 (0 N~ {Xe Qy:m(PN )=13). The Borel measurability of Q
has already been a consequence of Lemma 8. But, in another way, the function
mE) is of the 379 Baire class for any Borel Gg subset E ¢ ‘é’J(G) Hence
Q.ﬂ.n(xtl)f mg(Qn) =1} is Gyp, relative to Q.O. n Qp, and so it is Greyr
by Lemma 6. Making use of the continuity of Q we show that Q is Gd'a'd‘ s
too.

Provided w € ‘Mst(n’ﬂt}tsG)’ we apply Lemma 7 to ‘a,é—l to conclude

that Q has invariant measure one.

We always assume (0L ,CB_Q AT th) to be a continuous flow on a Polish
space in the remaining part.

Lemma 15. J tdm,, is Borel measurable function of w on
Q=Q(n ,{Tt? th) for any real Borel measurable function f on £ , and ffdg.=
fa(ffdnw)d(u(w) for any me M_ (2,413 o).

Proof is the same as in Lemma 8.

Definition 2. A quasi-regular point ¢ € fl is called a point of density
(we QD=QD(J).,{Tt§ teB)) if mw(u)>0 for every open set U containing w . A
quasi-regular point « is called transitive (w e QT=QT(.Q.,(Tt§ uG)> if mg, is
an ergodic measure. A point w is called regular if we R=R(.D.,{Tt'i teG)=
=Qpn Q;-

Lemma 16. All the sets QD, QT and R are Borel G of invariant measure

ded
one.

Proof. These facts follow in the same way as in L4]. We show that con-
cerning Q; only. A measure m w(we ) is ergodic iff m”({z € ) :M(£,2)=
= [fdo3)=1 for any feF (n), ie. O i Fm{o & Q:g;(w)=0f, where we

set g.(w) = [(£%(2)- [tan)%dn (2), f& F(Q). Tt holds that, for any feF(D),
ar(@)eljn [, t*0@-1* @) @1n 1yn f(190-1 () Pand(2)-
=lim 1i (k) 2 - N (k) (1)(,,42
=lim 1jm Jst (Tto)—f'(w)) dary(D)=lip Lip Lim [ (£ (T -1 V@),

so that the function gf(w) is of the }rd Baire class. Hence, applying Theorem
1, QT is G Sed Moreover, it has invariant measure one because
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“1im 1i (k) 2 PP (k) 2 Y=
gf(w)—ltm l;m fG(f (Ttw)-f"’(Ttw)) d‘t’j(t)'ljf' I;m M((£Y -9, @, 3)=0 @~
-a.e. for any u & J(.St(.n. ’Ut‘teG) by Lemma 1, whenever fe F(L).

Theorem 2. Let (Q ,.'Bn,Utl th) be a continuous flow on a Polish spa-
ce. Then the set R of regular points is Borel G,“. of invariant measure one.
Further, m,(E) is Borel measurable function of «w on R for any set E€ By ,
and

(L(E)=j;z Mp(E)d ()

for any @ € -Mst(.ﬂ.,{Tt} €6’

Proof. The assertion is a consequence of Lemma 15 and Lemma 16.
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