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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,2 (1988) 

ON SUPERTIGHTNESS AND FUNCTION SPACES 

Masa»i SAKAI 

Abstract; For a Tychonoff space X, we denote by C (X) the function spa­

ce on X with the topology of pointwise convergence. M.O. Asanov showed that 

Xn has countable tightness for every natural number n if C (X) is Lindelbf. 

In this note we shall strengthen Asanov s result. We show that Xn has coun­

table supertightness for every natural number n if C (X) is Lindelbf. 
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1. Introduction. In this paper by a space we shall always mean a Tycho­

noff space. N denotes the positive integers. Unexplained notions and termino­

logy follow £23. We begin with some definitions. We denote by C (X) the func­

tion space on a space X with the topology of pointwise convergence. Basic 

open sets of C (X) are of the form £x. ,x2,.. ,,x. ; U1,u
,2,...,Ui<3 = 

= -IffcC (X):f(x.)iU. i=l,2,...,k|, where kcN, x ^ X and each u\ is an open 

subset of the real-line. 

A collection of subsets JT of a space X is called a ar-network for x« X 

provided that every neighborhood of x contains a member from V . The super-

tightness st(x,X) of x in X is defined to be the least cardinal ic for which 

every st -network 9-* for x consisting of finite subsets of X contains a subfa­

mily ty, c $ of cardinality * K which is a 4 -network for x. The supertigh­

tness st(X) of X is defined by st(X)= *»• sup •Cst(x,X):x€ Xi. The concept of 

supertightness was introduced in 13J to estimate the character of supercomp--

act spaces. It is clear that t(X)4st(X) for a space X, where t(X) is the 

tightness of X. 

This paper is motivated by the concept of supertightness and Asanov s 

result. Asanov showed in 113 that Xn has countable tightness for every n € N 

if CD(X) is Lindelbf. In this note we shall strengthen Asanov s result. We 
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show that Xn has countable supertightness for every n e N if C (X) is Linde-

lbf. In addition, we also show the equality st(C (X))=t(C (X)). 

There is a supercompact space X such that t(Xw)= a> while st(X)=2°* 

13, Example 2.61. 

2. Results. For a space X we set l(X)=min i *c : every open cover of X 
has a subcover of cardinality + K \ . For x,,...,x €X and feC (X) we define 
(x.+...+x )(f)=f(x.)+...+f(x ), then x,+...+x is a continuous function on 

Cp(X). . 

Theore* 2.1. 1(C (X))-Tst(Xn) holds for each n€N. 

Proof. We set 1(C (X))= w . We fix n€N and (z1,...,zn)€X
n. Let JT be 

a 7t-network of finite subsets of Xn for (zlt...tz ). We must find a subfami­

ly (f. c & of cardinality * ic which is a if-network for (z-,...,zn). Let U. 

be an open neighborhood of z, such that U.A U.=0 if z.#z., and U^U. if z.= 

=z*. We may assume FsU-x . ..*U for every F € 0 . For A= •£z-,t...tz | we set 
C (XjA)= 4f*C (X):f|A=0{ . Since C (X;A) is closed in C (X), 1(C (X;A))* *. 

We claim that 

Cn(XjA) c U ( fU(x, + . . .+xV*" ( - l , l ) : ( x , , . . . ,x j € F|). 
p i-.3f i n i n 

In fact, for f€C (X;A) f * ( - l / n , l / n ) * . . . x f4 -(- l /n, l /n) is a neighborhood 

of ( z 1 , . . . , z n ) , hence there is an F€ f such that Fc f *"(-l/n,l/n)x . . . K 
*f*"(- l /n t l /n) . This means that for each ( x l t . . . , x n )« Ff|(x1+...+ xR)(f)U 
-*|f(x1)| + . . . + | f (x n ) |< l . Thus f€f\ i(x1+.. .+ x n )^ ( - l , l ) : ( x 1 , . . . , x n )€F | . 

We can find a subfamily <$. c & of cardinality * K such that 

C n ( X ; A ) c U ( m ( x 1 + ...+xri)*-(-l,l):(x1,...,xn)«F|). p -^ i n i n 
We claim that (J. is a or-network for (z,t...tz ). Let V, be an open neighbor­

hood of z.. Without loss of generality we may assume that V.cU., and V.=V. 

if z.=z*. Let f be a nonnegative continuous function on X such that f|A=0 and 

f|X-V1w...uVn-«l. Then there is an F « r such that f € fK(x1+...+xn) **(-!, 

l):(x1,...txn)« F|. This means that for each (xlt...,xn)€F f(x-.)+...+f(x )< 

<1. Since f is non-negative, we have {x«t...tx )cV-,ts ...uV • Thus (xp... 

... ,xn) « Vi x ... x Vi A Uj* .. .*Un, where Vjl € iV r... ,Vnl. It is not diffi­

cult to see that V. =V. because of V. n U. is not empty for j=l,...,n. Conse-

quently we have FcV,x...xV . The proof is complete. 
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Corollary 2.2. If C (X) is Lindelbf, then Xn has countable supertight-
ness for every n*N. 

Theoje* 2.3. For a space X st(C (X))=t(C (X)) holds. 

Proof. We set t(C (X))= K . Let & be a ar-network of finite subsets 

of Cp(X) f°r f * C (X). Since C (X) is homogeneous, we may assume f is the 
constant function 0. For each F a & and n*N we set U (F)= C\ f*"(-l/n,l/n). 

n frF 

We set An= 4 h * C (X):h|X-Un(F)=l for some F c ^ l for each u*N. Then we have 

f m r\J . In fact, let G= £x.,...,x. ; W.,...,W.3 be any basic neighborhood 

of f. We take an & > 0 such that s > 1/n and W=(- fc, s)cAiW. :i=l,...,k|« 

Since Cx,,...,x. ; W,...,WJ is a neighborhood of f, there is an F«3* such 

that Fc Lx-,...,xK; W,...,W3. This means * X p . . . , x . l c U (F). We take a conti­
nuous function g such that g|(x,,...,xk)=0 and g|X-Un(F)=l. Obviously g*G n 

nA n. 

From t(C (X))= K , we can find a subset B e A of cardinality * t-t such 

that f c n f n . For each g*B n we select F(g) € & such that g|X-Un(F(g))=l. 
n 

We set 9 = {F(g):gcBni for each ncN and Q. = U ^ n. The cardinality of<J, 

n 

is less than or equal to K .We claim Q. is a K -network for f. Let G= £x., 
...,xK; W,...,W} be a neighborhood of f, where W=(-l/n,l/n). Then there is a 

giB nAG. This means •Cx.,...,x.<lc Un(F(g)). Thus we have F(g)cG and we have 

proved that st(C (X)) -* *c . The other inequality is trivial. The proof is 

complete. 
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