Commentationes Mathematicae Universitatis Caroline

Osvald Demuth

Reducibilities of sets based on constructive functions of a real variable

Commentationes Mathematicae Universitatis Carolinae, Vol. 29 (1988), No. 1, 143--156

Persistent URL: http://dml.cz/dmlcz/106605

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

REDUCIBILITIES OF SETS BASED ON CONSTRUCTIVE FUNCTIONS OF A REAL VARIABLE

Osvald DEMUTH

Abstract

Reducibilities of sets based on mappings corresponding to constructive functions of a real variable are introduced and studied. Connections between them and tt- and T-reducibilities and their relativizations to \emptyset° are discussed.

Key words: Recursion theory, tt-reducibility, T-reducibility, constructive functions of a real variable, arithmetical real numbers, sets of reals of B-measure zero.

Classification: 03030, 03F65

Binary expansions of reals give us a many-to-many correspondence between reals and sets of natural numbers ($N N s$). For any set A of $N N s$ we denote by r_{A} the sum of the series $\sum_{x \in A} 2^{-x-1}$ and, for any real X, we denote by $\operatorname{Set}(X)$ the infinite set B of $N N s$ for which $X-r_{B}$ is equal to an integer. Using reals to study sets of NNs we can restrict ourselves to reals from the closed unit interval $[0,1]$. A real X is said to be A-recursive if $\operatorname{Set}(X) \leqslant T^{A}$ holds. In constructive mathematics in the sense of Markov we study, among other things, constructive reals (i.e. codes of \emptyset-recursive reals) and everywhere (i.e. for any constructive real) defined constructive functions of a real variable (briefly:constructive functions). Let us remember that any constructive function is an algorithm transforming equal constructive reals into equal ones and it is constructive continuous (i.e., as we shall see later, \varnothing-continuous) at any constructive real [2].

For any constructive function F we denote by R[F] a classical function of a real variable being a maximal (as to domain) continuous (with respect to its domain) extension of F. Thus, $R[F]$ is defined, in particular, at any \emptyset-recursive real and transforms it into a real being 0 -recursive, too.

A set A of NNs is said to be f-reducible to a set B of NNs by F (notation: $A \bigwedge_{f} B$ via F) if F is a constructive function for which $\operatorname{RCFJ}\left(r_{B}\right)$ is defined and $R[F]\left(r_{B}\right)=r_{A}$ holds. Studying f-reducibility we can limit ourselves to
constructive functions constant on both ($-\infty, 0]$ and $[1,+\infty$), which will be named by us c-functions. A set A of $N N s$ is said to be f-reducible, áucf-reducible, \emptyset-ucf-reducible, mf-reducible, respectively, to a set B (notation: $A \leqslant f_{f}^{B}, A \leqslant \emptyset_{-u c f}^{B}, A \leqslant \emptyset_{\text {-ucf }} B, A \leq f_{f}^{B}$, respectively) if there is a c-function F, a classically uniformly continuous (i.e., as we shall see later, \emptyset '-uniformly continuous) c-function F, a constructively uniformly continuous (i.e. ด-uniformly continuous) c-function F, a monotone c-function F, respectively, such that $A \leqslant_{f} B$ via F holds.

Basic properties of these reducibilities and their relation to t t- and T-reducibility and their \emptyset^{\prime}-relativizations are studied in this paper.

We use the notation and terminology of [11]. \rightleftharpoons stands for "denotes" and $=$ for graphical equality. For any function (or algorithm) \mathcal{G} and for any objects P and R (of corresponding types), $!G(P) \rightleftharpoons(G(P)$ is defined) and $g(P) \simeq R \rightleftharpoons(!G(P) \&(G(P) \doteq R))$. Note that \simeq means: both sides are defined and equal, or both are undefined.

Objects of constructive mathematical analysis used in this paper are either words in the alphabet (containing, among other things, the symbols $0,1,-, /, \square, \Delta, \nabla$) or objects finitely codable by words in $\boldsymbol{\square}$ (e.g. algorithms are codable by NNs). Thus, $0,0 \mid, 0 \|, \ldots$ are (codes of) NNs. Also integers, rational numbers (RtNs) and strings are words in $\frac{n}{\omega}$ of appropriate types. As an abbreviatory notation for these constructive objects, we employ the standard notation (e.g., for NNs, $0,1,2, \ldots$). It is not necessary for us to make any explicit difference between intuitive objects of these types and their constructive counterparts (used by us). The set of all words in ㅁ denoted by $\square^{*} *$, the set of all NNs (or RtNs) by N (or by Q) and the set of all strings (of 0 's and 1 's) by $S t$. In the sequel, the symbols U, V are variables for words in Ξ, s, t, u, v, w, x, y and z are variables for NNs, i and j for integers, a, b, c and d for RtNs, $\rho, \boldsymbol{\sigma}$ and τ for strings (of 0 's and 1 's), A, B and C for sets of NNs and X and Y for reals. A RtN a is said to be binary rational if 3 iy $\left(a=1.2^{-y}\right)$ holds. Let Q^{b} denote the set of all binary rational numbers. Thus, Q^{b}, Q, N and $S t$ are subsets of $马^{*}$.

Notions and notations for strings, sets of strings, partial recursive functions (PRFs), recursively enumerable (r.e.) sets of NNs and their relativizations were introduced in [11]. In particular, δ_{x}^{\sim} denotes the string with the number $x, 《 A>=\left\{\delta_{z}: z \in A\right\}$ and $A[0, x]$ is the string of length $(x+1)$ extended by A for any $N N X$ and any set A of NNs. For any set A and any $N N s z$ and s, we denote $\left\{x:!\varphi_{Z}^{A[0, s]}(x) \& x<s\right\}$ by $W_{Z}^{A, s}$ (for the notation see [11]).

For any set $\boldsymbol{\mathcal { S }}$ of strings let $\mathscr{\varphi}^{E} \rightleftharpoons\left\{A^{z}: \exists \tau(\tau \in \mathcal{Q} \&(A\right.$ extends $\left.\tau))\right\}$. We remind that $\boldsymbol{\mu}(\mathscr{\mathscr { P }})$ denotes the Lebesgue measure of \boldsymbol{g}^{E} (in the following
we shall of ten write $\mu\left(\boldsymbol{\varphi}^{E}\right)$ instead of $\mu(\mathscr{\rho})$) and that $\boldsymbol{\rho}$ is said to be a proper covering if $\mathscr{\rho}$ is r.e., $\boldsymbol{\rho}^{E}$ contains all recursive sets but there is a set of NNs not contained in $\mathcal{\rho}^{E}$.

There exist recursive functions nol (non-overlapping) and hp (the halting problem) such that, for any NNs t and y,
(i) $\emptyset^{\prime}(t)=\lim _{\Delta \rightarrow+\infty} h p(s, t)$ and $h p(y, t) \leqslant h p(y+1, t)$ hold;
(ii) $\left\langle W_{\text {nol }(t)}\right\rangle$ is a set of mutually incomparable (with respect to \subseteq) strings; moreover, if even $\left\langle W_{t}\right\rangle$ has this property then $W_{\text {nol }}(t)=W_{t}$ holds;
(iii) $\left.\left\langle w_{\text {nol (} t)}\right\rangle\right\rangle^{E}=\left\langle w_{t}\right\rangle^{E}$ is valid.

Remark 1. 1) There are recursive functions dom of two variables and val of three variables such that, for any $N N s z, x$ and y,

$$
\begin{aligned}
& W_{\operatorname{dom}(z, x)}=\left\{t:!\varphi_{z}^{\delta_{t}^{\prime}}(x) \& \neg(\exists w)_{w<t}\left(\delta_{w}^{\nu} \varepsilon \delta_{t}^{\prime} \&!\varphi_{z}^{\delta}(x)\right)\right\}, \\
& W_{\text {eval }(z, x, y)}=\left\{t: t \in W_{\operatorname{dom}(z, x)} \&\left(\rho_{z}^{\delta}(x)=y\right)\right\}
\end{aligned}
$$

(for the notation see [1D). Consequently, $W_{n o l}(\operatorname{dom}(z, x))=W_{\operatorname{dom}}(z, x)$ and, for any set A of $\left.N N s, \varphi_{z}^{A}(x) \simeq y \Leftrightarrow A \in 《 W_{\operatorname{eval}}(z, x, y)\right\rangle^{E}$.

On the other hand, we can construct on the basis of an index of a recursive function f of two variables a $N N z$ fulfilling

$$
\left.\left\langle W_{\operatorname{eval}(z, x, y)}\right\rangle^{E} \subseteq<W_{f(x, y)}\right\rangle^{E}
$$

and
$t=0<W_{\text {eval }(z, x, t)}^{+\infty}>{ }^{E}=\bigcup_{t=0}^{+\infty} \ll W_{f(x, t)}>{ }^{E}$ for any NNs x and y.
2) Using \emptyset '-recursively enumerable sets instead of r.e. ones in the definition of partial A-recursive functions [1, p. 132], we obtain, among other things, a generalization of T-reducibility: the concept of \emptyset^{\prime}-T-reducibility. According to 1) and its relativization to \emptyset^{\prime} we have $A \Leftrightarrow \emptyset^{\circ}-T^{B} \leftrightarrow A \leqslant T\left(B \oplus \emptyset^{\prime}\right)$ (there are recursive functions transforming indices of θ^{\prime}-T-reducibility into corresponding indices of T-reducibility and vice versa). Let us remark that the ($\emptyset^{\prime}-T$)-jump of any set A is T-equivalent to $\left(A \oplus \emptyset^{\prime}\right)^{\prime}$.

It will be useful for us to introduce also an \emptyset^{\prime}-variant of tt-reducibility. A set A of $N N s$ is said to be \emptyset°-tt-reducible to a set B of $N N s$ (notation: $A \leqslant \emptyset^{\prime}-t t^{B}$) if there exists an \emptyset^{\prime}-recursive function f such that $A \leqslant \emptyset^{\circ}-t t^{B}$ via f holds, i.e., for all $N N s x, x \in A \nLeftarrow$ (tt-condition $f(x)$ is satisfied by B) is valid.

Of course, $A=\emptyset^{\prime}-t t\left(A \oplus \emptyset^{\prime}\right)$ and $A \leqslant \emptyset^{\prime}-t t^{B} \Rightarrow A \leqslant T\left(B \oplus \emptyset^{\prime}\right)$ hold.
Results from [10, Theorem 6] are reformulated in parts 1) and 2) of the
following statement. We use the function e from [11].
Theorem 2. There are three recursive functions f and g of one variable and g of two variables and four \emptyset^{\prime}-recursive functions \bar{h} and \bar{k} of two variables, \bar{p} of three variables and \bar{q} of one variable with the following properties.

1) For any NNs x and $t, \sum_{s=0}^{+\infty} s g(|g(s, x)-g(s+1, x)|)<f(x)$, $\mu\left(\left\langle\underset{y \rightarrow+\infty}{W_{\lim _{n}}} g(y, x)\right\rangle{ }^{E}\right) \leq 2^{-x},\left\langle W_{\bar{g}(t)}^{\emptyset}\right\rangle^{E}=\underbrace{+\infty}_{r=t}\left\langle W_{y \rightarrow+\infty} \lim _{g^{\prime}} g(y, v)\right\rangle^{E}$ and $\left\langle W_{e(t+1)}^{y \rightarrow+\infty}\right\rangle^{y} \subseteq\left\langle W_{\bar{g}(t)}^{D^{\prime}}\right\rangle^{E}$ hold and consequently, $\left.\mu \rightarrow+\left\langle W_{g(t)}^{y,}\right\rangle^{y^{\prime}}\right) \leq 2^{-t+1}$.
2) For any NNs z and t and any set A of NNs fulfilling $\left.A \&<W_{\sigma_{(}(t)}^{0^{\prime}}\right\rangle^{E}$, we have
(i) $\left.A \in 《 W_{z}\right\rangle^{E} \Leftrightarrow A \in\left\langle W_{z}^{\bar{h}(t, z)}\right\rangle^{E}$;
(ii) if $A \notin\left\langle W_{z}\right\rangle^{E}$ (i.e. if $\left.A \&<W_{z}^{\bar{h}(t, z)}\right\rangle^{E}$) holds then
$\forall w y\left(\vec{k}(z, w+t) \leqslant y \Rightarrow \mu\left(\ll W_{z}>^{E} \cap\{A[0, y]\}^{E}\right) \leqslant 2^{-w} \cdot \mu\left(\{A[0, y]\}^{E}\right)\right)$
is valid; consequently,
(iii) either A is in $\left.\left\langle W_{z}^{\bar{h}(t, z)}\right\rangle\right\rangle^{E}$ or it is a point of dispersion of $\left\langle w_{z}\right\rangle^{E}$ (with an \emptyset^{\prime}-recursive function as a modulus).
3) For any $N N s t, z$ and x and any set A of $N N s$,
a) $\left(A \notin<W_{\bar{g}(t)}^{\emptyset} \searrow^{E}\right) \&!\varphi_{Z}^{A}(x) \Rightarrow \varphi_{Z}^{A}(x) \leq \bar{\rho}(t, z, x)$ holds;
b) if
(1)

$$
A \notin \underset{v=0}{+\infty}\left\langle W_{\overline{\mathrm{g}}(\mathrm{~V})}^{\emptyset}\right\rangle^{\mathrm{E}}
$$

is fulfilled, then A is a NAP-set (thus, a non-recursive non-semigeneric set [11]) and
(i) $!\varphi_{Z}^{A}(y) \Rightarrow \varphi_{Z}^{A}(y) \leqslant \bar{\square}(y)$ is valid for any sufficiently large $N N y$;
(ii) $A^{\prime} \equiv \emptyset^{\prime}-t t^{A}$ and, thus, $A^{\prime} \equiv T^{\left(A \oplus \emptyset^{\prime}\right)}$ hold;
(iii) for any sets B and C of $N N s$, we have $C \leqslant T^{B} \leqslant T^{A} \Rightarrow\left(C \leqslant \emptyset^{\prime}-t t^{B}\right)$ \& \& (8 is not \emptyset^{\prime}-hyperimmune).

Let us remark that, as we have seen, for any set A fulfilling (1), any partial A-recursive function is almost everywhere majorized by the \emptyset^{\prime}-recursive function \bar{q} and that (1) is valid for almost any set A, where "almost any" is effective with respect to \emptyset^{\prime} (cf. [9], the corresponding notion will be also introduced below).

Proof of Theorem 2. It is sufficient to show that part 3) is a consequence of the preceding two parts of the statement. We use Remark 1 and
construct \emptyset^{\prime}-recursive functions \bar{p} and \bar{q} such that, for any $N N s t, z$ and x, $\bar{p}(t, z, x)$ is the maximal element of the set
$\{0\} \cup\left\{\varphi_{z}^{\delta_{y}^{r}}(x): y \in W_{\operatorname{dom}(z, x)}^{\bar{h}(t, \operatorname{dom}(z, x))}\right\}$ and $\bar{q}(x)=\max _{v, w \leq x} \bar{p}(v, w, x)$.
To finish the proof we notice that if $A \notin \varangle W_{\bar{g}(t)}^{\emptyset} D^{E}$ then
$x \in A^{\prime} \Longleftrightarrow \exists y\left(y \in W_{\operatorname{dom}(x, x)}^{\bar{h}(t, \operatorname{dom}(x, x))}\right.$ \& $\left.\delta_{y}^{\prime} \subseteq A\left[0, \ln \left(\delta_{y}\right)\right]\right)$.
By a slightly modified \emptyset^{\prime}-relativization of the proof of $[6$, Theorem 3.12] we can prove the following statement.

Theorem 3. For any set A of $N N s$ the following are equivalent.
(a) Any A-recursive function is majorized by some \emptyset^{\prime}-recursive function.
(b) $\operatorname{deg}_{\mathrm{T}}(\mathrm{A})$ (the T-degree of A) is \emptyset^{\prime}-hyperimmune-free.
(c) $\operatorname{deg}_{T}(A)$ has a non-empty intersection with only one \emptyset-tt-degree..
(d) $\operatorname{deg}_{\mathrm{T}}(\mathrm{A})$ has non-empty intersections with only finitely many $\emptyset^{\prime}-\mathrm{tt}$ degrees.

We introduce some constructive concepts now (cf. [7]).
Let us fix two Markov algorithms: wd establishing a one-to-one correspondence between N and \square^{*}, and en being the algorithm inverse to wd. For any set B of $N N s$ and any $N N x$, the correspondence $\lambda U\left(w d\left(\varphi_{x}^{B}(e n(U))\right)\right)$ will be denoted by $\llbracket \varphi_{x}^{B} \rrbracket$ and called the B-algorithm with B-index x.

Let M_{0} and M_{1} be subsets of C^{*}. A B-algorithm F is said to be a) of the type $\left(M_{0} \rightarrow M_{1}\right)$ if $\forall U\left(U \in M_{0} \Rightarrow!F(U) \& F(U) \in M_{1}\right)$;
b) a B-sequence of elements of M_{1} if it is of the type $\left(N \rightarrow M_{1}\right)$;
c) a B-sequence of C-algorithms if it is a B-sequence of C-indices of corresponding algorithms.

In the following we shall present B-sequences of words (or algorithms) by their "members" using notation $\{\ldots\}_{x}^{B}$.

Let F be a sequence of RtNs. A sequence of $N N s$ (or a function) G is called a modulus of fundamentality of F if $\forall x y\left(|F(G(x))-F(G(x)+y)| \leqslant 2^{-x}\right)$ holds. F is called B-fundamental if there is a B-sequence of $N N s$ (or, equivalently, a B-recursive function) being a modulus of fundamentality of F. If the function $\lambda x(x)$ is a modulus of fundamentality of F then F is said to be canonically fundamental. Let us notice that any B-sequence of RtNs.is fundamental (in the classical sense) if and only if it is B^{\prime}-fundamental and that a real X is B-recursive if and only if there exists a canonically fundamental (or a B-fundamental) B-sequence of RtNs converging to X.

We meet a situation similar to the one just presented,among other cases ,
in the cases of convergence, continuity, uniform continuity and measurability. Also we can introduce here (in parallel with classical concepts) B-concepts, where the availability of a B-recursive function being a corresponding modulus, is required. Speaking about constructive (or, equivalently, effective) fundamentality, constructive continuity etc. we always mean \emptyset-fundamentality, \emptyset-continuity etc.

Let x be a NN. $\emptyset^{(x)}$-constructive real numbers ($\emptyset^{(x)}$-CRNs) are words in E being either rational numbers or codes of $\emptyset^{(x)}$-recursive reals such that any $\emptyset^{(x)}$-CRN is an $\emptyset^{(x+1)}$-CRN. $\square^{[x]}$ denotes the set of all $\emptyset^{(x)}$-CRNs ([x] stands for $\left.\emptyset^{(x)}\right)$. Elements of \mathcal{A}, where $\mathcal{A} \rightleftharpoons \bigcup_{y=0}^{+\infty} D^{[y]}$, are called arithmetical real numbers (ARNs). On \mathcal{A}, the relations of equality and of order are defined in an obvious way, basic algebraic operations can be realized, thanks to the s-m-n theorem, by \emptyset-algorithms, i.e. effectively [7]. Let S and T be variables for \varnothing-CRNs.

A rational segment (or interval) is a word of the form $a \Delta b$ (or $a \nabla b$), where a and be are RtNs and $a<b$ holds. For any words of the form $U \times V V$, where λ is either Δ or ∇ and U and V are ARNs, and any real $X, X \in U \Delta V \rightleftharpoons$ \rightleftharpoons ($U \leqslant X \leqslant V$ holds), $X \in U \nabla V \rightleftharpoons$ ($U<X<V$ holds), $(U \Delta V)^{0} \rightleftharpoons U \nabla V,|U>1 V| \rightleftharpoons$ $\rightleftharpoons(V-U), E_{1}(U X V) \rightleftharpoons U, E_{\Gamma}(U X V) \rightleftharpoons V$. Let us suppose to have a fixed enumeration of rational segments given by an \emptyset-algorithm \mathscr{b} and two \emptyset-algorithms \mathscr{L}^{0} and Seg such that, for any $N N x$ and any string $\tau, \mathscr{E}^{0}(x) \rightleftharpoons(\mathscr{H}(x))^{0}$ and $\operatorname{Seg}(\tau)$ is the rational segment $c \Delta\left(c+2^{-1 h(\tau)}\right.$, where
$c \rightleftharpoons \sum_{x<\operatorname{lh}(\tau)} \tau(x) \cdot 2^{-x-1}$.
For any set A of NNs, we define $[A]_{C} \rightleftharpoons\{X: \exists x(x \in A \& X \in \mathscr{H}(x))\}$ and $[A] \geqslant\left\{X: \exists x\left(x \in A \& X \in \mathscr{B}^{\circ}(x)\right)\right\}$. Sometimes, we use the word $U \geqslant V$, where U and V are ARNs and X is either Δ or ∇, instead of $\{X: X G U X V\}$. Let in be a recursive function such that, for any $N N z, W_{i n(z)}$ is the set of all NNs y for which the segment $\mathscr{\mathscr { E }}(\mathrm{y})$ is a union of a finite subset of the set $\left\{\operatorname{Seg}\left(\sigma_{x}\right): x \in W_{z}\right\}$ of rational segments.

A class \mathcal{E} of sets of $N N s$ is said to be of B-measure zero if there exist two B-recursive functions f of one variable and g of two variables such that, for any $N N x, \quad \forall y z v\left(g(x, y) \leqslant z \Rightarrow\left|\mu\left(\left\langle W_{f}^{B}(x)\right\rangle^{E}\right)-\mu\left(\left\langle W_{f(x)}^{B, z}\right\rangle^{E}\right)\right| \leqslant 2^{-y}\right)$, $\mu\left(\left\langle W_{f(x)}^{B}\right\rangle^{E}\right) \leqslant 2^{-x}$ and $\mathcal{E} \subseteq\left\langle W_{f(x)}^{B}\right\rangle^{E}$ hold.

Let us remark that the class of all weakly 1 -generic sets [5] is of 0 -measure zero, the class of all sets being either semigeneric or recursive [11] is of \emptyset^{\prime}-measure zero and, for any non-recursive set A, the class $\{B: A \leqslant T B\}$ is of ($A \oplus \emptyset^{\circ}$)-measure zero.

Theorem 4. For any class \mathcal{E} of B-measure zero and for any string $\boldsymbol{\tau}$ and any set C of NNs, there is a set A of NNs such that $A \in\left(\{\tau\}^{E} \backslash \mathcal{E}\right)$, $A \leqslant T\left(B \oplus C\right.$) and $C \leqslant T(B \oplus A)$ hold (in fact, we have $C \equiv \sum_{B-t t^{A}}$.

Proof. Using standard methods of measure theory, we construct a B-algorithm T of the type ($S t \rightarrow S t$) (determining a B-recursive tree) such that (i) T of the empty string is $\boldsymbol{\tau}$, (ii) for any string $\boldsymbol{\sigma}$, the segments $\operatorname{Seg}\left(T(\boldsymbol{\sigma} * 0)\right.$) and $\operatorname{Seg}(T(\boldsymbol{\sigma} * 1))$ are disjoint, contained in $(\operatorname{Seg}(T(\boldsymbol{\sigma})))^{0}$, they have the same length, the first of them is situated to the left of the other and none of them contains any of RtNs of the type i.2 ${ }^{-1 h(\sigma)-1}$ and (iii) no set of NNs corresponding to an infinite path of the tree T is in the class \mathcal{E}. Then, for a given set C of $N N s$, we put $A=\{x: T(C[0, x])(x)=1\}$.

Corollary 5. For any string τ and any set B of $N N s, \emptyset^{\prime} \epsilon T^{B}$, there is a set A such that (1) is valid, $\tau \subseteq A, A \equiv \emptyset^{\prime}-t t^{B}$ and $A^{\prime} \equiv T^{B}$ hold. Thus, A is a NAP-set, $\neg\left(\varnothing^{\prime} \leqslant T^{A}\right)$ and $\left(\emptyset^{\circ}<T^{B} \Rightarrow \neg\left(A \leqslant \top^{\prime}\right)\right)$.

Proof. It is easy to show that the class $\overbrace{v=0}^{+\infty} \varangle W_{\bar{g}(v)}^{\emptyset}\rangle^{E}$ of sets is of \emptyset-measure zero. Then we use Theorems 4 and 2.

We return to constructive functions now. Concepts introduced by us make it possible to give definitions. An \emptyset-algorithm F is said to be constructive function if it is of the type $\left(D^{[0]} \rightarrow D^{[0]}\right.$) and $\forall S T(S=T \Rightarrow F(S)=F(T))$ holds. A constructive function is called a c-function if $\forall S((S \leq 0 \Rightarrow F(S)=$ $=F(0)) \&(1 \leq S \Rightarrow F(S)=F(1)))$ is valid.

Remark 6. 1) By Cejtin [2], for any c-function F, there is a recursive function cont F_{F} such that, for any $N N v$, the set $\left\langle W_{\text {cont }_{F}(v)}\right\rangle$ of strings is a proper covering and $\left.\mu\left(《 W_{\operatorname{cont}_{F}(y)}\right\rangle^{E}\right) \leq 2^{-v}$ and $\forall y a b\left(y \in W_{\operatorname{cont}_{F}(v)}\right.$ \& \& $\left(a, b \in \operatorname{Seg}\left(\delta_{y}\right)\right) \Rightarrow|F(b)-F(a)| \leqslant 2^{-v}$) hold. Consequently, any c-function F is \emptyset-continuous at any \emptyset-CRN and R[F] is defined at least on $\stackrel{\sim}{r}_{+\infty}^{\infty}\left\langle W_{W_{c o n t}^{F}}(v)^{D}\right.$, in particular, it has a B-limit at r_{B} for any semigeneric set B (cf. [11]). However, a c-function can be unbounded on $0 \Delta 1$.
2) For any c-function F, (F is (classically) uniformly continuous) \Leftrightarrow $\Leftrightarrow\left(F\right.$ is \emptyset^{\prime}-uniformly continuous) $\Longleftrightarrow\left(R[F]\right.$ is defined at any $\emptyset^{\prime \prime}$-recursive real) \Longleftrightarrow (RLF] is everywhere defined) [7]. There are uniformly continuous cfunctions being not \emptyset-uniformly continuous [4]. On the other hand, any monotone c-function is \emptyset-uniformly continuous [3].
3) The predicates $S<T$ of variables S and $T, S \in \mathcal{E}^{0}(x)$ and $S \notin \mathbb{\&}(x)$ of variables S and x are recursively enumerable. For any \emptyset-uniformly continuous (resp. \emptyset^{\prime}-uniformly continuous) c-function F the predicates $R[F](\mathscr{L}(x)) \subseteq$ $c \mathscr{L}^{0}(y)$ and $R[F](\mathscr{L}(x)) \cap \mathscr{\&}(y)=\emptyset$ of variables x and y are \emptyset-recursively (resp. \emptyset°-recursively enumerable.

Renark 7. On the basis of Remark 6 and [11, Lemma 10] it is easy to prove the following.

1) Let B be f-reducible to A. Then we have
(i) if B is a non-recursive and non-semigeneric set, then A also has these properties;
(ii) if A is 1-generic [12] then B is either recursive or 1-generic;
(iii) if A is hyperimmune then B is contained in a class of sets of 0 measure zero.
2) Weakly 1-generic sets [5] can be mf-reducible to semigeneric sets only.

We shall have some trouble with binary rational reals in our considerations. Let us notice that the real r_{A} is not equal to a binary rational number if and only if A is a bi-infinite set. In the sequel, for any $N N t, \mathcal{B}(t)$ (or, as the case may be, $3^{\emptyset}(t)$) denotes: $\left\langle W_{t}\right\rangle$ (or $\left\langle W^{\emptyset}\right\rangle$) is a set of mutually incomparable strings which, for any non-empty finite set A, covers either A or $\operatorname{Set}\left(r_{A}\right)$.

A set A of NNs is said to be
a) a strongly bi-infinite set, an SBI-set, (resp. and \emptyset^{\prime}-strongly bi-infinite set, an $\left.\emptyset^{\prime}-S B I-s e t\right)$ if it is a bi-infinite set and there is a NN t fulfilling $\beta(t)$ (resp. $\beta^{D^{\prime}}(t)$) and $A \&\left\langle w_{t}\right\rangle^{E}$ (resp. $A \&\left\langle w_{t}^{\circ}\right\rangle$);
b) a weakly bi-infinite set, a WBI-set, if it is a bi-infinite set, but it is not an SBI-set.

Remark 8. 1) Any bi-infinite recursive set is an SBI-set. Any SBI-set is an \emptyset^{\prime}-SBI-set. Any weakly l-generic set is, naturally, a WBI-set. Any WBIset is by [11, Remark 15 and Corollary 12] a bi-hyperimmune and, consequently, semigeneric set. So, according to [5], WBI T-degrees are just the hyperimmune ones. The class of all WBI-sets is both a $\Pi_{2}^{0, \emptyset^{\circ}}$ class and a Π_{3}^{0} class of \emptyset measure zero which is not a Σ_{3}^{0} class.
2) Let t_{0} be a NN such that $W_{t_{0}}=\left\{x: \exists y\left(\operatorname{lh}\left(\sigma_{x}\right)=2 y+2 \&(\forall z)_{z<y}\left(\delta_{x}(2 z)=\right.\right.\right.$
$\left.\left.\left.=\delta_{x}(2 z+1)\right) \& \delta_{x}(2 y) \neq \delta_{x}(2 y+1)\right)\right\}$. Then $B\left(t_{0}\right)$ holds and $A \oplus A \notin\left\langle W_{t_{0}}\right\rangle^{E}$ is valid for any set A of NNs. Thus, for any bi-infinite set B (in particular, for any WBI-set), $\mathrm{B} \oplus \mathrm{B}$ is an SBI-set. Consequently, there are bi-hyperimmune SBI-sets.
3) We can construct bi-infinite \emptyset°-recursive sets A_{0} and B_{0} such that $A_{0} \leq t t B_{0}$ holds and $A_{0} \oplus\left(B_{0} \oplus B_{0}\right)$ is a WBI-set which according to [11, Theorems 4 and 5] cannot be weakly l-generic. By [11, Theorem 9], 1) and 2) $\left(B_{0} \oplus B_{0}\right)$ is a semigeneric set not being a WBI-set.

We begin with \emptyset-ucf-reducibility. Let us remark that according to the part 2) of Remark $6 \quad A \leqslant m_{f} B \Rightarrow A \leqslant \emptyset$-ucf B holds for any sets A and B of NNs.

Theorem 9. 1) For any \emptyset-uniformly continuous c-function F and any $\mathrm{N} N \mathrm{t}$ fulfilling $0 \leqslant F \leqslant 1 \& B(t)$, we can construct a recursive function f such that, for any sets A and B of NNs, where $B<\left\langle W_{t}\right\rangle^{E}$ and B is bi-infinite, we have (2) $\left(B \leq \emptyset-u c f^{A}\right.$ via $\left.F\right) \Leftrightarrow\left(B \leq t t^{A}\right.$ via $\left.f\right)$.
2) For any recursive function f and any $N N t$ fulfilling $\beta(t)$, we can construct an \emptyset-uniformly continuous c-function F such that $0 \leqslant F \leqslant 1$ and (2) hold for any sets A and B of NNs, where $A \oint\left\langle W_{t}\right\rangle^{E}$ and B is bi-infinite.

Proof. Let t be a $N N, B(t)$. We construct an increasing recursive function g such that $\forall x i\left(0<i<2^{x+1} \Rightarrow \exists y\left(y \in W_{t}^{g(x)} \& i .2^{-x-1} \in \operatorname{Seg}\left(\delta_{y}\right)\right)\right)$.

1) Let F be an \emptyset-uniformly continuous c-function, $0 \leqslant F \leqslant 1$. There are an increasing recursive function h and an \emptyset-algorithm \underline{H} of the type (St \rightarrow St) such that $0<h(0)$ and, for any $N N \times$ and any strings σ and τ fulfilling $\mathrm{h}(\tau)=\mathrm{h}(\mathrm{x})$, we have $\left(\sigma \in\left\langle\mathrm{w}_{\mathrm{t}}^{\mathrm{g}} \mathrm{f}\right)\right\rangle \Rightarrow \forall \mathrm{ab}(\mathrm{a}, \mathrm{b} \in \operatorname{Seg}(\tau) \Rightarrow|\mathrm{F}(\mathrm{a})-\mathrm{F}(\mathrm{b})|<$
 $\left((\tau\right.$ extends $\boldsymbol{\sigma}) \Rightarrow(\underline{H}(\tau)$ extends $\underline{H}(\sigma))$ and $\left(\mid F\left(E_{1}(\operatorname{Seg}(\tau))\right)-\right.$ $\left.-E_{1}(\operatorname{Seg}(\underline{H}(\tau))) \mid<2^{-x} \vee \underline{H}(\tau)(x)=0\right)$ (see Remark 6). We construct a recursive function f such that, for any $N N x, f(x)$ is the (code number of) tt-condition of norm $h(x)$ with an associated set $\{0,1, \ldots, h(x)-1\}$ and $h(x)$-ary Boolean function transforming any string τ of length $h(x)$ into $\underline{H}(\tau)(x)$. Obviously, f has all the required properties.
2) Let f be a recursive function. We shall construct an \varnothing-sequence $\left\{F_{x}\right\}^{\emptyset}$ of polygonal c-functions and a recursive function h such that $0 \leq F_{x} \leqslant$ $\leq 2^{-x-1}$ and F_{x} fulfils the Lipschitz condition with $h(x)$ for any $N N x$ and a c-function F to which the canonically uniformly fundamental \varnothing-sequence
$\left\{\sum_{v}^{y} \sum_{0}^{y} F_{v}\right\}_{y}^{\emptyset}$ of c-function converges, has all the required properties.
Let x be a $N N$ and p_{x} the greatest of the elements of associated sets - of tt-conditions $f(0), f(1), \ldots, f(x)$. We denote by $\left\{c_{x, i}\right\}_{i=0}^{q}$ the increasing finite sequence formed by RtNs: 0,1 and all end points of $\operatorname{Seg}\left(\tilde{\sigma}_{z}\right)$ for $z \in W_{t}\left(p_{x}\right)$. The c-function F_{x} will be linear on the rational segment $c_{x, j} \Delta c_{x, j+1}$ for any $N N j<q_{x}$. Let i be a $N N, 0 \leq i \leq q_{x}$, and let $v_{x, i} \rightleftharpoons$
$\rightleftarrows \mu y\left(\ln \left(\delta_{y}\right)=p_{x}+1 \& c_{x, i} \in \operatorname{Seg}\left(\delta_{y}\right) \&\left(c_{x, i}<E_{r}\left(\operatorname{Seg}\left(\delta_{y}\right)\right) \vee i=q_{x} \vee \exists z(z \in\right.\right.$
 $\sigma \leqslant_{t t} \delta_{v_{x, i}}$ via f (see [11, p. 73]) and put $F_{x}\left(c_{x, i}\right)=\boldsymbol{\sigma}(x) \cdot 2^{-x-1}$. It is easy to find a NN being the Lipschitz constant for F_{x}.

These results cannot be improved in a general case.
Example 10. Let $g \rightleftharpoons \lambda x(\mu y(x<2 y+2))$. Then, for any set A,
(a) $A \oplus A \leqslant m$ via g holds;
(b) if A is bi-infinite and $A \oplus A \leqslant f_{f} A$ is valid then A is necessarily an SBI-set.

Remark 11. Let F be a non-decreasing c-function fulfilling $F(0)=0, F(1)=$ $=1$ and $\forall a(a \in Q \& 0<a<1 \Rightarrow(\operatorname{Set}(F(a))$ is bi-infinite)). Then, for any set A and any bi-infinite set B of $N N s$ such that $B \leqslant_{f} A$ via F holds and $B \leqslant t_{t} A$ (or $B \leqslant \emptyset^{\circ}-t t^{A}$) is valid, the set B must be an SBI-set (or, an $\emptyset^{\prime}-S B I-s e t$, respectively).

By a relativization of the proof of the part 1 of the preceding theorem we get the following statement:

Theoren 12. For any \emptyset^{\prime}-uniformly continuous c-function F and any $N N t$ fulfilling $0<F \leqslant 1 \& \mathcal{B}^{\emptyset}(t)$, we can construct an \emptyset°-recursive function f such that, for any sets A and B of $N N s$, where $B \notin\left\langle W_{t}^{\emptyset^{\prime}}\right\rangle^{E}$ and B is bi-infinite, $\left(B \leq \emptyset^{\prime}-u c f^{A}\right.$ via $\left.F\right) \Leftrightarrow\left(B \leq \emptyset^{\circ}-t t^{A}\right.$ via $\left.f\right)$ holds.

In the case of monotone c-functions we can get more.
Theorem 13. 1) Let F be a c-function and f a recursive function such that $\left(B \leq t t^{A}\right.$ via $\left.f\right) \Rightarrow\left(B<{ }_{f} A\right.$ via $\left.F\right)$ holds for any sets A and B of NNs. Then $\left(B \leq f_{f} A\right.$ via $\left.F\right) \Longrightarrow\left(B \boldsymbol{K}_{t t} A\right.$ via $\left.f\right)$ is valid for any set A and any bi-infinite set B of NNs.
2) Let F be a non-decreasing c-function, $F(0)=0 \& F(1)=1$. Then the following two conditions are equivalent:
(a) There is a recursive function f such that, for any sets A and B of NNs, $\left(B \leq{ }_{t t^{A}}\right.$ via $\left.f\right) \Longrightarrow\left(B \leq f_{f} A\right.$ via $\left.F\right)$ holds.
(b) There is an \emptyset-algorithm E of the type $\left(Q^{b} \rightarrow Q^{b}\right.$) such that $\forall a\left(a \in Q^{b} \& 0<a<1 \Rightarrow F(\underline{E}(a))=a\right)$ is valid.

Theorem 14. Let F be a non-decreasing c-function and E an \emptyset-algorithm of the type $\left(Q^{b} \rightarrow Q^{b}\right)$ for which $F(0)=0 \& F(1)=1 \& \forall a\left(a \in Q^{b} \& 0<a<1 \Rightarrow\right.$ $\rightarrow F(a)=\underline{E}(a))$ holds. Then there is a recursive function f such that $(B \leq m f$ via $F) \Longleftrightarrow\left(A \leq t t^{B}\right.$ via $\left.f\right)$ holds for any set A and any bi-infinite set B of NNs.

Theorem 15. For any \emptyset-uniformly continuous c-function F we can construct $N N s z_{0}$ and z_{1} such that, for any sets A and B of NNs, we have
(a) (B bi-infinite) $\Rightarrow\left(\left(B \notin T\right.\right.$ via $\left.z_{0}\right) \Longrightarrow\left(B \leq \emptyset-u c f^{A}\right.$ via $\left.\left.F\right)\right)$;
(b) if F is non-decreasing and $0 \leqslant F \leqslant 1$ holds then $\emptyset<{ }_{T} B \Rightarrow$ $\Rightarrow\left(\left(B \leq m f{ }_{m} A\right.\right.$ via $\left.F\right) \leftrightarrow\left(A \leq T_{T} B\right.$ via $\left.\left.z_{1}\right)\right)$.

Theorem 16. For any c-function \bar{F} we can construct $N N s v_{0}$ and v_{1} such that $\left(B \leqslant_{f} A\right.$ via $\left.\vec{F}\right) \Longleftrightarrow\left(B \epsilon_{T}\left(A \oplus \emptyset^{\prime}\right)\right.$ via $\left.v_{0}\right)$ and (A is either recursive or semigeneric) $\Rightarrow\left(\left(B \leqslant{ }_{f} A\right.\right.$ via $\left.\bar{F}\right) \Longrightarrow\left(B \leq T^{A}\right.$ via $\left.\left.v_{1}\right)\right)$ hold for any set A and any bi-infinite set B of NNs.

Proofs of Theorems 15 and 16. We use Remark 6, the s-m-n theorem and its relativization and construct everywhere defined \emptyset-algorithms \underline{L} and \underline{R} and recursive functions g_{0}, g_{1}, h_{0} and h_{1} of two variables such that $\underline{L}(x y i) \doteq$ $\doteq(2 i+y) \cdot 2^{-x-1}, \underline{R}(x y i)=(2 i+y+1) \cdot 2^{-x-1}$,
$\left.W_{g_{0}}(x, y)=\left\{t: y \leqslant 1 \& \exists j(R L F]\left(\operatorname{Seg}\left(\sigma_{t}\right)\right) \subseteq \underline{L}(x y j) \nabla \underline{R}(x y j)\right)\right\}$,

$$
\begin{aligned}
& W_{g_{1}}(x, y)=\left\{t: y \leq 1 \& \exists j\left(\operatorname{Seg}\left(\delta_{t}\right) \subseteq F(\underline{L}(x y j)) \nabla F(\underline{R}(x y j))\right)\right\} \\
& W_{h_{0}}^{\emptyset_{0}^{0}}(x, y)=\left\{t: y \leq 1 \& \exists j \neg \exists a\left(a \in \operatorname{Seg}\left(\delta_{t}\right) \&(\vec{F}(a)<\underline{L}(x y j) \vee \underline{R}(x y j)<\bar{F}(a))\right)\right\}, \\
& W_{h_{1}}(x, y)=\left\{t: y \leq 1 \& \exists j v a\left(t \in W_{\operatorname{cont}_{F}}(v)^{\&} a \in \operatorname{Seg}\left(\delta_{t}\right) \& \underline{L}(x y j)+2^{-v+1}<\right.\right. \\
&\left.\left.<\bar{F}(a)<\underline{R}(x y j)-2^{-v+1}\right)\right\}
\end{aligned}
$$

for any NNs x and y and any integer i. For the completion of the proof it is sufficient to use Remark 1.

Remark 17. 1) Using Theorems 13 and 14, we can prove by a construction of corresponding non-decreasing c-functions the following:
(a) Any \emptyset^{\prime}-recursive l-generic set is tt-equivalent to a weakly l-generic set being not 1-generic.
(b) Any weakly l-generic set is tt-equivalent to a WBI-set being not weakly l-generic.

As we already know, for any WBI-set A, the set $A \oplus A$ being tt-equivalent to A is a bi-hyperimmune SBI-set and, thus, by [11, Corollary 12], a semigeneric set.
2) By Remark 11 there exists an increasing c-function F such that $F(0)=$ $=0, F(1)=1$ and, for any sets A and B fulfilling $B \leq m_{f} A$ via F we have:
$B=m f^{A}, B=T^{A}$ (Theorem 15), if one of the sets A and B is 1 -generic (resp. weakly 1-generic) then the other one is also l-generic (resp. weakly l-generic) and, in addition, B and A are tt-incomparable WBI-sets (Remark 8).

Example 18. There are two \emptyset^{\prime}-recursive sets being recursively isomorphic (i.e. l-equivalent) but f-incomparable (according to Theorem 9 these sets - must be WBI-sets).

Theorem 19. For any proper covering $\left\langle W_{t}\right\rangle$ and any $N N z$ we can construct a c-function F such that $0 \leqslant F \leqslant 1$ and, for any sets A and B of NNs, where $A \nmid\left\langle W_{t}\right\rangle{ }^{E}$ and B is bi-infinite, we have
$\left(B \leqslant{ }_{T}\left(A \oplus \emptyset^{\circ}\right)\right.$ via $\left.z\right) \Leftrightarrow\left(B \leqslant_{f} A\right.$ via $\left.F\right)$.

Theorem 20. For any proper covering $\left\langle W_{t}\right\rangle$ and any \emptyset^{\prime} - recursive function f, we can construct an \emptyset^{\prime}-uriformly continuous c-function F such that $0<F<1$ and, for any sets A and B of NNs, where $A \nless<W_{t}>E$ and B is bi-infinite, we have $\left(B \not \|^{\circ}-t t^{A}\right.$ via $\left.f\right) \Leftrightarrow\left(B \leqslant \emptyset^{\circ}-u c f^{A}\right.$ via F).

Proof of Theorem 20. Let \bar{k} be a recursive function whose range is the set $W_{n o l}(t)$ and let $a_{y, 0} \rightleftharpoons E_{1}\left(\operatorname{Seg}\left(\delta_{\bar{k}(y)}\right)\right)$ and $a_{y, 1} \rightleftharpoons E_{r}\left(\operatorname{Seg}\left(\delta_{\bar{k}(y)}\right)\right)$ for any NN y. The RtN $a_{y, i}$, where $0 \leqslant i \leqslant l$, is said to be vacant if $0<a_{y, i}<$ $<1 \& \neg(3 v)_{v<y}\left(a_{y, i}=a_{v, 1-i}\right)$ holds.

We shall construct an \emptyset-sequence of (\varnothing-indices of) c-functions $\left\{F_{x}\right\}_{x}^{\emptyset}$ such that, for any $N N s x, y$ and $i, 0 \leqslant i \leqslant 1, F_{x}$ is linear on the segment $a_{y, 0} \Delta a_{y, 1}$ and $F_{x}\left(a_{y, i}\right)$ is either 0 or 2^{-x-1} and, thus, $0 \leqslant F_{x} \leqslant 2^{-x-1}$ holds.

Let $\overline{\mathrm{p}}$ be a recursive function of two variables such that $f(x)=$ $=\lim _{y \rightarrow+\infty} \boldsymbol{p}(y, x)$ for any $N N x$.

We put $F_{x}(0)=F_{x}(1)=0$ for any $N N x$. The construction proceeds in stages.
Stage s. If neither $a_{s, 0}$ nor $a_{s, 1}$ is vacant, we go to the stage $s+1$. In the other case we denote by τ_{s} the longest string from the set $\left\{\tau: 1 \mathrm{~h}(\tau) \leq s \&\left(\tau \leq{ }_{t t} \delta_{\bar{k}(s)}\right.\right.$ via $\left.\left.\lambda \times \bar{p}(s, x)\right)\right\}$ of strings (containing at least the empty string, see [11, p. 73]). For any NNs x and $j, 0 \leqslant j \leqslant 1 \&\left(a_{s, j}\right.$ is vacant), we put $F_{x}\left(a_{s, j}\right)=\tau_{s}(x) \cdot 2^{-x-1}$, if $x<\operatorname{lh}\left(\tau_{s}\right)$, and $F_{x}\left(a_{s, j}\right)=0$, if
$\operatorname{lh}\left(\tau_{s}\right) \leq x$. We go on to the stage $s+1$.
Let us remark that, for any $N N x$ and sets A and B fulfilling $\left.A \not \subset<W_{t}\right\rangle^{E}$ and $B \leqslant \emptyset^{\prime}-t t^{A}$ via ${ }^{\prime}$, the function $R\left[F_{x}\right]$ is not only everywhere defined and, thus, by Remark 6, \emptyset-uniformly continuous but even polygonal and $R\left[F_{x}\right]\left(r_{A}\right)=$ $=B(x) \cdot 2^{-x-1}$ is valid.

Let us denote by F a c-function being a limit of canonically uniformly fundamental \emptyset-sequence $\left\{\sum_{y=0}^{x} F_{y}\right\}^{\emptyset}$ of \emptyset-uniformly continuous c-functions. Ob viously, F has all the properties described in the theorem.

To prove Theorem 19 it is sufficient to modify the previous proof using the function hp.

Corollary 21. For any non-recursive non-semigeneric set A and any \emptyset° recursive set B we have $B \leqslant \emptyset^{\circ}$-ucf A. Consequently, there are $\emptyset^{\prime \prime}$-recursive (and thus, \emptyset^{\prime}-tt-equivalent) non-semigeneric \emptyset°-ucf-equivalent sets being T-incomparable and, thus, \emptyset-ucf-incomparable.

Proof. It is sufficient to use Theorems 15 and 20 , the Friedberg-Muchnik theorem [1, § 10.2] and [11, Theorem 13].

We shall restate Theorem 33 from [11] here.
Lema 22. For any $N N t$ such that $\mu\left(\left\langle W_{t}\right\rangle\right)<1$ and for any set A of NNs we can construct a set B of $N N s$ such that $\left.A \leqslant T_{T} B, B \&<W_{t}\right\rangle^{E}$ and $B=\emptyset^{\circ}-t t^{A}$ hold and, thus, $B \leq{ }_{T}\left(A \oplus \emptyset^{\circ}\right)$ is valid.

Using this lemma we can get the following example.
Example 23. For any covering $\left\langle W_{t}\right\rangle$ such that $\mu\left(\left\langle W_{t}\right\rangle\right)<1$ we can construct sets A and B of NNs not contained in $\left\langle W_{t}\right\rangle^{E}$ which are T-equivalent to $\emptyset^{\prime \prime}$ and \emptyset^{\prime}-tt-incomparable. Consequently, according to Theorems 12 and 19 and Remark 8, A and B are f-equivalent and \emptyset°-ucf-incomparable.

Example 24. For any NAP-set A there is an NAP-set B such that A and B are tt-equivalent and mf-incomparable. Thus, A and B are SBI-sets [11, p. 74] which are by Theorem 9 -ucf-equivalent.

References

[1] ROGERS H. Jr.: Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.
[2] CEÏTIN G.S.: Algorithmic operators in constructive metric spaces, Trudy Mat. Inst. Steklov 67(1962), 295-361; English transl. Amer. Math. Soc. Transl. (2)64(1967), 1-80.
[3] ZASLAVSKIİ I.D.: Some properties of constructive real numbers and constructive functions, Trudy Mat. Inst. Steklov 67(1962), 385-457; English transl. Amer. Math. Soc. Transl. (2)57(1966), 1-84.
[4] ZASLAVSKII I.D., and CEIITIN G.S.: On singular coverings and related properties of constructive functions, Trudy Mat. Inst. Steklov 67(1962), 458-502; English transl. Amer. Math. Soc. Transl. (2) 98(1971), 41-89.
[5] KURTZ S.A.: Notions of weak genericity, J. Symbolic Logic 48(1983), 764770.
[6] ODIFREDDI P.: Strong reducibilities, Bull. Amer. Math. Soc. 4(1981), 3786.
[7] DEMUTH O., KRYL R., KUČERA A.: An application of the theory of functions partial recursive relative to number sets in constructive mathematics (Russian), Acta Univ. Carolinae - Math. et Phys. 19(1978), 15-60.
[8] DEMUTH O.: Some questions in the theory of constructive functions of a real variable (Russian), Acta Univ. Carolinae - Math. et Phys. 19(1978), 61-96.
[9] DEMUTH 0.: On some classes of arithmetical real numbers (Russian), Comment. Math. Univ. Carolinae 23(1982), 453-465.
[10] DEMUTH D.: On Borel types of some classes of arithmetical real numbers (Russian), Comment. Math. Univ. Carolinae 23(1982), 593-606.
[11] DEMUTH 0.: A notion of semigenericity, Comment. Math. Univ. Carolinae 28 (1987), 71-84.
[12] DEMUTH 0., KUČERA A.: Remarks on 1-genericity, semigenericity and related concepts, Comment. Math. Univ. Carolinae 28(1987), 85-94.

Matematicko-fyzikální fakulta, Kälova Univerzita, Malostranské nám. 25, 11800 Praha 1, Czechoslovakia
(Oblatum 27.11. 1987)

